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1. Introduction 

During the past decade, transport properties of conducting polymers such as doped 
polyacetylene and polyaniline-polyethylene oxides, were and still are intensively studied [1, 
2]. These materials are significant mostly due to various possible applications in fabrication 
of nanodevices. Polymer-based devices should have advantages of low cost and flexible, 
controlled chemistry. Also, there are some unresolved problems concerning the physical 
nature of charge transfer mechanisms in conducting polymers, which make them interesting 
subjects for fundamental research. Chemically doped polymers are known to be very 
inhomogeneous. In some regions polymer chains are disorderly arranged, forming an 
amorphous, poorly conducting substance. In other places the chains are ordered and 
densely packed [3, 4]. These regions could behave as metallic-like grains embedded in the 
disordered environment. The fraction of metallic-like islands in bulk polymers varies 
depending on the details of the synthesis process. In practical samples such islands always 
remain separated by disordered regions and do not have direct contacts. In some cases, 
electronic states are delocalized over the grains, and electrons behave as conduction 
electrons in conventional metals. In these cases electrons motion inside the grains is 

diffusive with the diffusion coefficient  (vF is the Fermi velocity, and τ is the 

scattering time). In whole, electron transport in conducting polymers shows both metallic and 
nonmetallic features, and various transport mechanisms contribute to the resulting pattern. 

An important contribution to the conduction in these substances is provided by the phonon-

assisted electron hopping between the conducting islands and/or variable range hopping 

between localized electronic states. The effect of these transport mechanisms strongly 

depends on the intensity of stochastic nuclear motions. The latter increases as temperature 

rises, and this brings a significant enhancement of the corresponding contributions to the 

conductivity. The temperature dependence of the “hopping” conductivity σ(T ) is given by 

the Mott’s expression [5]: 

 (1) 

where T0 is the characteristic temperature of a particular material, and the parameter p takes 

on values 0.25, 0.33 or 0.5 depending on the dimensions of the hopping processes. Also, it 
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was suggested that phonon-assisted transport in low-dimensional structures such as 

nanofibers and nanotubes, may be substantially influenced due to electron interactions [6, 

7]. This results in the power-low temperature dependencies of the conductance G(T) at low 

values of the bias voltage V (eV < kT, k being the Boltzmann constant), namely: G ~ T α. 

Experimental data for the conductance of some nanofibers and nanotubes match this power-

low reasonably well, bearing in mind that the value of the exponent α varies within a broad 

range. For instance, α was reported to accept values about 0.35 for carbon nanotubes [8], 

and α ~ 2.2 ÷ 7.2 for various polyacetylene nanofibers [9–11]. In general, hopping transport 

is very important in disordered materials with localized states. For this kind of transport 

phonons play part of a source of electrical conductivity. Accordingly, the hopping 

contribution to the conductivity always increases as temperature rises, and more available 

phonons appear. When polymers are in the insulating state, the hopping transport 

predominates and determines the temperature dependencies of transport characteristics. 
In conducting state of conducting polymers free charge carriers appear, and their motion 
strongly contributes to the conductance. While moving, the charge carriers undergo 
scattering by phonons and impurities. This results in the conductivity stepping down. 
Metallic-like features in the temperature dependencies of dc conductivity of some polymeric 
materials and carbon nanotubes were repeatedly reported. For instance, the decrease in the 
conductivity upon heating was observed in polyaniline nanofibers in Refs. [12] and [13]. 
However, this electron diffusion is not a unique transport mechanism responsible for the 
occurrence of metallic-like behavior in the dc conductivity of conducting polymers. Prigodin 
and Epstein suggested that the electron tunneling between the grains through intermediate 
resonance states on the polymer chains connecting them, strongly contributes to the electron 
transport [14]. This approach was employed to build up a theory of electron transport in 
polyaniline based nanofibers [15] providing good agreement with the previous transport 
experiments [16]. Considering the electron tunneling through the intermediate state as a 
mechanism for the intergrain transport, we see a similarity between the latter and electron 
transport mechanisms typical for tunnel molecular junctions. In the case of polymers, 
metallic-like domains take on part of the leads, and the molecular bridge in between is 
simulated by intermediate sites. The effect of phonons on this kind of electron transport may 
be very significant. These phonons bring an inelastic component to the intergrain current 
and underlie the interplay between the elastic transport by the electron tunneling and the 
thermally assisted dissipative transport. Also, they may cause some other effects, as was 
shown while developing the theory of conduction through molecules [17–24]. 

2. Electron-resonance tunneling as a transport mechanism in conducting 
polymers 

Here, we concentrate on the analysis of the electric current-voltage characteristics and 

conductance associated with the resonance tunneling transport mechanism. Considering the 

electron intergrain resonance tunneling, the transmission coefficient is determined with the 

probability of finding the resonance state in between the grains. The latter is estimated as  

P ~ exp(–L/ξ) (L is the average distance between the adjacent grains, and ξ is the 

localization length for electrons), and it takes values much greater than the transmission 

probability for sequental hoppings along the chains, Ph ~ exp(–2L/ξ)  [14]. Nevertheless, the 

probability for existence of a resonance state at a certain chain is rather low, so only a few 

out of the whole set of chains connecting two grains are participating in the intergrain 
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electron transport. Therefore, one could assume that any two metallic domains are 

connected by a single chain providing an intermediate state for the resonance tunneling. All 

remaining chains can be neglected for they poorly contribute to the transport compared to 

the resonance chain. Within this approximation the “bridge” linking two islands is reduced 

to a single electron state. Realistic polymer nanofibers have diameters within the range 

20÷100 nm, and lengths of the order of a few microns. This is much greater than a typical 

size of both metallic-like grains and intergrain separations, which take on values ~ 5÷10nm 

(see e.g. Refs. [16] and [25]). Therefore, we may treat a nanofiber as a set of working 

channels connected in parallel, any single channel being a sequence of grains connected 

with the resonance polymer chains. The net current in the fiber is the sum of currents 

flowing in these channels, and the voltage V applied across the whole fiber is distributed 

among sequential pairs of grains along a single channel. So, the voltage ΔV applied across 

two adjacent grains could be roughly estimated as ΔV ~ V L/L0 where L is the average 

separation between the grains, and L0 is the fiber length. In practical fibers the ratio ΔV/V 

may take on values of the order of 10–2
 ÷ 10–3. 

In further current calculations we treat the grains as free electron reservoirs in thermal 

equilibrium. This assumption is justified when the intermediate state (the bridge) is weakly 

coupled to the leads, and conduction is much smaller than the quantum conductance  

G0 = 2e 2=h (e, h are the electron charge, and the Planck constant, respectively). Due to the 

low probabilities for the resonance tunneling between the metallic islands in conducting 

polymers, the above assumption may be considered as a reasonable one. So, we can employ 

the well-known expression for the electron current through the molecular junction [26], and 

we write: 

 
(2) 

Here, n is the number of the working channels in the fiber, f1,2(E) are Fermi functions taken 

with the different contact chemical potentials μ1,2 for the grains. The chemical potentials 

differ due to the bias voltage ΔV applied across the grains: 

 (3) 

In these expressions (2), (3) the parameter η characterizes how the voltage ΔV is divided 

between the grains, EF is the equilibrium Fermi energy of the system including the pair of 

grains and the resonance chain in between, and T(E) is the electron transmission function. 
The general approach to the electron transport studies in the presence of dissipation is the 

reduced dynamics density-matrix formalism (see, e.g., Refs. [27] and [28]). This microscopic 

computational approach has the advantages of being capable of providing the detailed 

dynamics information. However, this information is usually more redundant than 

necessary, as far as standard transport experiments in conducting polymer nanofibers are 

concerned. There exists an alternative approach using the scattering matrix formalism and 

the phenomenological Buttiker dephasing model [29]. Adopting this phenomenological 

model we are able to analytically study the problem, and the results agree with those 

obtained by means of more sophisticated computational methods, as was demonstrated in 

the earlier works [30]. 
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Fig. 1. Schematic drawing illustrating the intergrain electron transport in the presence of 
dissipation [29]. Rectangles correspond to the barriers separating the adjacent metallic-like 
islands from the intermediate state (the bridge), and the triange stands for a scatterer 
attached to the bridge. 

Within the Buttiker model we treat the intergrain electron transport as a multichannel 

scattering problem. In the considered case the “bridge” between two adjacent grains inserts 

a single electron state. Therefore, an electron could be injected into the system (including 

two metallic-like domains and the intermediate “bridge” in between) and/or leave from 

there via four channels presented in the Fig. 1. The electron transport is a combination of 

tunneling through two barriers (the first one separates the left metallic island from the 

intermediate state and the second separates this state from the right island, supposing the 

transport from the left to the right). Inelastic effects are accounted for by means of a 

dissipative electron reservoir attached to the bridge site. The dissipation strength is 

characterized by a phenomenological parameter ε, which can take values within the range 

[0, 1]. When ε = 0 the reservoir is detached from the bridge, which corresponds to the elastic 

and coherent electron transport. The greater is ε value the stronger is the dissipation. In the 

Fig. 1 the barriers are represented by the squares, and the triangle in between imitates a 

scatterer coupling the bridge to a dissipative electron reservoir. 

Incoming particle fluxes (Ji) are related to those outgoing from the system (  ) by means of 

the transmission matrix T [29, 30]: 

 
(4) 

Off-diagonal matrix elements Tji(E) are probabilities for an electron to be transmitted from 

the channel i to the channel j, whereas diagonal matrix elements Tii(E) are probabilities for 

its reflection back to the channel i. To provide charge conservation, the net particle flux in 

the channels connecting the system with the reservoir must be zero. So we have: 

 (5) 

The transmission function T(E) relates the particle flux outgoing from the channel 2 to the 

flux incoming to the channel 1, namely: 

 (6) 

Using Eqs. (4) and (5) we can express the transmission function in terms of the matrix 

elements Tji. The latter are related to matrix elements of the scattering matrix S, which 
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expresses the outgoing wave amplitudes  as linear combinations of the incident 

ones b1, b2, a3, a4 : Tij = |Sij |2. In the considered case of a single site bridge the S matrix takes 

the form [15, 30]: 

 

(7) 

where Z = 1 – α 2r1r2, , , r1,2 and t1,2 are the transmission an reflection 

coefficients for the barriers (|t1,2|2 + |r1,2|2 = 1). 

When the bridge is detached from the dissipative reservoir T(E ) = |S12|2. On the other hand, 

in this case we can employ a simple analytical expression for the electron transmission 
function [31]: 

 (8) 

where Δ1,2(E) = –ImΣ1,2(E). In this expression, self-energy terms Σ1,2 appear due to the 

coupling of the metallic-like grains to the intermediate state (the bridge). The retarded 

Green’s function for a single-site bridge could be approximated as follows: 

 
(9) 

where E1 is the site energy. The width of the resonance level between the grains is 

determined by the parameter Γ = Δ1 +Δ2 +Γen (Γen describes the effect of energy dissipation). 

Further we consider dissipative effects originating from electron-phonon interactions, so, 

Γen is identified with Γph. 

Equating the expression (8) and |S12|2 we arrive at the following expressions for the 

tunneling parameters δ1,2 (E ): 

 
(10)

Using this result we easily derive the general expression for the electron transmission 
function: 

 
(11)

where: 

 

(12)
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To simplify further analysis we approximate the self-energy terms Δ1,2 as constants: 

. Here, W1,2 are coupling strengths characterizing the coupling of the grains 

to the bridge and γ1,2 characterize interatomic couplings inside the grains (leads). Simulating 

the leads by semiinfinite chains of identical sites, as was first suggested by D’Amato and 

Pastawski [32], one may treat the parameters γ1,2 as coupling strengths between the nearest 

sites in these chains. Then the elastic electron transmission (ε = 0) shows a sharp peak at the 

energy E1 (see Fig. 2a), which gives rise to a steplike form of the volt-ampere curve 

presented in Fig. 2b. When the reservoir is attached to the electronic bridge (ε ≠ 0), the peak 

in the transmission is eroded. The greater is the value of the parameter ε, the stronger is the 

erosion. When ε takes on the value of 0.7 the peak in the electron transmission function is 

completely washed out as well as the steplike shape of the I –V curve. The latter becomes 

linear, corroborating the well-known Ohmic law for the sequential hopping mechanism. So, 

we see that the electron transmission is affected by stochastic nuclear motions in the 

environment of the resonance state. When the dissipation is strong (e.g. within the strong 

thermal coupling limit), the inelastic (hopping) contribution to the intergrain current 

predominates, replacing the coherent elastic tunneling. Typically, at room temperatures the 

intergrain electron transport in conducting polymers occurs within an intermediate regime, 

when both elastic and inelastic contributions to the electron transmission are manifested. 

The described approach was succesfully employed to analyze experimental results on the 

electrical characterization of polyaniline-polyethylene oxides (PANi) nanofibers reported by 

Zhou et al [16], and Pinto et al [33]. In these experiments single-fiber electrical 

characterization was carried out at T ~300K. The experiments revealed that current-voltage 

curves for conducting nanofibers were non-Ohmic. Conducting samples included a 70-nm-

diameter nanofiber (sample 1), a pair of 18-nm- and 25-nm-diameter fibers connected in 

parallel (sample 2) and a fiber whose diameter was steeply reduced in the middle from 70 

nm to 20 nm (sample 3). The latter did exhibit a very asymmetric rectifying current-volltage 

characteristic. The expression (2) was employed to compute the current originating from 

electron resonance tunneling in the nanofibers [15]. To evaluate the number of working 

channels in a nanofiber it was assumed that for certain doping and crystallinity rates the 

number of channels is proportional to the fiber cross-sectional area. Also, it was taken into 

account that the contact of the fiber surfaces with atmospheric gases reduced the number of 

working channels. Accepting the value 5 nm for both average grain size and intergrain 

distance we estimated that the 70 nm fiber could include about 30 – 40 conducting channels, 

and we could not expect more than two working channels in the pair of fibers (sample 2). 

This gives the ratio of conductions ~ 15 – 20, which is greater than the ratio of cross-

sectional areas of the samples A1/A2 ≈ 5. The difference originates from the stronger 

dedoping of thinner fibers. Calculating the current, appropriate values for W1,2 providing 

the best match between calculated and experimental I – V curves were found applying the 

least-squares procedure. We estimated values of the coupling strengths W1,2 in PANi fibers 

as 2.0 – 3.5meV. As shown in the Fig. 2, computed volt-ampere characteristics match the 

curves obtained in the experiments reasonably well. The agreement between the presented 

theoretical results and experimental evidence proves that electron tunneling between 

metallic-like grains through intermediate states at the resonance chains can really play a 

significant part in the transport in conducting polymers provided that they are in the 

metallic state. 
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Fig. 2. Dissipation effect on the effective transmission function (a) and the current voltage 

characteristics (b). The curves are plotted at T = 70K, Δ1 = Δ2 = 10meV, ε = 0.0, 0.1, 0.3, 0.7 

from the top to the bottom. Calculated (dash-dot lines) and experimental (solid lines) 

current (nA) – voltage (V) characteristics for PANi nanofibers: (c) samples 1 (S1), and 2 (S2), 

and (d) sample 3 (S3). 

However, we remark that the good fitting between the theory and the experiment 

demonstrated in the work [15] was achieved assuming that dissipation was very weak  

(α ≈ 0.05). This assumption could hardly be justified while one is observing electron 

transport in nanofibers at room temperature. So, the phenomenological approach employed 

in this section has some significant shortcomings. Its main disadvantage is that the 

dissipative effects are described in terms of a phenomenological parameter ε, whose 

dependence of characteristic factors affecting the transport (such as temperature, electron-

phonon coupling strength and some others) remains unclear. It is necessary to modify the 

Buttiker’s model to elucidate the relation of the parameter ε to the relevant energies 

characterizing electron transport in the considered systems. To obtain the desired expression 

for ε, we compare our results with those presented in Ref. [17]. In that work the inelastic 

correction δI to the coherent tunnel current via a single-site bridge is calculated using the 

nonequilibrium Green’s functions formalism. The relevant result is derived in the limit of 

weak electron-phonon interaction when Γph 2 Δ1,2. It is natural to assume that the 
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dissipation strength ε is small within this limit, so we expand our expression for T(E ) in 

powers of ε. Keeping two first terms in this expansion, and assuming that Δ1 = Δ2 ≡ Δ we 

obtain: 

 
(13)

We employ this approximation to calculate the current through the bridge, and we arrive at 

the following expression for δI: 

 
(14)

Here, ρel(E) is the electron density of states at the bridge: 

 
(15)

Comparing the expression (14) with the corresponding result of Ref. [17], we find that these 
two are consistent, and we get [34]: 

 
(16)

When Δ 4 Γph (ε 2 1) the bridge coupling to the dissipative reservoir is weak, and the 

elastic electron tunneling predominates.The opposite limit Δ 2 Γph (ε ∼ 1) corresponds to 

the completely incoherent phonon-assisted electron transport. 

3. Temperature dependencies of electron transport characteristics in 
conducting polymer nanofibers 

Now, we turn to studies of temperature dependencies of the electron current and 
conductance associated with the intergrain electron tunneling. It is known that various 
conduction mechanisms may simultaneously contribute to the charge transport in 
conducting polymers, and their relative effects could significantly differ depending on the 
specifics of synthesis and processing of polymeric materials. The temperature dependencies 
of the resulting transport characteristics may help to identify the predominating transport 
mechanism for a particular sample under particular conditions. The issue is of a significant 
importance because the relevant transport experiments are often implemented at room 
temperature, so that the influence of phonons cannot be disregarded. Therefore, we study 
the effect of temperature (stochastic nuclear motions) on the resonance electron tunneling 
between metallic-like grains (islands) in polymer nanofibers. In these studies we consider 
the dissipative reservoir attached to the “bridge” site as a phonon bath, and we assume that 

the phonon bath is characterized by the continuous spectral density J(ω) of the form [35]: 

 
(17)
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where J0 describes the electron-phonon coupling strength, and ωc is the cut-off frequency of 

the bath, which determines the thermal relaxation rate of the latter. The expression for Γph 

(E) was derived in earlier works [17, 36, 37] using nonequilibrium Green’s functions 

approach. Using these results and the expression (17), we may present cph (E) as follows: 

 

(18)

Here, 

 
(19)

and N(ω) is the Bose-Einstein distribution function for the phonons at the temperature T. 

The asymptotic expression for the self-energy term Γph depends on the relation between two 

characteristic energies, namely: ¥ωc and kT (k is the Boltzmann constant). At moderately 

low or room temperatures kT ∼ 10÷30meV. This is significantly greater than typical values 

of ¥ωc (¥ωc ∼ 1meV [17]). Therefore, in further calculations we assume ¥ωc 2 kT. Under this 

assumption, the main contribution to the integral over ω in the Eq. (18) originates from the 

region where ω 2 ωc 2 kT/¥, and we can use the following approximation [38]: 

 
(20)

Here, Γ = Δ1 + Δ2 + Γph; 

 
(21)

where ζ(2; kT/¥ωc + 1) is the Riemann ζ function: 

 

(22)

Under ¥ωc 2 kT, we may apply the estimation Λ ≈ 4kTJ0. 

Solving the equation (20) we obtain a reasonable asymptotic expression for Γph: 

 

(23)

where ρ2
 = 8Λ/(Δ1 + Δ2)2. Substituting this expression into Eq. (16) we arrive at the result for 

the dissipation strength ε: 

 

(24)
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This expression shows how the ε depends on the temperature T, the electron-phonon 

coupling strength J0, and the energy E. In particular, it follows from the Eq. (24) that ε 
reachs its maximum at E = E1, and the peak value of this parameter is given by: 

 

(25)

The maximum value of the dissipative strength is determined with two parameters, namely, 

T and J0. As illustrated in the Fig. 3, εmax increases when the temperature rises, and it takes 

on greater values when the electron-phonon interaction is getting stronger. This result has a 

clear physical sense. Also, as follows from the Eq. (24), the dissipation parameter exhibit a 

peak at E = E1 whose shape is determined by the product kTJ0. When either J0 or T or both 

enhance, the peak becomes higher and its width increases. The manifested energy 

dependence of the dissipation strength allows us to resolve the above mentioned difficulty 

occurring when the inelastic contribution to the electron transmission function is estimated 

using the simplified approximation of the parameter ε as a constant. When the energy 

dependence of ε is accounted for, the peak in the electron transmission at E = E1 may be still 

distinguishable when εmax takes on values as big as 0.5. 
 

 

Fig. 3. Temperature dependencies of the maximum dissipation parameter ε (left panel) and 

the electron transmission (right panel). The curves are plotted at T0 = 50K, Δ1 = Δ2 = 4meV, E 

= E1 = 0, J0 = 9.0meV (solid line), 6.0meV (dashed line), 3meV (dash-dotted line), 1.5meV 

(dotted line). 

The obtained result enables us to analyze the temperature dependencies of the electric 

current and conductance of the doped polymer fibers assuming that the resonance tunneling 

predominates in the intergrain electron transport in the absence of phonons. Current-

voltage characteristics and voltage dependencies of the conductance G = dI/dV computed 

using the expressions (2), (11), (24) are presented in the Fig. 4. We see that at low values of 

the applied voltage the electron-phonon coupling brings an enhancement in both current 

and conductance, as shown in the top panels of the Fig. 4. The effect becomes reversed as the 

voltage grows above a certain value (see Fig. 4, the bottom panels). This happens because 

the phonon induced broadening of the intermediate energy level (the bridge) assists the 

electron transport at small bias voltage. As the voltage rises, this effect is surpassed by the 
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scattering effect of phonons which resists the electron transport. When the electron-phonon 

coupling strengthens, the I-V curves lose their specific shape typical for the elastic tunneling 

through the intermediate state. They become closer to straight lines corresponding to the 

Ohmic law. At the same time the maximum in the conductance originating from the 

intergrain tunneling gets eroded. These are the obvious results discussed in some earlier 

works (see e.g. Ref. [30]). The relative strength of the electron-phonon interaction is 

determined by the ratio of the electron-phonon coupling constant J0 and the self-energy 

terms describing the coupling of the intermediate state (bridge) to the leads Δ 1,2. The effect 

of phonons on the electron transport becomes significant when J0 > Δ1,2. Otherwise, the 

coherent tunneling between the metallic-like islands prevails in the intergrain electron 

transport, and the influence of thermal phonon bath is weak. Again, we may remark that J0 

and T are combined as kTJ0 in the expression (24). Therefore, an increase in temperature at a 

fixed electron-phonon coupling strength enhances the inelastic contribution to the current in 

the same way as the previously discussed increase in the electron-phonon coupling. 
 
 

 
 

Fig. 4. Current (left panels) and conductance (right panels) versus voltage. The curves are 

plotted at T0 = 50K, T = 30K, E1 = 40meV, Δ1 = Δ2 = 4meV, n = 1, ΔV/V = 0.005, assuming  

J0 = 9meV (solid line), J0 = 6meV (dashed line), J0 = 3meV (dash-dotted line), and  

J0 = 1.5meV (dotted line). G0 = 2e2/h is the quantum conductance. 
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Fig. 5. Temperature dependence of current (left panel) and conductance (middle panel) at 

low voltage bias (V = 0.3V ). Temperature dependence of the electron current at higher bias 

voltage (V = 2V ) ( right panel). The curves are plotted at T0 = 50K, J0 = 9meV (solid line),  

J0 = 6meV (dashed line), J0 = 3meV (dash-dotted line), and J0 = 1.5meV (dotted line). The 

values of remaining parameters are the same in the figure 4. The current I0 is computed 

using J0 = 3meV, T0/T = 1.5. 

Now, we consider temperature dependencies of the electric current and conductance 

resulting from the intergrain electron tunneling via the intermediate localized state. These 

dependencies are shown in the Fig. 5. The curves in the figure are plotted at low bias voltage 

(V = 0.3V, ΔV/V = 0.005) and T0 = 50K, so eΔV < kT. This regime is chosen to compare the 

obtained temperature dependencies with those typical for the phonon assisted hopping 

transport discussed. We see that the temperature dependence of the tunnel current shown in 

the left panel of Fig. 5 crucially disagrees with the Mott’s expression (??1). The tunnel 

current decreases as temperatute rises being proportional to (T0/T )β, and the exponent β 
takes on values close to unity. 

Already it was mentioned that the drop in the conductivity upon heating a sample was 

observed in polymers and carbon nanotubes. However, such metallic-like behavior could 

originate from various dc transport mechanisms. Correspondingly, the specific features of 

temperature dependencies of the conductivity and/or current vary depending on the 

responsible conduction mechanism [39]. The particular temperature dependence of the 

electron tunneling current shown in Fig. 5 differs from those occurring due to other 

transport mechanisms. Such dependence was observed in the experiment on the electron 

transport in a single low-defect-content carbon nanotube rope, whose metallic-like 

conductivity was manifested within a wide temperature range (T ∼ 35÷300K), as reported 

by Fisher et al [40]. The conductivity temperature dependence observed in this work could 

be approximated as σ(T)/σ(300) ∼ a + bT0/T where A, b are dimensionless constants. The 

approximation includes the temperature independent term, which corresponds to the Drude 

conductivity. The second term is inversely proportional to the temperature in agreement 

with the results for the current shown in the Fig. 5 9left panel). It is also likely that a similar 

approximation may be adopted to describe experimental data obtained for chlorate-doped 

polyacetylene samples at the temperatures below 100K [41]. In both cases we may attribute 

the contribution proportional to 1/T to the resonance electron tunneling transport between 

metallic-like islands. 
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The conductance due to the electron intergrain tunneling reduces when the temperature 

increases, as shown in the middle panel of the Fig. 5. Irrespective of the electron-phonon 

coupling strength we may approximate the conductance by a power law G ∼ T α where α 

takes on values close to –1. This agrees with the results for the current. At higher bias 

voltage the temperature dependence of the current changes, as shown in the right panel of 

the Fig. 5. The curves shown in this panel could be approximated as log(I/I0) ∼ c + dT0/T, 

c, d being dimensionless constants. This resembles typical temperature dependencies of the 

tunneling current in quasi-one-dimensional metals which were predicted for conducting 

polymers being in a metal state (see e.g. Ref. [2]). 

4. Effect of phonon induced electron states on the transport properties of 
conducting polymer fibers 

Studies of dissipative effects in the intergrain electron transport in conducting polymers 
may not be restricted with the plain assumption of direct coupling of the bridge site to the 
phonon bath. Other scenarios can occur. In particular, analyzing electron transport in 
polymers, as well as in molecules, one must keep in mind that besides the bridge sites there 
always exist other nearby sites with close energies. In some cases the presence of such sites 
may strongly influence the effects of stochastic nuclear motions on the characteristics of 
electron transport. This may happen when the nearby sites somehow “screen” the bridge 
sites from direct interactions with the phonon bath. Here, we elucidate some effects which 
could appear in the electron transport in conducting polymer fibers in the case of such 
indirect coupling of the bridge state to the phonon bath. 
We mimic the effects of the environment by assuming that the side chain is attached to the 
bridge, and this chain is affected by phonons. This model resembles those used to analyze 
electron transport through macromolecules [19]. The side chain is introduced to screen the 
resonance state making it more stable against the effect of phonons. We assume that 
electrons cannot hop along the side chain, so it may be reduced to a single site attached to 
the resonance site (the bridge). 
Within the adopted model the retarded Green’s function for the bridge acquires the form 
[19, 42]: 

 (26)

The first four terms in this expression represent the inversed Green’s function for the 

resonance site coupled to the two grains, and the factor w is the hopping integral between 

the bridge and the attached side chain. The term P(E ) represents the effect of the phonons 

and has the form: 

 

(27)

with  being the on-site energy for the side site, which is close to the bridge site energy E1, 

exp[–F(t)] being a dynamic bath correlation function, and f taking on values 1 and 0 when 

the attached site is occupied and empty, respectively. 
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Characterizing the phonon bath with a continuous spectral density J(ω) given by Eq. (17) 

one may write out the following expressions for the functions F(t) and δ: 

 
(28)

 
(29)

Within the short time scale (ωct 2 1) the function F(t) could be presented in the form [43]: 

 
(30)

where 

 
(31)

Here, ζ (2; kT/¥ωc + 1) is the Riemann ζ function. The asymptotic expression for K(t) 

depends on the relation between two parameters, namely, the temperature T and the cut-off 

frequency ωc of the phonon bath. Assuming kT 4 ¥ωc 

 
(32)

In the opposite limit ¥ωc 4 kT we obtain: 

 
(33)

Also, we may roughly estimate K(t) within the intermediate range. Taking kT ≈ ¥ωc we 

arrive at the approximation K(t) ≈ a2(kTt/¥)2 where a2 is a dimensionless constant of the 

order of unity. Correspondingly, within the short time scale we can omit the first term in the 

expression (30), and we get: 

 
(34)

where K(t) is given by either Eq. (32) or Eq. (33) depending on the relation between ¥ωc and 

kT. 

Within the long time scale ωct 4 1, and provided that temperatures are not very low (kT 4 

¥ωc), we may present the function K(t) as: 

 
(35)
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Now, the term K(t) is the greatest addend in the expression for F(t), so the latter could be 

approximated as: F(t) ≈ πkTtJ0/ωc¥2. The same approximation holds within the low 

temperature limit when ωc 4 kT/¥ 4 t–1. 

Using the asymptotic expression (34), we may calculate the contribution to P(E ) coming 

from the short time scale (ωct 2 1). It has the form: 

 

(36)

where Φ(z) is the probability integral. When both ¥ωc and kT have the same order of 

magnitude the expression for P(E ) still holds the form (36). At kT 2 ¥ωc, the temperature 

kT in the expression (36) is to be replaced by ¥ωc. We remark that under the assumption  

kT 4 ¥ωc the function P1(E ) does not depend on the cut-off frequency ωc, whereas at ¥ωc 4 

kT it does not depend on temperature. The long time (ωct 4 1) contribution to P(E ) could 

be similarly estimated as follows: 

 
(37)

Comparing these expressions (36) and (37) we see that the ratio of the peak values of P2(E ) 

and P1(E ) is of the order of . Therefore, the term P1(E ) predominates over 

P2(E ) when the temperatures are moderately high ¥ωc < kT ) and the electron-phonon 

interaction is not too weak J0/¥ωc ∼ 1. Usually, experiments on the electrical 

characterization of conducting polymer nanofibers are carried out at T ∼ 100÷300K, so in 

further analysis we assume that , and the term P2(E ) could be omitted. 

As shown in the Fig. 6 (left panel), the imaginary part of P(E ) exhibits a dip around E =  

and the width of the latter is determined by the product of the temperature kT (or ¥ωc) and 

the constant J0 characterizing the strength of the electron-phonon interaction. When either 

factor increases, the dip becomes broader and its magnitude reduces. 

The presence of the term w2P(E) gives rise to very significant changes in the behavior of the 

Green’s function given by the Eq. (26). Using the flat band approximation for the self-energy 

corrections and disregarding for a while all imaginary terms in the Eq. (26), we find that two 

extra poles of the Green’s function emerge. Assuming E1 =  = 0 and kT 4¥ωc, these poles 

are situated at: 

 
(38)

The poles correspond to extra electron states which appear due to electrons coupling to the 
thermal phonons. These new states are revealed in the structure of the electron transmission 

T(E ) given by Eq. (8). The structure of T(E ) is shown in the right panel of the Fig. 6. Two 

peaks in the transmission are associated with the phonon-induced electronic states. Their 

positions and heights depend on the temperature and on the coupling strengths J0, and w. 

The important feature in the electron transmission is the absence of the peak associated with 
the resonance state between the grains (the bridge site) itself. This happens due to the strong 
suppression of the latter by the effects of the environment. Technically, this peak is damped 
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Fig. 6. Left panels: Energy dependence of the real (top panel) and imaginary (bottom panel) 

parts of P(E ). The curves are plotted at J0 = 20meV, kT 4 ¥ωc. Right panels: The 

renormalized electron transmission function vs energy. The constant J0 equals 20meV (top 

panel) and 50meV (bottom panel). All curves are plotted assuming w = 100meV, E1 = 
 
= 

0,T = 100K (dashed lines) and T = 300K (solid lines). 

for it is located at E = 0 where the imaginary part of P(E ) reachs its maximum in magnitude. 

To provide the damping of the original resonance the contribution from the environment 

(including the side chain attached to the bridge) to the Green’s function (26) must exceed the 

terms Δ1,2 describing the effect of the grains. This occurs when the inequality 

 
(39)

is satisfied. When the coupling of the bridge to the attached side site is weak, the influence 

of the environment slackens and the original peak associated with the bridge at E = E1 may 

emerge. At the same time the features originating from the phonon-induced states become 

small compared to this peak. 
So, the effects of the phonons may lead to the damping of the original resonance state for the 
electron tunneling between the metallic islands in the polymer fiber. Instead, two phonon-
nduced states appear to serve as intermediate states for the electron transport [44]. 
Environmental induced electron states were discussed in the theory of electron conductance 
in molecules Refs. [19, 45, 46]. For instance, it was shown that low biased current-voltage 
characteristics for molecular junctions with DNA linkers may be noticeably changed due to 
the occurrence of the phonon-induced electron states similar to these discussed in the 
present Section. 

As we discussed before, one may treat a nanofiber as a set of parallel working channels, any 

single channel being a sequence of grains connected with the resonance polymeric chains. 

Accordingly, the voltage V applied across the whole fiber is distributed among sequental 

pairs of metallic-like islands included in a single channel. So, in practical nanofibers the 

voltage ΔV applied across two adjacent grains appears to be much smaller than V (ΔV/V ∼ 

10–1 –10–3). Experiments on the electrical characterization of the polymer fibers are usually 
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carried out at moderately high temperatures (T ÷300K ), so it seems likely that kT > ¥ωc. 

Assuming that w ∼ 100meV, and J0 ∼ 20÷50meV we estimate the separation between the 

phonon-induced peaks in the electron transmission as 120÷170meV (see Fig. 6). This 

estimate is close to eΔV when V takes on values up to 2÷3 volts. So, the phonon-induced 

peaks in the electron transmission determine the shape of the currentvoltage curves even at 

reasonably high values of the bias voltage applied across the fiber. The resulting current-

voltage characteristics are shown in the Fig. 7. The I –V curves exhibit a nonlinear shape 

even at room temperature despite the fact that the original state for the resonance tunneling 

is completely suppressed. This occurs because the intergrain transport is supported by new 

phonon-induced electron states. 

It is worthwhile to discuss the temperature dependence of the peak value of the electron 

transmission which follows from the present results. Using the expression (26) for the 

Green’s function and the expression (36) for P(E ) we may show that at low temperatures the 

transmission accepts small values, and exhibits rather weak temperature dependence. At 

higher temperatures (T ∼ 100K ) the transmission increases fast as the temperature rises and 

then it reduces as the temperature further increases. The peak in the transmission is 

associated with the most favorable conditions for the environment induced states to exist 

when all remaining parameters (such as J0 and w) are fixed. At high temperatures the peaks 

associated with the environment induced states are washed out, as usual.  
We may compare this result with the temperature dependence of the electron transmission 
function occurring when the bridge between two adjacent grains is directly coupled to the 
phonon bath. In this case the transmission peak value may be presented in the form 
determined by Eqs. (11), (24): 

 

(40)

The temperature dependencies are shown in the Fig. 8. Both curves are plotted at the same 

value of the electron-phonon coupling strength J0. Comparing them we conclude that at 

higher temperatures the dependencies significantly differ. While the temperature rises, we 
observe a peak in the electron transmission assuming the indirect coupling of the bridge to 
the phonon bath, and we see the transmission to monotonically decrease when we consider 
the bridge directly coupled to the bath. Correspondingly, we may expect qualitative 
diversities in the temperature dependencies of the current, as well. These diversities 
originate from the difference in the effects of environment on the intergrain electron 
transport in the cases of direct and indirect coupling of the bridge site to the phonon bath. 
When the bridge is directly coupled to the bath, the stochastic motions in the environment 
only cause washing out of the peak in the electron transmission, and the higher is the 
temperature the less distinguishable is the peak. However, when the bridge is screened from 
the direct coupling with the phonons due to the presence of the nearby sites, the stochastic 
nuclear motions in the medium between the grains (especially those in the resonance chain) 
may take a very different part in the electron transport in conducting polymers at 
moderately low and room temperatures. Due to their influence, the original intermediate 
state for the resonance tunneling may be completely suppresed but new phonon-induced 
states may appear to support the electron transport between the metallic-like domains in 
conducting polymer nanofibers. 
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Fig. 7. The current-voltage characteristics (nA–V) plotted for n = 10, Δ1 = Δ2 = 0.5meV,  

w = 100meV, J0 = 20meV (left panel), and J0 = 50meV (right panel) at T = 100K (dash lines) 

and T = 300K (solid lines). 
 

 

Fig. 8. Arrhenius plot of the peak value of the electron transmission function for J0 = 20meV, 

w = 100meV, Δ1 = Δ2 = 0.5meV, and T0 = 100K. The dashed line is plotted assuming the 

indirect coupling of the bridge to the phonon bath. The solid line is plotted assuming that 

the bridge is directly coupled to the phonons. 

5. Conclusion 

Studies of the electron transport in conducting polymers are not completed so far. Several 
mechanisms are known to control the charge transport in these highly disordered and 
inhomogeneous materials, and their relative significance could vary depending on both 
specific intrinsic characteristics of a particular material (such as crystallization rate and 
electronelectron and electron-phonon coupling strengths) and external factors such as 
temperature. Various conduction mechanisms give rise to various temperature 
dependencies of the electric current and conductance, which could be observed in polymer 
nanofibers/nanotubes being in conducting state. In the present work we aimed at finding 
out the character of temperature dependencies of both current and conductance provided by 
specific transport mechanism, namely, resonance tunneling of electrons. 
Accordingly, we treated a conducting polymer as a kind of granular metal, and we assumed 
that the intergrain conduction occurred due to the electron tunneling between the metallic-
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like grains through the intermediate state. This scenario for the intergrain electron transport 
strongly resembles electron transport through molecules/quantum dots attached to the 
conducting leads. In the considered case the metallic-like islands work as the leads and the 
intermediate state in between acts as a single level quantum dot/molecular bridge. Basing 
on this similarity we did apply the well-known Landauer formula to compute the intergrain 
electron current. This bringed results which agreed with experiments on electrical 
characterization of doped polyaniline-polyethylene oxide nanofibers. 
There are solid grounds to expect significant dissipative effects in the intergrain transport at 
moderately high temperatures. To take into account the effect of temperature we did 
represent the thermal environment stochastic nuclear motions as a phonon bath, and we 
introduced the coupling of the intermediate site to the thermal phonons. As shown in the 
previous studies of the electron transport through molecules, various dissipative effects may 
occur depending on characteristic features in the interaction of a propagating electron with 
the environment. Among these features we singled out the character of the electron 
coupling to the dissipative reservoir (phonon bath) as a very significant factor. It is likely 
that in practical conducting polymers both direct and indirect coupling of the intermediate 
state (the bridge) to the environment may occur. 
We did analyze temperature dependencies of transport characteristics for both scenarios 
and we showed that these dependencies differ. Also, we showed that in general, resonance 
electron tunneling between the grains results in the temperature dependencies of transport 
characteristics, which differ from those obtained for other conduction mechanisms such as 
phonon-assisted hopping between localized states. Being observed in experiments on 
realistic polymer nanofibers, the predicted dependencies would give grounds to suggest the 
electron tunneling to predominate in the intergrain electron transport in these particular 
nanofibers. We believe the present studies to contribute to better understanding of electron 
transport mechanisms in conducting polymers. 
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