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1. Introduction 

Although a few robots such as vacuum cleaning robots (Jones, 2006; Zhang et al., 2006), 

lawn mowing robots (Husqvarna; Friendlyrobotics), and some toy robots (Takara; Hasbro) 

have single functions or perform simple tasks, almost all other service robots perform 

diverse and complex tasks. Such robots share their work domains with humans, with whom 

they must constantly interact. In fact, the complexity of the tasks performed by such robots 

is a result of their interactions with humans. For example, consider a scenario wherein a 

robot is required to fetch and carry beverages: the methods of delivery are numerous and 

vary depending on user requirements such as type of beverage, the needs for a container, 

etc. For a robot designed to control various household devices such as illuminators, 

windows, television, and other appliances, several services must be provided in various 

situations; hence, a question-and-answer interaction or some method to infer the necessity of 

the services is required. 

For service robots to perform these complex behaviors and collaborate with humans, the 

programming of robot behavior has been proposed as a natural solution (Knoop et al., 2008). 

Robot behavior can be programmed manually using text-based and graphical systems, or 

automatically by demonstration or instructive systems (Biggs & MacDonald, 2003). 

Recently, many researchers have proposed methods for a service robot to learn high-level 

tasks. The two main methods are (1) learning by observing human behaviors (Argall et al., 

2009) and (2) learning by using procedures defined by humans (a support system can be 

used to define these procedures) (Lego, 2003; Ekvall et al., 2006).. 

Manual programming systems are more efficient in creating procedures necessary to cope 
with various interactive situations than automatic programming systems since the latter 
require demonstrations and advice for every situation. However, in the process of 
programming behavior, there exist sub-optimalities (Chen & Zelinsky, 2003), and manual 
programming systems are more brittle than automatic programming systems. 
The sub-optimalities of manual programming systems are as follows: (a) in the writing 

process, humans can make syntactic errors when describing task procedures. For example, 

writers often misspell the names of actions or important annotations. However, if the errors 

do not alter the semantic meaning, the problem can be prevented by writing support 
Source: Human-Robot Interaction, Book edited by: Daisuke Chugo,  

 ISBN 978-953-307-051-3, pp. 288, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Human-Robot Interaction 

 

58 

systems such as in the case of Lego Mindstorms. (b) Another sub-optimality can occur if 

humans fail to devise all possible behaviors for situations that a robot will confront. In the 

example of beverage-delivery errands, a writer may describe a sequence in a scene wherein 

a robot picks up a cup. However, the writer might possibly omit a sequence in a scene 

wherein a robot lifts a cup after picking up the beverage. It is not easy for humans to infer all 

possible situations and consequent branching out of behavior procedures; hence, an 

automated system should be able to support such inference and manage robots by inferring 

new situations based on the given information. (c) The sequence written by a human may be 

wrong semantically. Humans can insert wrong actions, omit important actions, and reverse 

action orders by making mistakes or slips. For example, a procedure for a robot for setting a 

dinner table might not contain actions for placing a fork; this is an example of omission. 

Another procedure might consist of actions for placing a saucer after placing a teacup. Some 

researches have attempted to resolve this problem by synthesizing or evaluating a set of 

procedures based on pro-conditions and the effects of knowledge of each unit action, for 

example, such as in the case of conventional planning approaches in artificial intelligence 

field (Ekvall et al., 2006; Ekvall & Kragic, 2008). Moreover, it is possible to search for wrong 

sequences in procedures by using rules that deal with sequential relations between actions; 

such rules can be extracted using a statistical data mining method (Kwon et al., 2008). 

Despite these efforts, the problem of identifying whether a procedure is natural and 

acceptable to humans continues to be a difficult problem. 

In this chapter, we propose methodologies to mitigate the last two sub-optimalities (b and c) 
using a programming language that can be used to describe the various task procedures that 
exist in human–service robot interactions. 

2. Scripts, abstract task procedures for service robots 

In this section, we explain task procedures that are programmed by humans. These task 

procedures refer to abstract robot behaviors occurring in service domains (Kim et al., 2007). 

The script is expressed by using a generic procedural language and can be written by 

humans, especially non-experts, via graphic-based or text-based interface systems. Each 

script contains several actions and branch-able states (explained in 2.2). 

2.1 Action 

Action primitives in scripts are the basic units of scripts. These are black boxes from a user’s 

viewpoint, because the user does not have to possess detailed knowledge of their 

functioning, even when the units are applied to specific hardware platforms via many 

different modules. There are two types of action primitives: physical actions such as “move 

to location of object A” or “open the facing door” and cognitive actions such as “find 

location of object A” or “decide which beverage to take.” Physical actions are performed by 

physical action executors, and the actions play roles as the goals of the executors (Fig. 1.). 

When cognitive actions are performed, knowledge inference engines explore or reason the 

related information. Based on the reasoned information, the Decision Manager asks 

questions to users. The process of asking question has been explained in our previous report 

(Kim et al., 2007). Some rewriteable sets of action primitives can be defined as abstract 

actions and used in the script database. 
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2.2 Branch-able state 
A branch-able state refers to an interaction-related state that determines the characteristic of 
the script in which it is included. “Does the user want to turn on a television? Yes” or “Is it 
necessary to use a cup to fill the beverage? No” are examples of the branch-able state. These 
states are the principal evidences for checking whether a script coincides with the current 
situations or user’s demands when a Script-based Task Planner handles scripts. 
 

 

Fig. 1. Configuration diagram of the developed system 

2.3 Script 

A script is a sequential set of actions and branch-able states. A script database contains the 
scripts, and it is described in XML. As an example, Fig. 2 shows a script for the delivery of 
beverages. 
 

<script goal="FetchAndCarryBeverage" scriptID="FCB002"> 
 <action decomposetype="concrete" acttype="cognitive">DecideTargetBeverage</action> 
 <action decomposetype="concrete" acttype="cognitive">IdentifyLocationOfBeverage</action> 
 <action decomposetype="concrete" acttype="physical">MoveToLocationOfBeverage</action> 
 <BranchableProperty>InvisibilityOfBeverage:yes</BranchableProperty> 
 <action decomposetype="concrete" acttype="physical">UncoverTargetLoc</action> 
 <action decomposetype="concrete" acttype="physical">PickUpTargetBeverage</action> 
 <action decomposetype="concrete" acttype="physical">CoverTargetLoc</action> 
 <action decomposetype="concrete" acttype="cognitive">DecideNecOfContainer</action> 
 <BranchableProperty>NecessityOfContainer:no</BranchableProperty> 
 <action decomposetype="concrete" acttype="physical">MoveToDrink</action> 
 <action decomposetype="concrete" acttype="physical">DeliverBeverage</action> 
</script> 

 

Fig. 2. An example of script describing delivery of beverage 

3. Related work 

To solve the problem of the two sub-optimalities mentioned in the introductory section, it is 
useful to identify the relationships between several scripts. Some researchers in the field of 
programming by demonstration analyzed various programmed procedures and derived 
information that is referable for enhancing the performance of a procedure, for example, the 
relationships between actions or more abstract procedures (Breazeal et al., 2004; Nicolescu & 
Matarić, 2003; Ekvall & Kragic, 2008; Pardowitz et al., 2005). Nicolescu and Matarić (2003) 
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represented each demonstration as a directed acyclic graph (DAG) and computed their 
longest common subsequence in order to generalize over multiple given demonstrations. 
Ekvall and Kragic (2008) converted sequential relationships between all two states as 
temporal constraints. Whenever a sequence was added, the constraints that contain 
contradictions with the constraints of the new sequence were eliminated in order to extract 
general state constraints. Pardowitz et al. (2005) formed task precedence graphs by 
computing the similarity of accumulating demonstrations. Each task precedence graph is a 
DAG that explains the necessity of specific actions or sequential relationships between the 
actions. 
These researches are appropriate for obtaining task knowledge from a small number of 
demonstrations. However, when a large number of procedures are demonstrated or 
programmed, these approaches continue to generate one or two constraints. These strict 
constraints are not sufficient to generate variations in the given demonstrations or to 
evaluate them. 

4. Handling scripts 

We propose two algorithms for reducing the sub-optimalities from a large number of 
scripts. One is an algorithm that generates script variations based on the written scripts. 
Since the written scripts are composed from a human’s imagination, they cannot be 
systematic or complete. The set of scripts takes either a total-ordered form or a mixture of 
total-ordered and partial-ordered forms. Our algorithm generates a DAG of all scripts, and 
hence, it permits the revealing of branches and joints buried among the scripts. The other 
algorithm is for evaluating the representativeness of a specific script by comparing the given 
script set. We can generate a sequence that is able to represent entire given scripts. If almost 
all scripts are semantically correct and natural, the naturalness of a specific script can be 
estimated by evaluating its similarity with the representative script. Therefore, this 
algorithm involves an algorithm that generates a representative script and an algorithm that 
measures similarities with it. 
These two algorithms are based on an algorithm for partial order alignment (POA, Lee et al., 
2002). Hence, we first explain POA before describing the two algorithms. 

4.1 POA algorithm 

We utilized an algorithm from multiple sequence alignment (MSA), which is an important 
subject in the field of Bioinformatics, to identify the relationships among scripts. In MSA, 
several sequences are arranged to identify regions of similarity. The arrangement can be 
depicted by placing sequences in a rectangle and inserting some blanks at each column 
appropriately (Fig. 3.). When we attempt to obtain an optimal solution by dynamic 
programming, this process becomes an NP-complete problem. Therefore, several heuristics 
are presented (POA (Lee et al., 2002), ClustalW (Thompson et al., 1994), T-Coffee 
(Notredame et al., 2000), DIALIGN (Brudno et al., 1998), MUSCLE (Edgar, 2004), and SAGA 
(Notredame & Higgins, 1996)). 
POA is an algorithm that represents multiple sequences as multiple DAGs and arranges 
them. POA runs in polynomial time and is considered a generally efficient method that 
produces good results for complex sequence families. Figure 4 shows the strategy of POA. 
POA redraws each sequence as a linear series of nodes connected by a single incoming edge 
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and a single outgoing edge (Fig. 4b.). By using a score matrix that contains similarity values 
between letters, POA aligns two sequences by dynamic programming that finds maximum 
similarity (Fig. 4c.). The aligned and identical letters are then fused as a single node, while 
the others are represented as separate nodes. 
 

 

Fig. 3. Example of multiple sequence alignment (MSA) by CLUSTALW (Thompson et al., 
1994) 

 

Fig. 4. MSA representation by partial order alignment (POA) algorithm. (a) General 
representation of MSA, (b) Single representation of POA, (c) Two sequences aligned by POA 
algorithm, and (d) Aligned result of POA 
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4.2 Generating script variations 

If we regard all scripts as sequences of POA, and all actions and states as nodes or letters of 

POA, the scripts can be aligned by POA. For example, the parts in two scripts will be 

aligned as shown in Fig. 5. 

 
 

 
 

Fig. 5. Two scripts, A and B, are aligned as a form of directed acyclic graph (DAG) 

The arranged DAG (ADAG) produced by the POA algorithm allows the generation of script 

variations and evaluation of script representativeness. Hence, we established a model to 

generate script variations by using ADAG. This approach attempts to maintain the semantic 

naturalness of scripts by employing sequential patterns in the given scripts. 

The mechanism is as follows: the ADAG of the given scripts is produced by POA. All the 

paths on the ADAG are searched by employing the “breadth-first” method. New paths that 

do not have the given sequences still remain, while some deficient scripts are eliminated. 

Although script variations are produced by ADAG, there can be deficiencies in some new 

script variations. Deficiencies in scripts are inspected by using two types of information. 

One is the basic state relationship of availability. We can predefine each action’s 

preconditions and effects; they are generally domain-independent. For example, a 

precondition of an action “shifting something down” may be a state wherein the robot is 

holding the object. By using the information on these states, the model checks whether there 

is any action that is not satisfied under its preconditions. 

The other is user-defined action relationship rules. Any user can pre-describe sequential or 
associational rules between several actions. Kwon et al. (2008) developed a support system 
that automatically finds some frequently associative or sequencing actions to aid users to 
find the action relationship rules. An example of action relationship rules is that a TV 
channel should not be changed before turning on the TV. 

4.3 Evaluating representativeness of scripts 

There are paths on which many scripts are overlapped as well as paths on which only one or 

two scripts are related to the paths on the ADAG. It is possible to link the paths on which 

many scripts are overlapped; Lee (2003) called the linked paths the consensus sequences of 

POA (Fig. 6.).  
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Fig. 6. An example of ADAG and consensus sequence generated from scripts for “greeting 
user” scenario 

The heaviest bundling strategy for discovering consensus sequences is as follows: There are 

edges between all the actions or nodes on ADAG. The heaviest bundle model attaches 1 

edge_weight of sequences to every edge on the DAG, and adds each number of aligned edges 

where two or more sequences are aligned. In such a case, every edge on the DAG has one or 

more edge_weight. While traversing from start nodes to end nodes, the heaviest bundle 

algorithm finds a path that has the largest sum of edge_weight among all paths. The 

algorithm uses a dynamic traversal algorithm, and an example is shown in Fig. 7. After 

excluding sequences that contribute to prior consensus generation, the algorithm iterates the 

consensus generation. Further, the algorithm calculates how many actions are identical to 

the actions of consensus sequence. We set the exclusion threshold such that scripts coincide 

over the threshold percentage and the consensus sequences are excluded from each 

iteration. Iteration continues until no contributed sequence is found. 
 

 

Fig. 7. Dynamic programming for construction of consensus sequences (Lee, 2003) 

The representativeness of a script is calculated by computing how the script coincides with 
the consensus sequences. The equation of representativeness is given as follows:  

 ( )iterationi
ThresCoin    tivenessRepresenta = , (1) 

Where i is the index of script; Coin, coincidence variable; and Thres, threshold variable. 
Coincidence is the number of actions that are identical to those of consensus sequence 

divided by the total number of actions. Threshold and iteration imply the threshold 

percentage and the number of iterations in the heaviest bundle algorithm. For example, 

when the threshold is 80% and a script has ten actions, the script whose nine actions are 

identical to those of the generated consensus sequence at first iteration has a 
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representativeness value of 0.72(0.9*0.8). If eight actions are the same with the second 

consensus sequence, the script has a representativeness value of 0.512(0.8*0.8^2). 

5. Implementation 

To examine the effectiveness of the proposed methodologies, we implemented the 
algorithms on a set of scripts. We wrote 160 scripts for a “greeting user” task. In the script 
database, a robot greets a user and suggests many services such as turning on the TV, 
delivering something, or reporting house status. There are not only very busy scripts but 
also simple ones. We established a score matrix in which POA scores only identical actions. 
The system produced 400 new scripts. Two hundred and fifty of them were meaningfully 
acceptable, for example, the ones human wrote, and the others were eliminated by 
deficiency inspectors. 
We also re-evaluated the representativeness of approximately 160 scripts. Every script was 
given a value ranging from zero to a positive one. We then added a wrong script in which 
two actions were inverted from a script having the positive value. The wrong script’s 
representativeness was 0.7, which is lower than that of the original one. 

6. Conclusion 

The demand for programming systems that do not require complex programming skills to 

perform tasks is increasing, especially in the case of programming by demonstration. 

Further, in the manual programming environment, which is more efficient than 

programming by demonstration, two critical sub-optimalities are present. We applied POA 

and heaviest bundling to solve the two problems and implemented the applied algorithms. 

To prevent the problem of writers omitting combinational procedures, an algorithm for 

script variation generation was proposed. Further, to evaluate how a specific script is 

semantically acceptable, an automatic evaluation process of representativeness was 

established. The evaluation of representativeness is a good attempt to estimate the script’s 

naturalness. However, this evaluation only demonstrates that a good script has a high 

representativeness value; it does not show that a script having a low representativeness 

value is unnatural. It is still not easy to automatically maintain the semantic naturalness of 

task plans or evaluate them. We expect that interactive systems that are not only intelligent 

but also convenient to users will be continuously developed in the future; this is a promising 

future research direction. 
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