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1. Introduction 

Whether evolutionary robotics (ER) controllers evolve in simulation or on real robots, real-
world performance is the true test of an evolved controller. Controllers must overcome the 
noise inherent in real environments to operate robots efficiently and safely. To prevent a 
poorly performing controller from damaging a vehicle—susceptible vehicles include 
statically unstable walking robots, flying vehicles, and underwater vehicles—it is necessary 
to test evolved controllers extensively in simulation before transferring them to real robots. 
In this paper, we present our approach to evolving behavioral navigation controllers for 
fixed wing unmanned aerial vehicles (UAVs) using multi-objective genetic programming 
(GP), choosing the most robust evolved controller, and assuring controller performance 
prior to real flight tests. 

2. Background 

ER (Nolfi & Floreano, 2000) combines robot controller design with evolutionary 
computation. A major focus of ER is the automatic design of behavioral controllers with no 
internal environmental model, in which effector outputs are a direct function of sensor 
inputs (Keymeulen et al., 1998). ER uses a population-based evolutionary algorithm to 
evolve autonomous robot controllers for a target task. Most of the controllers evolved in ER 
research have been developed for simple behaviors, such as obstacle avoidance (Nolfi et al., 
1994), light seeking (Lund & Hallam, 1997), object movement (Lee & Hallam, 1999), simple 
navigation (Ebner, 1998), and game playing (Nelson, 2003; Nelson et al., 2003). In many of 
these cases, the problems to be solved were designed specifically for research purposes. 
While simple problems generally require a small number of behaviors, more complex real-
world problems might require the coordination of multiple behaviors in order to achieve the 
goals of the problem. Very little ER work to date has been intended for use in real-life 
applications. 
A majority of the research in ER has focused on wheeled mobile robot platforms, especially 
the Khepera robot. Research on walking robots (Filliat et al., 1999) and other specialized 
robots (Harvey et al., 1994) has also been pursued. An application of ER that has received 
very little attention is UAVs. The UAV has become popular for many applications, 
particularly where high risk or accessibility is concerns. Although some ER research has 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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been done on UAVs, this work has largely ignored the fixed wing UAV—by far the most 
common type—until recently. An autopilot for a rotary wing helicopter was evolved using 
evolutionary strategies (Hoffman et al., 1998) and compared to linear robust multi-variable 
control and nonlinear tracking control in simulation (Shim et al., 1998). In other work, 
higher level controllers were evolved with UAVs as the target platform (Marin et al., 1999), 
but experiments were done only in simulation, movement was grid-based, and the UAV 
could move in any direction at every time step. Because of the unrealistic nature of the 
simulation, it would have been difficult to control real UAVs with the evolved controllers. 
Related work was done to evolve a distributed control scheme for multiple micro air 
vehicles (Wu et al., 1999). Only simulation was used, the simulation environment was 
unrealistic, and no testing on real UAVs was attempted. A neural network control system 
for a simulated blimp has also been evolved (Meyer et al., 2003) with the goal of developing 
controllers capable of countering wind to maintain a constant flying speed. The evolved 
control system was only tested in simulation. Only recently has there been work on evolving 
GP controllers for fixed wing UAVs (Oh et al., 2004; Barlow, 2004; Oh & Barlow, 2004; 
Barlow et al., 2004; Barlow et al., 2005; Richards et al., 2005; Barlow & Oh, 2006). 
In evolutionary computation, incremental evolution (Harvey et al., 1994) is the process of 
evolving a population on a simple problem and then using the resulting evolved population 
as a seed to evolve a solution to a related problem of greater complexity. Solutions to a 
variety of complicated problems in ER have been evolved using incremental evolution. 
There are two types of incremental evolution. Functional incremental evolution (Lee & 
Hallam, 1999; Gomez & Miikkulainen, 1997; Winkeler & Manjunath, 1998) changes the 
difficulty of the fitness function in order to increase the difficulty of the problem. 
Environmental incremental evolution (Harvey et al., 1994; Nelson, 2003; Nelson et al., 2003) 
changes the environment to increase difficulty without changing the fitness function. 
Transference of controllers evolved in simulation to real vehicles is an important issue in ER. 
Some controllers have been evolved in situ on physical robots (Walker et al., 2003), but long 
evaluation time, the need for many evaluations to achieve good results, and the need for 
human monitoring during the evolutionary process all limit this approach. Alternatively, 
controllers evolved in simulation do not always transfer well to real vehicles, since the 
simulation is never a perfect model of the real environment. Adding noise to the simulation 
(in the form of both sensor error and state error) may help controllers transfer well from 
simulation to real robots (Jakobi et al., 1995; Gomez and Miikkulainen, 2004; Barlow et al., 
2005). This approach is usually evaluated by evolving a controller in a noisy simulation 
environment and then testing the controller on a real vehicle. This works well for systems 
where tests can be performed easily, cheaply, and with little danger of damaging the 
vehicle, but what of systems where tests are expensive or dangerous?  Controllers may be 
evolved with high levels of noise, but this does not guarantee good performance when that 
noise is not consistent with the real system. Experiments by Jakobi et al. (Jakobi et al., 1995) 
show that if the noise levels used in simulation are significantly different from those in the 
real world, there are no assurances that the evolved controller will perform as desired. If, 
however, a controller performs well when subjected to a wide range of sensor and state 
noise conditions in simulation, and the real environmental noise falls within the testing 
range, prior works suggest that the controller should also perform well on a real vehicle. 
UAVs are one type of robot that requires assurance of the off-design performance (the 
performance under additional sensor and state noise) of an evolved controller before testing 
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a controller on the robot. Even when subject to additional sources of noise, controllers 
should still be able to efficiently accomplish the desired task. Assurance of off-design 
performance is also necessary because poorly performing controllers could cause crashes, 
possibly destroying the UAV. 

3. UAV Navigation Control 

The focus of this research was the development of a navigation controller for a fixed wing 
UAV able to autonomously locate, track, and then circle around a radar site. There are three 
main goals for an evolved controller. First, the UAV should move to the target as quickly as 
possible. The sooner the UAV arrives in the vicinity of the target, the sooner it can begin its 
primary mission: surveillance, radar jamming, or one of the many other applications of this 
type of controller. Second, once in the vicinity of the source, the UAV should circle as closely 
as possible around the radar. This goal is especially important for radar jamming, where the 
necessary jamming power is directly proportional to the square of the distance to the radar. 
Third, the flight path should be efficient and stable. The roll angle should change as 
infrequently as possible, and any change in roll angle should be small. Making frequent 
changes to the roll angle of the UAV could create dangerous flight dynamics or reduce the 
flying time and range of the UAV. 

 

Figure 1. General UAV control diagram 

Only the navigation portion of the flight controller is evolved; the low level flight control is 
done by an autopilot. The navigation controller receives radar electromagnetic emissions as 
input, and based on this sensory data and past information, the navigation controller 
updates the desired roll angle of the UAV control surface. The autopilot then uses this 
desired roll angle to change the heading of the UAV. A diagram of the control process is 
shown in Figure 1. This autonomous navigation technique results in a general controller 
model that can be applied to a wide variety of UAV platforms; the evolved controllers are 
not designed for any specific UAV airframe or autopilot. 

3.1 Simulation 
While there has been success in evolving controllers directly on real robots, simulation is the 
only feasible way to evolve controllers for UAVs. A UAV cannot be operated continuously 
for long enough to evolve a sufficiently competent controller, the use of an unfit controller 
could result in damage to the aircraft, and flight tests are very expensive. For these reasons, 
the simulation must be capable of evolving controllers which transfer well to real UAVs. A 
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method that has proved successful in this process is the addition of noise to the simulation 
(Jakobi et al., 1995). 
The simulation environment is a square, 100 nautical miles (nmi) on each side. Every time a 
simulation is run, the simulator gives the UAV a random initial position in the middle half 
of the southern edge of the environment with an initial heading of due north. The radar site 
is also given a random position within the environment. In our current research, the UAV 
has a constant altitude of 3000 feet and speed of 80 knots. We can realistically assume 
constant speed and altitude because these variables are controlled by the autopilot, not the 
evolved navigation controller. 
Our simulation can model a wide variety of radar types. The site type, emitter function, 
frequency, gain, noise, power, pulse compression gain, bandwidth, minimum emitting 
period, mean emitting period, minimum emitting duration, and mean emitting duration of 
the radar are all configurable in the simulation. For the purposes of this research, most of 
these parameters were held constant. Radars used in experiments are described based on 
two characteristics: emitting pattern and mobility. We modeled five types of radars: 
continuously emitting, stationary radars; continuously emitting, mobile radars; 
intermittently emitting, stationary radars with regular emitting periods; intermittently 
emitting, stationary radars with irregular emitting periods; and intermittently emitting, 
mobile radars with regular emitting periods. 
Radars can emit continuously, intermittently with a regular period, or intermittently with an 
irregular period. The emitting characteristics of the radar are configured by setting the 
minimum emitting period, mean emitting period, minimum emitting duration, and mean 
emitting duration. If all four parameters are set to infinity, the radar is continuous. If the 
minimum and mean are the same for both period and duration, then the radar is considered 
to be emitting with a regular period. If the minimum and mean are different, the radar emits 
with an irregular period: at the start of each period, the lengths of the period and duration of 
emission are set randomly. 
Radars can be either stationary or mobile. A stationary site has a fixed position for the entire 
simulation period. A mobile site is modeled by a finite state machine with the following 
states: move, setup, deployed, and tear down. When the radar moves, the new location is 
random, and can be anywhere in the simulation area. The finite state machine is executed 
for the duration of simulation. The radar site only emits when it is in the deployed state; 
while the radar is in the move state it does not emit, so the UAV receives no sensory 
information. The time in each state is probabilistic, and once the radar enters the deployed 
state, it must remain in that state for at least an hour. 
Only the sidelobes of the radar emissions are modeled. The sidelobes of a radar signal have 
a much lower power than the main beam, making them harder to detect. However, the 
sidelobes exist in all directions, not just where the radar is pointed. This model is intended 
to increase the robustness of the system, so that the controller doesn’t need to rely on a 
signal from the main beam. Additionally, Gaussian noise is added to the amplitude of the 
radar signal. The receiving sensor can perceive only two pieces of information: the 
amplitude and the angle of arrival (AoA) of incoming radar signals. The AoA measures the 
angle between the heading of the UAV and the source of incoming electromagnetic energy. 
Real AoA sensors do not have perfect accuracy in detecting radar signals, so the simulation 
models an inaccurate sensor. The accuracy of the AoA sensor can be set in the simulation. In 
the experiments described in this research, the AoA is accurate to within ±10° at each time 
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step, a realistic value for this type of sensor. Each experimental run simulates four hours of 
flight time, where the UAV is allowed to update its desired roll angle once a second, a 
realistic value for a real UAV autopilot. The interval between these requests to the autopilot 
can be adjusted in the simulation. 

3.2 Transference 
Transference of evolved controllers to a real UAV is an important issue, so we designed 
several aspects of the simulation to aid in this process. First, we abstracted the navigation 
control from the flight of the UAV. Rather than attempting to evolve direct control, only the 
navigation was evolved. This allows the same controller to be used for different airframes. 
Second, the simulation was designed so parameters could be tuned for equivalence to real 
aircraft and radars. For example, the simulated UAV is allowed to update the desired roll 
angle once per second, reflecting the update rate of the real autopilot of a UAV being 
considered for flight demonstrations of the evolved controller. For autopilots with slower 
response times, this parameter could be increased. Third, noise was added to the simulation, 
both to radar emissions and to sensor accuracy. A noisy simulation environment encourages 
the evolution of robust controllers that are more applicable to real UAVs. 

3.3 Problem Difficulty 
The major difficulty of this problem is noise. Under ideal conditions, where the exact angle 
and amplitude of the incoming signals are known, a human could easily design a fit 
controller. Real-world conditions, however, are far from ideal. Even the best radar sensors 
have some error in determining the angle and amplitude of a radar. Environmental 
conditions, multipath, system noise, clutter, and many other factors increase the sensor 
noise. As this noise increases, the difficulty of maintaining a stable and efficient flight path 
increases. 
While sensors to detect the amplitude and angle of arriving electromagnetic signals can be 
very accurate, the more accurate the sensor, the larger and more expensive it tends to be. 
One of the great advantages of UAVs is their low cost, and the feasibility of using UAVs for 
many applications may also depend on keeping the cost of sensors low. By using evolution 
to design controllers, cheaper sensors with much lower accuracy can be used without a 
significant drop in performance. 
Another difficulty of designing controllers by hand is accounting for the more complex 
radar types. As the accuracy of the sensors decreases and the complexity of the radar signals 
increases—as the radars emit periodically or move—the problem becomes far more difficult 
for human designers as the best control strategies become less apparent. In this research, we 
are interested in evolving controllers for these difficult, real-world problems using many 
radar types where sensors are very noisy. 

3.4 Fitness Functions 
We designed four fitness functions to measure the success of individual UAV navigation 
controllers. The fitness of a controller was measured over 30 simulation runs, where the 
initial positions of the UAV and the radar were different for every run. We designed the 
four fitness measures to satisfy the three goals of the evolved controller: rapid movement 
toward the emitter, circling the emitter, and flying in a stable and efficient way. 
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3.4.1 Normalized distance 

The primary goal of the UAV is to fly from its initial position to the radar site as quickly as 
possible. We measure how well controllers accomplish this task by averaging the squared 
distance between the UAV and the goal over all time steps. We normalize this distance 
using the initial distance between the radar and the UAV in order to mitigate the effect of 
varying distances from the random placement of radar sites. The normalized distance fitness 
measure is given as 

 ∑
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where T is the total number of time steps, d0 is the initial distance, and di is the distance at 
time i. We are trying to minimize fitness1. 

3.4.2 Circling distance 

The secondary goal of the UAV is to circle closely around the source, since most applications 
of this type of controller require proximity to the target; when the UAV is within range of 
the target, it should circle around it. An arbitrary distance much larger than the desired 
circling radius is defined as the in-range distance. For this research, the in-range distance 
was set to be 10 nmi. The circling distance fitness metric measures the average distance 
between the UAV and the radar over the time the UAV is in range. The distance is squared 
to apply pressure to GP to evolve very small circling distances. While the circling distance is 
also measured by fitness1, that metric is dominated by distances far away from the goal and 
applies very little evolutionary pressure to circling behavior. The circling distance fitness 
measure is given as 
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where N is the amount of time the UAV spent within the in-range boundary of the radar 
and inrange is 1 when the UAV is in-range and 0 otherwise. We are trying to minimize 
fitness2. 

3.4.3 Level time 

In addition to the primary goals of moving toward a radar site and circling it closely, it is 
also desirable for the UAV to fly efficiently in order to minimize the flight time necessary to 
get close to the goal and to prevent potentially dangerous flight dynamics, like frequent and 
drastic changes in the roll angle. The first fitness metric that measures the efficiency of the 
flight path is the level time, the amount of time the UAV spends with a roll angle of zero 
degrees, which is the most stable flight position for a UAV. This fitness metric only applies 
when the UAV is outside the in-range distance; once the UAV is in range, we want it to 
circle around the radar, requiring a non-zero roll angle. The level time is given as 
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where level is 1 when the UAV has been level for two consecutive time steps and 0 
otherwise. We are trying to maximize fitness3. 

3.4.4 Turn cost 

The second fitness measure intended to produce an efficient flight path is a measure of turn 
cost. While UAVs are capable of quick, sharp turns, it is preferable to avoid them in favor of 
more gradual turns. The turn cost fitness measure is intended to penalize controllers that 
navigate using a large number of sharp, sudden turns because this behavior may cause 
unstable flight, even stalling. The UAV can achieve a small turning radius without penalty 
by changing the roll angle gradually; this fitness metric only accounts for cases where the 
roll angle has changed by more than 10° since the last time step. The turn cost is given as 

 ∑
=

−−⋅=
T

i

iihardturn
T

fitness
1

14

1
ϕϕ  (4) 

where φ is the roll angle of the UAV and hardturn is 1 if the roll angle has changed by more 
than 10° since the last time step and 0 otherwise. We are trying to minimize fitness4. 

3.5 Genetic Programming 
We designed the four fitness functions to evolve particular behaviors, but the optimization 
of any one function could conflict heavily with the performance of the others. Combining 
the functions using multi-objective optimization is extremely attractive due to the use of 
non-dominated sorting. The population is sorted into ranks, where within a rank no 
individual is dominant in all four fitness metrics. Applying the term multi-objective 
optimization to this evolutionary process is a slight misnomer, because this research was 
concerned with the generation of behaviors, not optimization. In the same way that a 
traditional genetic algorithm can be used for both optimization and generation, so can 
multi-objective methods. Though this process isn’t concerned with generating the most 
optimized controllers possible, it can obtain near-optimal solutions. In this research, we 
evolved UAV controllers using an implementation of NSGA-II (Deb et al., 2002) for GP. The 
multi-objective genetic algorithm employs non-dominated sorting, crowding distance 
assignment to each solution, and elitism. 
The function and terminal sets used in this work combine a set of very common functions 
used in GP experiments with a set of functions specific to this problem. The function and 
terminal sets are defined as 
 
F = { Prog2, Prog3, IfThen, IfThenElse, And, Or, Not, <, ≤, >, ≥, <0, >0, =, +, -, *, ÷, X<0, Y<0, 
X>max, Y>max, Amplitude>0, AmplitudeSlope>0, AmplitudeSlope<0, AoA>Arg, AoA<Arg } 
 
T = { HardLeft, HardRight, ShallowLeft, ShallowRight, WingsLevel, NoChange, rand, 0, 1 }  
 
The UAV has a GPS on-board, and the position of the UAV is given by the x and y distances 
from the origin, located in the southwest corner of the simulation area. This position 
information is available using the functions that include X and Y, with max equal to 100 nmi, 
the length of one side of the simulation area. The UAV is free to move outside of this area 
during the simulation, but the radar is always placed within it. The two available sensor 
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measurements are the amplitude of the incoming radar signal and the AoA. Additionally, 
the slope of the amplitude with respect to time is available to GP. When turning, there are 
six available actions. Turns may be hard or shallow, with hard turns making a ten degree 
change in the roll angle and shallow turns a two degree change. The WingsLevel terminal 
sets the roll angle to 0, and the NoChange terminal keeps the roll angle the same. Multiple 
turning actions may be executed during one time step, since the roll angle is changed as a 
side effect of each terminal. The final roll angle after the navigation controller is finished 
executing is passed to the autopilot. The maximum roll angle is forty-five degrees. Each of 
the six terminals returns the current roll angle. 
GP was generational, with crossover and mutation similar to those outlined by Koza (Koza, 
1992). The parameters used by GP are shown in Table 1. Tournament selection was used. 
Initial trees were randomly generated using ramped half and half initialization. 
 

Population size 500 

Tournament size 2 

Simulation runs per evaluation 30 

Maximum initial GP tree depth 5 

Maximum GP tree depth 21 

Crossover rate 0.9 

Mutation rate 0.05

Table 1. GP parameters 

In GP, evaluating the fitness of the individuals within a population takes significant 
computational time. The evaluation of each individual requires multiple trials, 30 trials per 
evaluation in this research. During each trial, the UAV and the radar are placed randomly 
and four hours of flight time are simulated. Evaluating an entire population of 500 
individuals for a single generation requires 15,000 trials. Therefore, using massively parallel 
computational processors to parallelize these evaluations is advantageous. In this research, 
the master-slave model of parallel processing was used. The data communication between 
master and slave processors was done using the Message Passing Interface (MPI) standard 
under the Linux operating system. The master node ran the GP algorithm and did all 
computations related to selection, crossover, and mutation. Evaluations of individuals in the 
population were sent to slave nodes. The parallel computer used for the experiments was a 
Beowulf cluster made up of 46 computers running Linux. Each computer had two 2.4 GHz 
Pentium 4 processors with hyper-threading, for a total of 92 processors in the cluster. 
Hyper-threading provides a small performance gain for multiple simultaneous processes, so 
two slave nodes were run on each processor, for a total of 184 slave nodes spread over the 92 
processors in the cluster. 

4. Evolution Experiments 

We used multi-objective GP to evolve autonomous navigation controllers for UAVs. 
Controllers were evolved on radar types of varying difficulties. We evolved controllers 
using subsets of the four fitness functions in order to evaluate the effect of each fitness 
measure on controller behavior. In order to gauge the performance of evolution for multiple 
objectives, we devised test functions to measure the performance of a controller on the task. 
We then evolved controllers using both direct evolution and incremental evolution for five 
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radar types: continuously emitting, stationary radars; continuously emitting, mobile radars; 
intermittently emitting, stationary radars with regular emitting periods; intermittently 
emitting, stationary radars with irregular emitting periods; and intermittently emitting, 
mobile radars with regular emitting periods. In order to statistically measure the 
performance of GP on this problem, we did 50 evolutionary runs for each type of radar, 
where each run produced 500 controllers. 

4.1 Effectiveness of Fitness Functions 

To test the effectiveness of each of the four fitness measures, we evolved controllers using 
various subsets of the fitness metrics. These tests were done using the stationary, 
continuously emitting radar: this was the simplest of the radar types used for this research. 
The first fitness measure, the normalized distance, was included in every subset. The 
primary goal of the UAV is to fly from its initial position to the radar site as quickly as 
possible; fitness1 is the only one of the four fitness functions that measures this behavior. 
When only fitness1 was used to measure controller fitness, flight paths were very direct. The 
UAV flew to the target in what appeared to be a straight line. To achieve this direct route to 
the target, the controller would use sharp and alternating turns. The UAV would almost 
never fly level to the ground, and all turns were over 10°. Circling was also not consistent; 
the controllers frequently changed direction while within the in-range boundary of the 
radar, rather than orbiting in a circle around the target. For this simplest of fitness measures, 
evolution tended to select very simple bang-bang type control, changing the roll angle at 
every time step using sharp right and left turns.. 
Using only two fitness measures was not sufficient to achieve the desired behaviors. If 
fitness1 and fitness2 (circling distance) were used, the circling behavior improved, but the 
efficiency of the flight path was unchanged. If fitness1 and fitness4 (turn cost) were used, 
turns were shallower, but the UAV still failed to fly with its wings level to the ground for 
long periods. Circling around the target also became more erratic and the size of the orbits 
increased. If fitness1 and fitness3 (level time) were used, the UAV would fly level a large 
amount of the time, but circling was very poor, with larger radius orbits or erratic behavior 
close to the target. Sharp turns were also very common. 
If three of the fitness measures were used, evolved behavior was improved, but not enough to 
satisfy the mission goals. If all fitness measures were used except fitness2, the UAV would fly 
efficiently to the target, staying level and using only shallow turns. Once in range of the radar, 
circling was generally poor. Evolved controllers either displayed large, circular orbits or very 
erratic behavior that was unable to keep the UAV close to the radar. If fitness1, fitness2, and 
fitness4 were used, the UAV would circle well once it flew in range of the radar. While flying 
toward the radar, the UAV failed to fly level, though turns tended to be shallow. The best 
combination of three fitness measures was when only fitness4 was removed. In this case, 
circling was good and the UAV tended to fly straight to the target. The level time fitness 
measure also tended to keep the turns shallow and to eliminate alternating between right and 
left turns. However, turn cost was still high, as many turns were sharp. 
When we used all four of the fitness functions, the evolved controllers were able to 
overcome a noisy environment and inaccurate sensor data in tracking and orbiting a radar 
site. A variety of navigation strategies were evolved to satisfy these fitness functions. All 
four fitness measures had an impact on the behavior of the evolved controllers, and all four 
were necessary to achieve the desired flight characteristics. 
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4.2 Evolution 
In this research, we used both direct and incremental evolution. In direct evolution, 
controllers were evolved from random initial populations for continuously emitting, 
stationary radars; continuously emitting, mobile radars; intermittently emitting, stationary 
radars with regular periods; intermittently emitting, stationary radars with irregular 
periods; and intermittently emitting, mobile radars with regular periods. For each 
experiment, we performed 50 evolutionary runs and then selected successful controllers.  
While all four objectives are important, moving the UAV to the goal is the highest priority. 
To emphasize this objective, controllers evolved directly from random initial populations 
used functional incremental evolution, which incrementally changes the fitness function to 
increase the difficulty of the problem. Only the normalized distance fitness measure was 
used for the first 200 generations; the last 400 generations used all four of the fitness 
functions. 
To improve the chances of successfully evolving acceptable controllers for the more complex 
radar types, we used environmental incremental evolution. Unlike the direct evolution 
experiments, which always started with a random initial population, these experiments 
used evolved populations from simpler radar types as seed populations. Environmental 
incremental evolution incrementally increases the difficulty of the environment or task faced 
by evolution, while leaving the fitness function unchanged. In this research, random 
populations are initialized and then evolved for 600 generations on continuously emitting, 
stationary radars to create seed populations. Controllers for more difficult radars are then 
evolved for 400 generations using these seed populations. Populations were incrementally 
evolved on progressively more difficult radar types: continuously emitting, mobile radars; 
intermittently emitting, stationary radars; and intermittently emitting, mobile radars. Figure 
2 graphically summarizes the process of incremental evolution used in this work. 

 

Figure 2. Environmental incremental evolution process 

4.3 Test Metrics for Controller Evaluation 

During controller evolution, four fitness functions determined the success of individual 
UAV navigation controllers. The fitness of a controller was measured over 30 simulation 
trials, where the UAV and radar positions were random for every trial. We designed the 
four fitness functions to measure how well a controller satisfied the goals of moving toward 
the radar, circling the radar closely, and flying in an efficient and stable manner. 
These four fitness functions worked well to evolve good controllers, but because the functions 
were designed to exert evolutionary pressure throughout each run, not all the values each 
function produces are immediately meaningful. For the purposes of testing evolved 
controllers, we designed four test functions which measure the same qualities as the four 
fitness functions. The values these test functions produce are more meaningful to an observer. 
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4.3.1 Flying to the radar 

The primary goal of the UAV is to fly from its initial position to the radar site as quickly as 
possible. The first fitness function, fitness1, measured how well controllers accomplish this 
task by averaging the squared distance between the UAV and the goal over all time steps. 
We normalized this distance using the initial distance between the radar and the UAV in 
order to mitigate the effect of varying distances from the random placement of radar sites. 
However, this measure does include a slight bias against longer initial distances, and 
produces a value without much meaning for an observer. We eliminated this bias in the first 
test function, test1, by measuring percent error in flight time to the target. The total 
simulated time of four hours, or 14400 seconds, is divided into Tin, the number of seconds 
the distance between the UAV and radar is less than 10 nmi, and Tout, when this distance is 
greater than or equal to 10 nmi. 

 secondsTTT outintotal 14400=+=  (5) 

The error in the time it takes to fly to the radar is just the actual time, Tout, minus the shortest 
possible time, Texpect, which is computed from D, the shortest possible distance in nautical 
miles a UAV could travel to fly from its starting position to each radar location, and the 
UAV speed of 80 knots. 

 D

seconds

hour

hour

nmi

D
Texpect ⋅=

⋅

= 45

3600

1
80

 (6) 

The test function is given as 
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For our tests, a value for test1 near zero indicates a good flight. 

4.3.2 Circling the radar 

In early tests, we found that finding the mean squared circling distance exerted more 
pressure to evolve good circling behavior than if we simply used the mean circling distance. 
The circling distance fitness function used to evolve the controllers used the mean squared 
distance between the UAV and the radar when this distance was less than 10 nmi. For our 
tests, we were more concerned with the actual mean circling distance, so the test function, 
test2, is the mean circling distance between the UAV and the radar when this distance is less 
than 10 nmi. The circling distance test function is 

 ∑
=

⋅=
T

i

i

in

dinrange
T

test
1

2

1
 (8) 

where inrange equals 1 if the distance between the UAV and the radar is less than 10 nmi 
and 0 otherwise. 
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4.3.3 Efficient flight 

The first fitness function used to measure the efficiency of flight, fitness3, is the number of 
time steps the UAV spends with a roll angle of 0° while traveling to the target. When the 
mean value of this fitness function is taken over many simulated flights, it provides a good 
measure of the amount of time a UAV spends flying in the most efficient posture. For the 
ability to look at single flights as well as a large number of simulations, we created test3, 
which measures the percentage of the expected time the UAV spends flying level. 
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where level is 1 when the UAV has been level for two consecutive time steps and 0 
otherwise. For our tests we would like test3 to be as small as possible. 

4.3.4 Stable flight 

The second test function to evaluate the efficiency of flight is a measure of turn cost. While 
UAVs are capable of quick, sharp turns, it is preferable to avoid these in favor of more 
gradual turns. The original turn cost fitness function fitness4, also used as test4, was intended 
to penalize controllers that navigate using a large number of sharp, sudden turns because 
this behavior may cause unstable flight or stalling. The UAV can achieve a small turning 
radius without penalty by changing the roll angle gradually; the metric only accounts for 
cases where the roll angle has changed by more than 10° since the last time step. The turn 
cost is given as 
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where φ is the roll angle of the UAV and hardturn is 1 if the roll angle has changed by more 
than 10° since the last time step and 0 otherwise. We would like to minimize test4. 

4.4 Controller Evaluation 

Since multi-objective optimization produces a Pareto front of solutions, rather than a single 
best solution, we needed a method to gauge the performance of evolution. To do this, we 
selected values we considered acceptable for the four fitness metrics. We defined a 
minimally successful UAV controller as able to move quickly to the target radar site, circle at 
an average distance under 2 nmi, fly with a roll angle of  0° for approximately half the 
distance to the radar, and turn sharply less than 0.5% of the total flight time. If a controller 
had test1 less than 0.2, test2 less than 2, test3 less than 0.5, and test4 less than 0.05, the evolution 
was considered successful. These baseline values were used only for our analysis, not for the 
evolutionary process. 

4.5 Direct Evolution 
Table 2 shows the number of successful runs and the success rate for each of the five radar 
types and the total number of successful controllers, average number of successful 
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controllers for an evolutionary run, and maximum number of controllers evolved in an 
evolutionary run for each of the radar types using direct evolution. 
 

Evolutionary runs Successful controllers 
Radar type Total Successful Percent Total Average Maximum 

Continuous, stationary 50 45 90% 3,149 62.98 170 

Continuous, mobile 50 36 72% 2,266 45.32 206 

Inter. (regular), stationary 50 25 50% 1,891 37.82 156 

Inter. (irregular), stationary 50 29 58% 2,374 47.48 172 

Intermittent, mobile 50 16 32% 569 11.38 93 

Table 2. Number of successful runs and controllers for direct evolution experiments 

Unlike continuously emitting radars, intermittently emitting radars were quite difficult for 
evolution. This should come as no surprise; the sensors on-board the UAV receive only half 
as much information from this type of radar as from a continuously emitting radar. Since 
the controllers evolved in this research have no a priori knowledge of the radar location and 
no internal model of the world, evolution must devise a strategy for times when the emitter 
is turned off. Despite the increased difficulty of this experiment, evolution was able to 
produce a large number of successful controllers. 

4.6 Incremental Evolution 

The results of the incremental evolution experiments are shown in Table 3. 
 

Evolutionary runs Successful controllers 
Radar type Total Successful Percent Total Average Maximum 

Continuous, stationary 50 45 90% 2,815 56.30 166 

Continuous, mobile 50 45 90% 2,774 55.48 179 

Intermittent, stationary 50 42 84% 2,083 41.66 143 

Intermittent, mobile 50 37 74% 1,602 32.04 143 

Table 3. Number of successful runs and controllers for incremental evolution experiments 

To begin the incremental evolution process, we evolved controllers for continuously 
emitting, stationary radars. This new set of evolutionary runs was used as a seed for the 
incremental evolution experiments. Like the experiments described in Section 4.5, 45 of the 
50 evolutionary runs were successful, for a success rate of 90% 
In the second stage of incremental evolution, each of the seed populations was used as the 
initial population for an evolutionary run, which evolved for 400 generations on 
continuously emitting, mobile radars. The use of incremental evolution improved the 
success rate of evolution on this type of radar. The 90% success rate using incremental 
evolution was an increase over the 72% success rate using direct evolution. 
In the third stage of incremental evolution, each of the populations evolved in the second 
stage was used as a seed population for 400 generations of evolution on intermittently 
emitting, stationary radars with regular periods. The use of multiple increments, or stages of 
evolution, dramatically increased the ability of evolution to produce adept controllers for 
this type of radar. The success rate for evolution on intermittently emitting, stationary 
radars increased from 50% for direct evolution to 84% in this experiment. This increase in 
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success rate suggests that incremental evolution is a very effective technique for this 
problem. 
In the fourth and final stage of incremental evolution, each of the populations evolved the 
third stage was used as a seed population to evolve controllers for intermittently emitting, 
mobile radars with regular periods over 400 generations. Using multiple stages of 
incremental evolution increased the ability of evolution to successfully produce good results 
for this radar type. The success rate for intermittently emitting, mobile radars was 32% for 
direct evolution, but the success rate jumped all the way to 74% with incremental evolution. 

4.7 Transference to a Wheeled Mobile Robot 

To evaluate the ability of evolved controllers to control real vehicles, we transferred evolved 
UAV navigation controllers to a wheeled mobile robot. We used a small autonomous mobile 
robot called the EvBot II (Mattos, 2003), shown in Figure 3. The robot is equipped with an 
on-board computer responsible for all computation, data acquisition and high-level control. 
The robot is connected to a wireless network and supports video data acquisition through a 
USB video camera. The EvBot is equipped with an on-board passive sonar system that 
makes use of an acoustic array formed by eight microphones distributed in a fixed 3-D 
arrangement around the robot. It uses data collected from the array to perform 
beamforming and to find the direction and intensity of sound sources. The passive sonar 
system is susceptible to environmental noise, and the direction of a source found by the 
acoustic array is only accurate within approximately ±45°. 

 

Figure 3. The EvBot II mobile robot equipped with an acoustic array 

Testing the evolved controllers on the EvBot was attractive because the passive sonar system 
is an acoustic analog to the radar sensor used in simulation. The two signal types propagate 
similarly, and both sensors detect signal strength and direction. The similarities between the 
two systems made it possible to transfer evolved UAV controllers to an EvBot. In evaluating 

www.intechopen.com



Evolved Navigation Control for Unmanned Aerial Vehicles 

 

367 

the transference of the evolved controllers, we were not interested in showing optimal 
behavior on the robot platform. Instead, our concern was that the controllers should exhibit 
the same behaviors on the real robots as they did in simulation, particularly robustness to 
noise. Since the sensor accuracy of the acoustic array was so much worse than that of the 
AoA sensor in our simulation, we evolved new controllers to transfer to the EvBot. The only 
change in the simulation was changing the AoA accuracy from ±10° to ±45°. 
Transference experiments were done in a 153 inch by 122 inch arena. A video camera with a 
fisheye lens was mounted above the maze environment to document experiments. In each 
experiment, the robot was placed along one wall facing toward the middle of the 
environment. A speaker was suspended a foot above the ground and continuously emitted a 
300 Hz tone. A circle was placed directly underneath the speaker as a visual reference point, 
since the fisheye lens tended to distort the location of the speaker in images captured by the 
overhead camera. Robot movement was discretized into steps, much like in the simulation. 
At each time step, the controller was executed to produce a roll angle. The EvBot was only 
calibrated to turn at multiples of 5°: calibrating the EvBot to turn at angles smaller than 5° 
would have been unreliable due to the size of the EvBot and the characteristics of its motors. 
After turning, the EvBot would always move forward the same amount, mimicking the 
constant speed of the UAV in simulation. The EvBot moved 3 inches per time step, and in 
simulation the UAV moved 0.02 nautical miles per time step. If these values are used to 
scale the maze environment, then the maze would represent an area approximately 1.13 nmi 
by 0.90 nmi. Hence, these experiments were not testing the entire flight path, only the very 
end of flight when the vehicle nears the target. 

 

Figure 4. Circling behavior comparison for the EvBot (scaled maze size shown in nmi) and a 
simulated UAV, both running evolved controllers 

Controllers evolved with a less accurate sensor were not as well adapted as those from 
previous work using more accurate sensors; flight paths were much less smooth and 
required more turns (Barlow et al., 2005). An evolved controller was tested 10 times on an 
EvBot. We chose this controller from the evolved population based primarily on good 
fitness values for normalized distance and circling distance, though level time and turn cost 
were also used. This controller was able to successfully drive the EvBot from its starting 
position to the speaker and then circle around the speaker. This small number of tests was 
enough to confirm that the controllers were consistently able to perform the task as desired. 
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Figure 4 shows a path from one of the experiments compared to the circling behavior in 
simulation of controllers evolved with ±10° sensor accuracy. Running this evolved controller 
on the EvBot produces a tight circling behavior with a regular orbit around the target. 

5. Robustness Analysis of GP Navigation Controllers  

Over the 50 evolutionary runs with populations of 500 for each run, we produced 25,000 GP 
trees. In each evolutionary run, all 500 members of the final population fell along the Pareto 
front. Many of these controllers, however, only performed well according to one of the test 
metrics described in Section 4.3 while doing poorly at the others. The evolved controller best 
suited for transference to a real UAV would perform well on all of the test metrics. Rather 
than thoroughly testing all of the evolved controllers, including the most poorly performing, 
we chose to test only a small number of the best controllers. We established several 
performance metrics to evaluate controllers. Through successive performance metric 
evaluations, we selected the 10 best controllers for testing and subjected these evolved 
controllers to a series of robustness tests. 

5.1 Performance Metrics 
Multi-objective optimization produces a Pareto front of solutions, rather than a single best 
solution. In order to rank the controllers, each performance metric should combine the four 
test functions into a single value. The basis for all the performance metrics are a set of 
baseline values, values for each test function that describe a minimally successful UAV 
controller, defined in Section 4.4. Controllers are compared using four performance metrics: 
1) failures, 2) normalized maximum, 3) normalized mean, and 4) average rank. 
The first performance metric, failures, measures the percentage of flights with test function 
values which fail to meet at least one of the baseline values. A simulation run is a failure if 
there exists an m such that testm(r,n) is greater than baselinem, where test1…4(r,n) are the values 
of the four test functions for simulation run n for radar r. The failure percentage for a 
controller f and a test t is given as 

 
N

F
tfmetric =),(1  (11) 

where N is the total number of simulations and F is the number of simulation runs that fail. 
The second performance metric, normalized maximum, measures how poorly a controller 
does when it fails. While the failures performance metric measures how often a controller 
fails, it does not measure how badly it might fail. Some controllers might perform well most 
of the time, but do not fail gracefully. The normalized maximum performance metric measures 
the worst failure for a particular controller. For each test function, the largest of the N values 
for each R radar is normalized by the baseline value for that function. Each value testm(r,n) is 
described by the test function (m), the radar type (r), and the simulation number (n). The 
maximum value over the M test functions is the normalized maximum, given as 
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The third performance metric, normalized mean, measures how well a controller performs in 
relation to the baseline values. While the two metrics above measure the consistency of the 
controller and how wildly it can fail, this metric shows the typical performance of a 
controller. The normalized mean is given as 
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The test function values for each objective are first averaged over the number of samples N, 
then over the number of radars R. For each objective, this average is normalized by the 
corresponding baseline value. We compute the normalized mean by taking the average over 
the M objectives. 
The fourth performance metric, average rank, combines the values from the first three metrics 
into a single metric. To measure the relative performance of the controllers and give each 
metric equal weight, the values for all g controllers are normalized to be between 0 and 1. 
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The value of metric4(f,t) is the mean of these normalized metrics. 
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If we wish to find metric4(f,T)  where T is a set of tests, we find metrick(f,T) values for each of 
the first three metrics 
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then normalize using Equation 14 and compute the metric using Equation 15. 

5.2 Controller Selection 

The combination of simulated sensor noise and random positioning of UAVs and radars 
created an uncertain fitness landscape for this problem. During evolution, we averaged the 
values from 30 simulation trials to help mitigate this uncertainty, but for these robustness 
tests, orders of magnitude more tests would make test function values for individual 
controllers statistically meaningful. Rather than running thousands of simulations for each 
of the 25,000 controllers created by evolution—an approach that would have been too 
computationally expensive—we chose to perform a series of robustness tests on 10 of the 
best controllers. We selected these controllers over several stages, reducing the number of 
controllers by an order of magnitude during each step. 
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First, we selected all controllers whose mean was lower than the baseline values for the four 
test functions described in Section 4. Of the 25,000 evolved controllers, 1,602 controllers had 
average fitness values better than the baseline values. This first method of selection was 
chosen because these 1,602 controllers had already been shown to perform well on the five 
radar types of interest: continuously emitting, stationary radars; continuously emitting, 
mobile radars; intermittently emitting, stationary radars with regular emitting periods; 
intermittently emitting, stationary radars with irregular emitting periods; and intermittently 
emitting, mobile radars with regular emitting periods. 
Second, we ran 100 simulation trials on each of the five radar types for each of the 1,602 
controllers and measured each flight using the test functions outlined in Section 4.3. For 
each radar type, we selected the best 35% of controllers using the failures performance metric 
described above. Then, we took the intersection of these five sets of controllers, leaving 298 
controllers out of the 1,602. This selection method was chosen to eliminate controllers that 
did not perform consistently well on all five of the radar types. Since some radar types were 
more difficult than others, using a single cutoff number of failures to select controllers 
would not have caught controllers that did not perform as well on the easier radar types. 
The choice of 35% was made in order to select approximately 300 controllers for further 
tests. 
Finally, we cut these 298 controllers down to 10 using the normalized maximum performance 
metric. This performance metric was applied to all 298 controllers and the 10 controllers 
with the lowest normalized maximum were selected as the best controllers for further testing. 
While counting the number of times a controller fails to meet the baseline values is a good 
way to compare controllers, this method gives no indication of the magnitude of failure. 
Using the normalized maximum metric helped eliminate controllers that usually performed 
well, but occasionally performed extremely poorly. Since a consistently sub-optimal 
controller is preferable to an unpredictable one, this metric was a good way to cut the set of 
controllers to a small number for final testing. 
We compared these 10 evolved controllers to two designed controllers, a hand-written 
controller specific to this domain and a proportional-derivative (PD) controller, a common 
feedback controller. We did not use a proportional-integral-derivative (PID) controller 
because intermittent and mobile radars made the integral term detrimental to performance 
in preliminary tests. After examining many successful evolved controllers, we designed the 
hand-written controller using only the function set available to GP. We used strategies seen 
in evolved controllers, but tried to reduce the complexity to an easy to understand controller 
that performed well under the same conditions used in evolution. Given the current AoA, 
amplitude, and roll angle as inputs, if the amplitude is greater than zero, the hand-written 
controller will make a turn of fixed magnitude if necessary. If the AoA is greater than 10°, 
the roll angle will be increased. If the AoA is less than -10°, the roll angle will be decreased. 
If the AoA is between 10° and -10°, and the magnitude of the roll angle is greater than zero, 
the roll angle will be increased or decreased to move it closer to zero. Otherwise, the roll 
angle remains at 0°. The PD controller takes as input the current AoA and the AoA at the 
previous time step. The derivative of AoA is approximated by using the difference between 
the AoA at the previous time step and the current AoA. We adjusted the proportional and 
derivative gains to give good performance under the same conditions used for evolution. 
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5.3 Robustness Testing 

During evolution, controller evaluation simulated an aircraft with constant speed, noise on 
the two sensor measurements (angle of arrival (AoA) and amplitude), and no state noise. 
The airspeed was 80 knots, AoA noise during evolution was ±10°, and the amplitude noise 
was ±6dB. To test the robustness of the evolved controllers, we increased the sensor noise 
and introduced sources of state noise. In addition to a control case with conditions identical 
to those during evolution, robustness tests fell into five categories by the type of noise: 1) 
AoA error, 2) amplitude error, 3) UAV airspeeds different from the speed used in evolution, 
4) heading error, 5) and wind effects (position error). For each robustness test, we tested ten 
evolved controllers, a hand-written controller, and a PD controller against all five radar 
types. For every combination of controller and radar, we performed 10,000 simulation runs, 
for a total of 50,000 simulations for each controller per robustness test. 
The sensor used most by evolved controllers was the AoA sensor. To test the robustness of 
evolved controllers, we varied the accuracy of the AoA sensor. The apparent AoA is given 
as the true angle to the target plus a normally distributed random number times the AoA 
accuracy. This accuracy was set to ±10° during evolution. For these robustness tests, we 
used AoA accuracies of ±{15°, 20°, 25°, 30°}. 
While the amplitude sensor was not often used by evolved controllers, we did one test 
where we increased the amplitude error. While the controllers were being evolved, the 
amplitude error was set to 6 dB; the robustness test used an error of 12 dB. In both cases, this 
error was multiplied by a normally distributed random number and added to the true 
amplitude to compute the apparent amplitude. 
During evolution, the speed of the UAV was held constant at 80 knots, but a UAV can 
obviously be flown at a variety of speeds. For instance, the UAV being considered for flight 
tests has a stall speed of 40 knots and a top speed of 110 knots. To test the performance of 
the evolved controllers at different speeds, we chose to test at 50 and 100 knots, values near 
the low and high end of the speed range. 
The evolved UAV controllers have a single control variable, roll angle, which is used by the 
simulation to change the heading of the UAV at each time step. In the version of the 
simulation used to evolve controllers, there was no noise in this process. It is possible that 
on a real UAV, the autopilot might not be able to respond perfectly to turn requests or wind 
might push the UAV off-course. To test the robustness of evolved controllers this possibility, 
we added noise to the heading state variable. At each time step, a normally distributed 
random variable multiplied by a heading error was added to the heading computed using 
the desired roll angle. For our tests, we used heading error values of  ±{0.5°, 1.0°, 1.5°, 2.0°}. 
A significant source of state error for UAVs in the real world is wind. During evolution, the 
effects of wind on a UAV were not taken into account. While wind may function as a source 
of heading noise, the largest effect examined here was on position error. For our robustness 
tests, we make the simplifying assumption that the wind acts as an external force vector that 
can be summed with the propulsion force vector to obtain the new position of the UAV. In 
reality, this assumption is pessimistic, but for the purposes of these robustness tests would 
help to gauge the effects of wind on evolved controllers. The wind direction was set 
randomly for each simulation, but once set, the wind direction was held constant for the 
duration of the simulation. The wind speed was calculated at each time step as the mean 
wind speed plus some variance. For our tests, we used wind speeds of {5, 10, 20, 30} knots 
with a variances of {1, 1, 5, 5} knots. 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

372 

5.4 Robustness Test Results 

For each test, we ranked the 12 controllers (10 evolved controllers, labeled A to J; the hand-
written controller, hd; and the PD controller, pd) based on each of the four performance 
metrics. Most of the results presented are rankings over several tests. When ranking over 
several tests, we used the averages of the performance metric values for each test except for 
the average rank metric; the technique used to compute this metric is described in Section 5.1. 

 

Overall Ranking best 2 3 4 5 6 7 8 9 10 11 12 

failures G D E F J H A C B pd I hd 

normalized maximum pd D I F G hd J E B A H C 

normalized mean D E hd G F J H pd A C B I 

average rank D G E pd F J H hd A B C I 

Initial Ranking best 2 3 4 5 6 7 8 9 10 11 12 

Failures pd A B C D E F G H I J hd 

normalized maximum pd G E J F I B A D C H hd 

normalized mean pd I J A B C G E D F H hd 

average rank pd J G I E B A F C D H hd 

AoA Ranking best 2 3 4 5 6 7 8 9 10 11 12 

Failures G D E F I H J B A C pd hd 

normalized maximum pd D I E G hd B J H F A C 

normalized mean D G E hd F J H I C B A pd 

average rank G D E F pd J hd H I B C A 

Heading Ranking best 2 3 4 5 6 7 8 9 10 11 12 

Failures D E F G J H pd A C B I hd 

normalized maximum pd I D J H F B hd A G E C 

normalized mean pd D H J F hd E I C G B A 

average rank pd D J F H E G I B C A hd 

Wind Ranking best 2 3 4 5 6 7 8 9 10 11 12 

Failures D E G pd F J H C B A hd I 

normalized maximum pd G F E D hd I J A B C H 

normalized mean pd hd D G E F J H A C B I 

average rank pd G D E F J H hd A C B I 

Table 4. Controller rankings for robustness tests 
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Controller rankings, as shown in Table 4, are divided into five separate sections. The first 
section shows the overall rankings, averaged over all 16 robustness tests described in 
Section 5.3. The second section shows the initial rankings, using the same conditions under 
which the controllers were evolved (the control test). The third section shows the AoA 
rankings, averaged over the control test and the four tests with decreased AoA accuracy. 
The results from the next three tests, increasing the amplitude noise and changing the UAV 
speed to 50 and 100 knots, were very similar to those for the control test, so these results are 
not shown in the interests of space. The fourth section shows the heading rankings, 
averaged over the control test and the four tests with increased heading error. The fifth 
section shows the wind rankings, averaged over the control test and the four tests with 
increased wind speed. Based on these rankings, evolved controller D was the best candidate 
to transfer to a real UAV. In all rankings, controller D, the hand-written controller, and the 
PD controller are highlighted. The failure percentages for controller D and the PD controller 
for each of the robustness tests for each radar type are shown in Table 5.  
In the initial ranking, the PD controller performs better than all the evolved controllers and 
the hand-written controller on all four metrics. This was not surprising, as we had tuned the 
controller parameters for the control test, giving an average failure rate of 0.04%. The hand-
written controller, which was not optimized, performed the worst with an average failure 
rate of 69.82%. Controller D performed well, with an average failure rate of 7.13%, but was 
ranked tenth on the average rank metric, ahead of only one other evolved controller and the 
hand-written controller. 
As we increased AoA noise, the performance of the hand-designed controllers declined 
compared to the evolved controllers. When the AoA error was increased from ±10° to ±15°, 
the PD controller failed in 100% of tests and the hand-written controller failed in 92.72% of 
tests. On the other hand, the failure rate for controller D was only 9.88%. The average failure 
rate for controller D only rose above 25% (to 90.24%) once the AoA error was ±30°. For the 
five different settings of AoA accuracy, controller D was the most robust to AoA sensor 
noise of the controllers. 
An increase in amplitude error did not significantly change the performance of any 
controller. The performances of the evolved controllers and the hand-written controller on 
the two tests varying the speed were similar to performances on the control case. The only 
controller that had trouble with different speeds was the PD controller, which had average 
failure rates of 100% for a speed of 50 knots and 92.69% for a speed of 100 knots. In addition 
to being tuned for a particular AoA accuracy, these tests suggest that the PD controller is 
also tuned for a particular airspeed. 
For the robustness tests with heading noise, the PD controller was the best, followed by 
controller D, which was the most consistent of the evolved controllers. The hand-written 
controller was the worst of the 12 controllers over these four tests and the control. Controller 
D actually failed significantly less than the PD controller; the average failure rate for the PD 
controller was over 50% when the heading error was ±1.5° and was 98.6% when the error 
was ±2°, while the average failure rate for controller D never got above 20%. The PD 
controller typically did not fail by large margins, and was ranked first on the normalized 
maximum and normalized mean performance metrics. 
In the last series of tests, we added a different source of state error, wind. This series of tests 
clearly separated the evolved controllers; some of these controllers were simply not robust 
to the effects of wind. Controller D failed the fewest times, but was third in the average rank 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

374 

metric. The PD controller was best in this category. Despite the large number of evaluations, 
there is still some uncertainty in the performance metric values—for example, when AoA 
error is increased from the control test, the failure rate for controller D on continuous, 
mobile radars actually decreases slightly. For most of the robustness tests, this uncertainty 
was small—in the previous example this drop was on the order of 0.5%—but for wind this 
uncertainty was more apparent, especially for the higher wind speeds. One artifact of this 
uncertainty was the change in the failure rate for controller D on continuous, stationary 
radars from wind speeds of 10 to 20 to 30 knots. At 10 knots, the failure percentage was 
16.33%. When the wind speed was increased to 20 knots, the failure percentage increased to 
78.96%. However, when the wind speed was increased again to 30 knots, the failure 
percentage dropped to 61.05%. Other evolved controllers showed similar trends for 
increased wind speeds. 

Cs cm irs iis irm average 
Test type 

D Pd D pd D pd D pd D pd D pd 

control 0.00 0.04 10.19 0.03 1.18 0.07 10.39 0.04 13.87 0.03 7.13 0.04 

AoA=15 0.00 100.0 9.67 100.0 6.55 100.0 16.43 100.0 16.74 100.0 9.88 100.0 

AoA=20 0.00 100.0 9.80 100.0 20.10 100.0 26.06 100.0 24.81 100.0 16.15 100.0 

AoA=25 0.01 100.0 9.40 100.0 35.39 100.0 37.76 100.0 34.90 100.0 23.49 100.0 

AoA=30 99.65 100.0 99.05 100.0 77.15 100.0 90.12 100.0 85.25 100.0 90.24 100.0 

Amp=12 0.00 0.04 10.83 0.02 1.41 0.04 10.73 0.04 13.21 0.07 7.24 0.04 

Speed=50 0.00 100.0 12.38 100.0 0.56 100.0 3.70 100.0 16.53 100.0 6.63 100.0 

Speed=100 0.00 92.92 10.28 92.42 2.63 92.23 17.04 92.79 14.83 93.09 8.96 92.69 

Head=0.5 0.00 0.15 9.76 0.20 1.70 0.19 11.70 0.15 14.38 0.18 7.51 0.17 

Head=1.0 0.00 2.57 10.84 2.46 4.48 2.50 16.88 2.66 16.08 2.60 9.66 2.56 

Head=1.5 0.00 54.97 11.16 55.64 9.29 54.30 25.86 55.36 20.31 55.03 13.32 55.06 

Head=2.0 0.00 98.56 11.04 98.57 19.85 98.55 37.63 98.67 29.38 98.64 19.58 98.60 

Wind=5 0.02 0.39 11.43 0.00 2.40 0.01 12.52 0.05 15.70 0.14 8.41 0.12 

Wind=10 16.33 0.05 25.66 0.00 21.13 1.39 30.97 0.02 30.82 1.11 24.98 0.51 

Wind=20 78.96 97.54 72.10 94.76 49.96 95.12 72.05 100.0 60.77 94.83 66.77 96.45 

Wind=30 61.05 98.36 71.20 100.0 63.43 96.64 95.42 97.28 86.10 99.67 75.44 98.39 

Table 5. Failure percentages for the best evolved controller (D) and the PD controller (pd) 
listed by radar type (cs: continuous, stationary; cm: continuous, mobile; irs: intermittent, 
regular period, stationary; iis: intermittent, irregular period, stationary; irm: intermittent, 
regular period, mobile; avg: average) 

The PD controller, as one might expect, performed extremely well under design conditions. 
When measuring how badly it failed using the normalized maximum performance metric, it 
was robust to all sources of noise, outperforming the other controllers in all tests. This 
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controller was also robust to state noise, performing well under heading error and wind. 
However, the PD controller was susceptible to sensor noise. As the AoA error increased a 
small amount, the PD controller quickly failed. It was also dependent on the speed of the 
aircraft for good performance. 
On most tests, the hand-written controller performed well, but was consistently worse than 
evolved controllers. This controller typically produced good results on the normalized mean 
performance metric, but was not robust to most forms of noise, though it did perform well 
on the speed and wind tests. The hand-written controller was included in these tests to 
show the difficulty of using the function and test sets to design an optimal controller by 
hand. 
Overall, the best and most consistent controller was the best of our evolved controllers, 
controller D. In the overall rankings, this controller had the best average rank and finished in 
the top two on every performance metric. Unlike the hand-designed controllers, there was 
no category of tests where controller D performed poorly. This controller ranked highly in 
all of our tests, and its rank tended to increase as noise was increased. 

6. Conclusions 

Using multi-objective GP, we were able to evolve navigation controllers for UAVs capable of 
flying to a target radar, circling the radar site, and maintaining an efficient flight path, all 
while using inaccurate sensors in a noisy environment. Controllers were evolved for five 
radar types using both direct evolution and incremental evolution: continuously emitting, 
stationary radars; continuously emitting, mobile radars; intermittently emitting, stationary 
radars with regular periods; intermittently emitting, stationary radars with irregular 
periods; and intermittently emitting, mobile radars with regular periods. The use of 
incremental evolution dramatically increased the chances of producing successful 
controllers compared to direct evolution. Incremental evolution also produced controllers 
able to handle all five radar types. 
Controllers were evolved to use inaccurate sensors in a noisy environment. We tested the 
transferability of the evolved controllers by using them to control a wheeled mobile robot. 
Evolved UAV controllers were successfully transferred to a wheeled mobile robot equipped 
with a passive sonar system which provided the angle and amplitude of sound signals from 
a stationary speaker. Using evolved navigation controllers, the mobile robot moved to the 
speaker and circled around it. The results from this experiment demonstrate that our 
evolved controllers are capable of transference to real physical vehicles. 
We developed a series of robustness tests for evolved navigation controllers for UAV 
controllers developed in simulation. Before testing evolved controllers on a real UAV, we 
needed some assurance that the off-design performance of these controllers would be 
sufficient to accomplish the desired task and that controllers would be able to avoid 
behaviors that could potentially damage the aircraft. Also, since the controllers were 
evolved using multi-objective optimization, we needed to select a single best controller. 
When evolving controllers for systems where tests may be dangerous to the vehicle, 
robustness tests might be useful in selecting a controller and seeing how well it performs. 
The robustness tests described here apply several sources of sensor and state noise. If the 
real-world noise falls within the range where tests in simulation performed well, we can 
expect that transference will be successful. 
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The best evolved controller performed well in all robustness tests, consistently out-
performing a hand-written controller and a proportional-derivative controller. When 
subjected to reasonable noise, this controller continued to perform well, even when many 
other controllers began to fail. Despite out-performing the hand-designed controllers and 
the other evolved controllers, our best controller has limits. When the AoA sensor was very 
inaccurate or the wind speed was high, this controller did not perform very well. 
We have described the systematic development of a UAV navigation controller. We 
designed fitness functions and evolved controllers with multi-objective GP, using 
incremental evolution to increase the number of good controllers. To evaluate the ability of 
evolved controllers to control real vehicles, we transferred evolved UAV navigation 
controllers to a wheeled mobile robot. Finally, we used a series of robustness tests to screen 
the controllers and to select the single best controller. Based on this research, we feel 
confident that GP can evolve autonomous navigation controllers to effectively and safely 
control real UAVs in real flight environments. 
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