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1. Introduction 

Recently reinforcement learning has received much attention as a learning method (Sutton, 
1988; Watkins & Dayan, 1992). It does not need a priori knowledge and has higher capability 
of reactive and adaptive behaviors. However, there are some significant problems in 
applying it to real problems. Some of them are deep cost of learning and large size of action-
state space. The Q-learning (Watkins & Dayan, 1992), known as one of effective 
reinforcement learning, has difficulty in accomplishing learning tasks when the size of 
action-state space is large. Therefore the application of the usual Q-learning is restricted to 
simple tasks with the small action-state space. Due to the large action-state space, it is 
difficult to apply the Q-learning directly to real problems such as control problem for robots 
with many redundant degrees of freedom. 
In order to cope with such difficulty of large action-state space, various structural and 
dividing algorithms of the action-state space were proposed (Holland, 1986; Svinin et al., 
2001; Yamada et al., 2001). In the dividing algorithm, the state space is divided dynamically, 
however, the action space is fixed so that it is impossible to apply the algorithm to the task 
with large action space. In the classifier system, “don’t care” attribute is introduced in order 
to create general rules. But, that causes the partially observable problem. Furthermore, an 
ensemble system of general and special rules should be prepared in advance. 
Considering these points, Ito & Matsuno (2002) have proposed a GA-based Q-learning 
method called “Q-learning with Dynamic Structuring of Exploration Space Based on Genetic 
Algorithm (QDSEGA).” In their algorithm, a genetic algorithm is employed to reconstruct 
an action-state space which is learned by Q-learning. That is, the size of the action-state 
space is reduced by the genetic algorithm in order to apply Q-learning to the learning 
process of that space. They applied their algorithm to a control problem of multi-legged 
robot which has many redundant degrees of freedom and large action-state space. By 
applying their restriction method for action-state space, they successfully obtained the 
control rules for a multi-legged robot by their QDSEGA. However, the way to apply a 
genetic algorithm seems so straightfoward in their study. Therefore we propose a crossover 
and a modified fitness definition for QDSEGA (Murata & Yamaguchi, 2005; Murata & Aoki, 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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2007). Through our computer simulations on a control problem of a multi-legged robot, we 
could make about  50% reduction of the number of generations to obtain a target state of the 
problem. In Murata & Aoki (2007), the same proposed crossover are used for controling 
multiple agents who convey several loads to a goal. The proposed crossover is effective to 
decrease the number of actions to attain the objective. In this chapter, we concentrate on 
showing a QDSEGA with our crossover for controling multi-legged robot. 
In the previous study (Ito & Matsuno, 2002), the target of a multi-legged robot was fixed. 
That is the target does not move in their computer simulation. In this chapter, we try to 
move the target, and modify the learning algorithm of QDSEGA to follow the moving 
target. Simulation results show that our proposed method can control the multi-legged 
robot to follow the moving target more than the conventional method. 

2. QDSEGA 

In this section, we briefly explain the outline of QDSEGA (Ito & Matsuno, 2002). QDSEGA 
has two dynamics. One is a learning dynamics based on Q-learning and the other is a 
structural dynamics based on Genetic Algorithm. Fig. 1 shows the outline of QDSEGA. In 
QDSEGA, each action is represented by an individual of a genetic algorithm. According to 
actions defined by a set of individuals, action-state space called Q-table is created. Q-
learning is applied to the created Q-table. Then the learned Q-table is evaluated through 
experiments. A fitness value for each action is assigned according to Q-table. After that, each 
individual (i.e., each action) is modified through genetic operations such as crossover and 
mutation. We show some details in these steps in the following subsections, and show our 
proposed method in the next section. 
 
 
 

 

Create Initial Random Population 

Convert Gene to Action

Create Q-table

Q-learning

Selection

Reproduction (Crossover, Mutation) 

Start 

Calculate fitness from Q-table 

End 

 

Figure 1. Outline of QDSEGA (Ito & Matsuno, 2002) 
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2.1 Action Encoding 

Each individual expresses the selectable action on the learning dynamics. It means that a set 
of individuals is selected by genetic operations, and a learning dynamics is applied to the 
subset. After the evaluation of the subset of actions, a new subset is restructured by genetic 
operations. 

2.2 Q-Table 

An action-state space called Q-table is created from the set of individuals. When several 
individuals are the same code, that is, they are the same action, only one action is used in the 
action-state space in order to avoid the redundancy of actions. Fig. 2 shows this avoidance 
process. 

2.3 Learning Dynamics 

In QDSEGA, the conventional Q-learning (Watkins & Dayan, 1992) is employed as a 
learning dynamics. The dynamics of Q-learning are written as follows: 

 )},(max),({),()1(),( asQasrasQasQ
a

′′++−←
′

γαα , (1) 

where ),( asQ  is a Q-value of the state s and the action a, r is the reward, α  is the learning 

rate, and γ  is the discount rate. 

2.4 Fitness 

The fitness )( iafit  for each action is calculated by the following equation: 

 )()()( iufiQi afitkafitafit ⋅+= , (2) 

where )( iQ afit  is a fitness value for action ia  calculated from Q-table, )( iu afit  is a fitness 

value for action ia  calculated from the frequency of use, and fk  is a non-negative constant 

value to determine the ratio of )( iQ afit  and )( iu afit . We show the detail explanation of 

these factors in this subsection. 

 

111011  action1

101110  action2

101010  action3

101111  action4

111011  action1

111011  action1
Not used 

Population  Phenotype

Q-table 

 

Figure 2. Q-table created from a set of individuals (Ito & Matsuno, 2002) 
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The fitness of Q-table )( iQ afit  is calculated from Q-values in the current Q-table. In order to 

calculate )( iQ afit  for each action ia  the following normalization is taken place in advance 

as for the Q-values in the current Q-table. 
First, calculate the maximum and minimum value of each state as follows: 

 )),((max)(max asQsV
a

′=
′

, (3) 

 )),((min)(min asQsV
a

′=
′

. (4) 

Then ),( asQ′  of the normalized Q-table is given as follows: 

If 0),( ≥asQ  then 

 pasQ
sV

p
asQ +

−
=′ ),(

)(

1
),(

max

, (5) 

else 0),( <asQ  then 

 pasQ
sV

p
asQ +−=′ ),(

)(
),(

min

, (6) 

where p is a constant value which means the ratio of reward to penalty. After this 

normalization process, we fix the action ia  and sort ),( iasQ′  according to their value from 

high to low for all states. We define the sorted ),( iasQ′  as ),( is asQ′ , and ),1( is aQ′  means the 

maximum value of ),( iasQ′ , and ),( iss aNQ′  means the minimum value of ),( iasQ′ , where 

sN  is the size of states. Using the normalized and sorted Q-value ),( is asQ′ , the fitness of 

action ia  is calculated as follows: 

 =)( iQ afit ∑ ∑
=

==
Ns

j

j

k is
j

j

akQ
w

1

1 )
),('

( , (7) 

where jw  is a weight which decides the ratio of special actions to general actions. 

The fitness of frequency of use )( iu afit  is introduced to save important actions. That fitness 

is defined as follows: 

 ∑ == aN

j juiuiu aNaNafit
1

)(/)()( ,  (8) 

where aN  is the number of all actions of one generation and )( iu aN  is the number of times 

which ia  was used for in the Q-learning of this generation. Important actions are used 

frequently. Therefore the actions with high fitness value of )( iu afit  are preserved by this 

fitness value. 

2.5 Genetic Algorithms 

The paper that proposed QDSEGA (Ito & Matsuno, 2002) says “the method of the selection 
and reproduction is not main subject so the conventional method is used (in this paper).” 
They employed a crossover that exchanges randomly selected bits between the parent 
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individuals according to the crossover probability cP . They mutated each bit according to 

the mutation probability mP . They did not replace parents individuals with offspring. 

Therefore the number of individuals is increased by the genetic operations. As for the elite 
preserving strategy, they preserve 30% individuals with the highest fitness value. 

3. Proposed Method 

We propose a crossover operation for the multi-legged robot control problem (MRC 
problem). As shown in Subsection 2.5, QDSEGA did not try to propose any specific genetic 
operations for MRC problems. We propose a neighboring crossover for QDSEGA for MRC 
problems. In order to show our crossover which is tailored to MRC problems, we explain a 
coding method of a multi-legged robot and Q-table used in this chapter first. 

3.1 Coding of Individuals 

Fig. 3 shows the multi-legged robot and its encoding. We control a robot which has 12 legs. 
Each leg has four states as in Table 1. As shown in Fig. 3, each individual shows a set of legs’ 

positions of 12 legs. Therefore each individual indicates one state of this robot of the 124  
positions. Since we generate only the prespecified number of individuals in genetic 

algorithms, the Q-table includes a subset of 124  states with respect to legs’ positions. 

3.2 Q-Table for 12-Legged Robot 

Q-table represents a subset of the action-state space to control a 12-legged robot. In 
QDSEGA, individuals are used for the both of actions and states. Fig. 4 shows an example of 
a Q-table created by n individuals. In this problem, each individual is used twice in the Q-
table. “Current state” indicates the current position of 12 legs. “Action” indicates a next 
position of 12 legs after a certain action. For example, if S1 is the current position of 12 legs 
and A3 is selected as an action, the 12-legged robot moves its 12 legs to become the next 
position as A3. If the action A3 causes the robot to lose balance, the trial terminates. In our 
simulation, we assume that the 12-legged robot can change its legs’ position smoothly. 
 

 

1 1 1 1 1 1 1 1 1 1 1 1 

1 2 1 1 3 3 4 2 3 2 4 4

2 1 3 3 1 4 2 2 3 2 1 4

1 2 2 2 3 3 3 2 3 1 2 3

1       2

3       4

5       6

7       8

9      10

11     12

Head

 

Figure 3. 12 Legs and representation in an individual 
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State Number State 

1 Forward and grounded 

2 Backward and grounded 

3 Forward and ungrounded 

4 Backward and ungrounded 

Table 1. Leg’s position 

 

Action

Current State

A1

A2

A3

An

1 1 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 3 1 1 2 2 1 2 1

1 2 3 4 1 2 3 4 1 2 3 4

1 1 4 2 1 3 1 3 1 2 1 4

1
1
1
1
1
1
1
1
1
1
1
1

1
2
3
4
1
2
3
4
1
2
3
4

4
1
1
1
3
1
1
2
2
1
2
1

1
1
4
2
1
3
1
3
1
2
1
4

S1 S2 S3 Sn

Q-table 

 

Figure 4. An example of Q-table created by n individuals 

3.3 Neighboring Crossover 

The crossover employed in QDSEGA (Ito & Matsuno, 2002) causes drastic change of legs’ 
position because randomly selected bits are changed between two individuals. If the change 
of legs’ position is so drastic, it may easily happen that the 12-legged robot loses its balance. 
In order to avoid losing the balance, we propose a crossover between similar parent 
individuals. We define the similarity by the number of the same genes in the same locus of a 

chromosome. The threshold for the similarity between two parents is denoted by simk  in 

this chapter. Thus, the crossover is applied among similar individuals more than simk . 

This kind of the restriction for the crossover has been proposed in the research area of 
distributed genetic algorithms. Researches on DGAs (Distributed Genetic Algorithm) can be 
categorized into two areas: coarse-grained genetic algorithms (Tanese, 1989; Belding, 1995) 
and fine-grained genetic algorithms (Mandelick & Spiessens, 1989; Muhlenbein et al., 1991; 
Murata et al., 2000). In the coarse-grained GAs, a population, that is ordinarily a single, is 
divided into several subpopulations. Each of these subpopulations is individually governed 
by genetic operations such as crossover and mutation, and subpopulations communicate 
each other periodically. Algorithms in this type are called the island model because each 
subpopulation can be regarded as an island. On the other hand, several individuals are 
locally governed by genetic operations in fine-grained GAs. In a fine-grained GA, each 
individual exists in a cell, and genetic operations are applied to an individual with 
individuals in neighboring cells. The DGAs are known to have an advantage to keep the 
variety of individuals during the execution of an algorithm, and avoid converging 
prematurely. 
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While we don’t define any solution space such as cells or islands in our proposed crossover, 
our restriction may have the same effect of keeping variety in a population and attain the 
effective search for the sequence of states of 12 legs. 

3.4 Modified Reward for Moving Target 

In the previous study, the target of the MRC problem was fixed. That is, the target stays at 
the same place. We consider a moving target as a variant problem of MRC problems. In 

order to let the multi-legged robot follow a moving target, we modify the reward ),( asr at 

time t  in Equation (1) as follows: 

If [deg]15[deg]45 −<≤− zL  and 0)()1( ≥−− tdtd  then 

 ))()1((50),( tdtdasr −−⋅= ,  (9) 

If [deg]15[deg]45 −<≤− zL  and 0)()1( <−− tdtd  then 

 ))()1((200),( tdtdasr −−⋅= ,  (10) 

If [deg]45[deg]15 ≤< zL  and 0)()1( ≥−− tdtd  then 

 ))()1((50),( tdtdasr −−⋅= ,  (11) 

If [deg]45[deg]15 ≤< zL  and 0)()1( <−− tdtd  then 

 ))()1((200),( tdtdasr −−⋅= ,  (12) 

If [deg]15[deg]15 ≤≤− zL  then 

 ))()1((100),( tdtdasr −−⋅= ,  (13) 

Else If( [deg]45−<zL  or zL<[deg]45  or stuck) then 

 100),( −=asr .  (14) 

In the above equations, zL  is the direction of the target in degrees (not in radian), and )(td  

is the distance from the head of the robot to the target at the time t (see Fig. 5 for the detail). 

zL  is zero [deg] if the target locates just ahead of the robot. 

4. Multi-Legged Robot Control 

4.1 Task 

Fig. 5 shows the initial position of the 12-legged robot and the location of the target. At time 
zero, the head of the robot locates in (0,0) in the x-y plane. And the initial state of each leg of 
the robot is 1 in Table 1. We allow the robot to move 100 steps toward the target. If the robot 
can acquire the most efficient movement of 12 legs, it can move 0.4 for each step. Therefore 
the maximum gain toward the target is 40. 
When we try to acquire the legs’ movement for the moving target, the robot first learns the 
legs’ movement for the fixed target over 50 generation. After that we put the target at 

( 2100 , 2100− ) in the x-y plane, and move it to ( 2100 , 2100 ) by 1 [deg] in each step 
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on the circle whose center is (0,0) and the radius is 200. After 90 steps, the target reaches the 

point ( 2100 , 2100 ) and stay there until the end of 100 steps in each trial. 

4.2 Simulation Model for Multi-Legged Robot 

As Ito & Matsuno (2002) did, we also employed Minimal Simulation Model that was 
proposed by Svinin et al. (2001). This model is very simple so that the calculation cost 
becomes very low. 
Fig. 6 shows a multi-legged robot. Each leg has two joints and has four motions. (Move 
forward and lift down, Move back and lift down, Move forward and lift up, Move back and 
lift up). The position of the robot can be calculated as follows: 

 )( 2112
rrr

drv nnuf −= , (15)  

 )( 2211
rrr

res nnvf += , (16)  

 if r
res

r
drv ff ≤  then =rF 0,  (17)  

 else if r
res

r
drv ff >  then =rF r

res
r

drv ff − ,  (18)  

 

d(t) 

Lz

 

 
y

Target 

r (s, a) = 100 (d (t-1) – d (t)) 

x
0

Head 

Initial position

(200, 0) 

Direction of target 

 
Figure 5. Initial position and the target (Ito & Matsuno, 2002) 

 

11  9    7    5  3   1 

 

12  10   8    6  4   2 

Head 

 
Figure 6. Multi-legged robot (Ito & Matsuno, 2002) 
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 else r
res

r
drv ff −<  then =rF r

res
r

drv ff + ,  (19)  

 rl FFF += ,  (20)  

 lr FFM −= ,   (21)  

 Fcu u=∆ ,  (22)  

 Mcθθ =∆ ,  (23)  

 )(cos)()1( tutxtx θ∆+=+ ,  (24)  

 )(sin)()1( tutyty θ∆+=+ ,  (25)  

 θθθ ∆+=+ )()1( tt ,  (26)  

where fdrvr and fresr indicate driving force and resistance force, and nijr is the number of legs 
on the right side changing their configuration from the state i at the moment t to the state j at 

the moment t + 1. Similarly, we define l
ijn  for the left side. Let F and M be the force and the 

moment of the robot that act to the environment, respectively. And θ,, yx  mean the position 

and orientation of the robot. Details are written in Svirin et al. (2001).  

5. Simulation 

5.1 Parameter Settings 

We specified the parameter settings in the Q-learning, the genetic algorithm, and the multi-

legged robot simulation model as follows: 

[Q-learning] 

The number of trials for each Q-table: 3 000 trials, 

The number of steps in each trial: 100 steps, 

Learning rate in (1): 7.0=α , 

Discounting rate in (1): 7.0=γ , 

Temperature of Bolzmann distribution: 1)002.0(150 +×−×= trialeT . 

[Genetic Algorithm] 

The number of individuals: 50, 

The number of generations: 200, 

Crossover probability: 5.0=cP , 

Similarity for the crossover: 4sim =k , 

Mutation probability: 2.0=mP , 

Weight value in (2): 200=fk , 

Ratio of reward to penalty in (5), (6): 01.0=p , 

Weight values in (7): 6.01 =w , 0=iw  )1,...,2( −= sNi , 4.0=
sNw . 

[Multi-Legged Robot Simulator] 

0.2=u , 0.1=v , 05.0=θc , 05.0=uc . 
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5.2 Effect of Neighboring Crossover 

We applied the conventional method (Ito & Matsuno, 2002) and the proposed method with 

the neighboring crossover in Subsection 3.3 100 times. Fig. 7 shows the average “Gain” over 

the generation. We defined “Gain” as the gaining distance of the robot toward the target. 

Thus, the maximum gain was 40 in this problem. From Fig. 7, we can see that the proposed 

crossover clearly enhanced the performance of QDSEGA.  
Table 2 shows that the average number of generations in which the target gain was attained 
over 100 experiments. We specified the target gain as 38 in these experiments. We count a 
computational experiment as successful one when the robot gains over 38. We also show the 
standard deviation of the generations and the number of successful experiments. 
“Successful experiments” mean that the number of experiments that can attain the target 
gain. “Ito 2002” shows the conventional method in (Ito & Matsuno, 2002), and “Neighboring 
Crossover” is the method with the proposed neighboring crossover in Subsection 3.3. From 
Table 2, we can see that the number of generations was drastically reduced by introducing 
the neighboring crossover into QDSEGA. As shown in “# of successful experiments,” the 
conventional method could not attain the maximum gain in all the 100 experiments while 
“Neighboring Crossover” attained the maximum gain in all the experiments. Through this 
result we can see the strong effect of the proposed neighboring crossover in QDSEGA.  
 

0

10

20

30

40

0 50 100 150 200

Generations

G
ai

n

  Proposed

  Ito (2002)

 
Figure 7. Average gain over the generation 

 

 Ito (2002) Neighboring Crossover 

Average Generation 108.5 56.2 

Standard Deviation 37.7 19.3 

# of successful experiments 85/100 100/100 

Table 2. Average generation of attaining the maximum gain over 100 experiments 
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Conventional Without adjustment 

Target position Left Ahead Right 

Ratio (%) 21.7 50.7 27.5 
 

Conventional With adjustment 

Target position Left Ahead Right 

Ratio (%) 17.8 63.4 17.8 

Table 3. Effect on the conventional method for moving target 

Proposed Without adjustment 

Target position Left Ahead Right 

Ratio (%) 21.0 50.6 28.2 
 

Proposed With adjustment 

Target position Left Ahead Right 

Ratio (%) 21.9 63.3 14.8 

Table 4. Effect on the conventional method for moving target 

5.3 Effect of Modified Reward for Moving Target 

Tables 3 and 4 show the results on the MRC problem with the moving target. We applied 
our modified reward to QDSEGA (Ito & Matsuno, 2002) and QDSEGA with the proposed 
crossover. In these tables, “Target position” indicates that the ratio of target positions from 
the robot. That is, when the target locates ahead of the robot within -15 [deg] to 15 [deg], the 
number of “Ahead” is incremented. From this table, we can see that the ratio of “Ahead” 
was increased by the introduction of the adjustment of rewards in Q-learning in the both 
tables. Through the proposed modification of the reward we could improve the 
performance of the multi-legged robot to follow the moving target. 

6. Conclusion 

In this chapter, we proposed the neighboring crossover that improves the performance of 
QDSEGA for the multi-legged robot control problems. By introducing the neighboring 
crossover, we could reduce the number of generations to attain the target gain in the 
problem. We also show the fine effect of the modified reward for the problems with the 
moving target. When the target is moving in the problem, the robot needs to learn how to 
adjust its position toward the target. That is, it should learn how to adjust its direction 
toward the target, and how to convey its body toward the target. By adjusting the reward, 
we could improve the control of the multi-legged robot. 
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interaction. How to learn such behaviors is a central issue of Distributed Artificial Intelligence (DAI), which has

recently attracted much attention. This book addresses the issue in the context of a multi-robot system, in

which multiple robots are evolved using EC to solve a cooperative task. Since directly using EC to generate a

program of complex behaviors is often very difficult, a number of extensions to basic EC are proposed in this

book so as to solve these control problems of the robot.
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