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Abstract. We present a quite simple pattern that, by a properly defined conditioning, allows
to describe a wide range of new stochastic dependences (virtually, it is the type of the
multivariate normal kind of the dependencies extended to numerous other multivariate
cases).

We then construct a variety of stochastic models in form of multivariate probability
distributions. The key element of the theory is the obtained a quite easy method for
constructing various classes of conditional pdfs g (y | x1, ... ,x« ) of random variable’s,
here denoted by Y, given realizations of some other (explanatory) random variables X, ...,
Xk. The latter variables are either independent or posses some known joint probability
distribution. The striking easiness in their construction and a significant universality for a
variety of anticipated applications, suggest a possibility of employing them in a variety of
areas that sometimes seem to be remote from each other.

Some of the main applications of the considered constructions pattern are practical
problems associated with the statistical regression. Here, the paradigm, relies on replacing
(or “extending’), whenever possible a regression model, typically used in the form of the
conditional expectation E[ Y | xi, ... ,x k ] by the corresponding (one, but not necessarily
unique) conditional pdf g (y | X1, ... Xk ). In this case, the original regression model is
simply the expectation of the latter conditional pdf.

Nevertheless, in this work we rather concentrate on modeling of multi component systems
reliability as well as similar biomedical problems. One of the main reasons for this
preference is the fact that the reliability examples bring better clarity for demonstration of
the common “stochastic model - real world " relation.
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As for the reliability application, we model (by means of the introduced general stochastic
dependence) a parallel two component system with respect to its stochastically dependent
components life times.

1. On A General Continuous Stochastic Dependences Pattern; Introductory
Part

1.1 The pattern for stochastic dependences is a basic ingredient of stochastic models that we
construct and explore. The motivation for the constructions is both a recognition and
anticipation of a strong potential for applications of the obtained models in a variety of
everyday’ phenomena that are “by nature” random. The pattern, determines a general
method that is fundamental for all the constructions that are or can be performed in the
presented framework. Roughly speaking, this method relies on what follows. Given (any)
two random quantities X3, X2 representing, say, two objects ui, u respectively (whose
“physical” meaning is to a large extend “arbitrary”) such that the magnitude of a given
realization (or outcome) x; of the random variable X;,  “stochastically influences”
magnitude of a possible realization x, of the random variable X,. The way the value x; of
the quantity X; “acts” on a possible outcome X; = x2 of the other quantity, is described
‘indirectly” in terms of changes in the Xz’s probability distribution, rather than in terms of
direct changes in X itself.

Our Objective is to present an analytic description of a “measure” that reflects a particular
situation in modeled reality. Among several possibilities we basically concentrate on two.
The first possibility is to investigate the distribution’s changes through changes in its
original hazard rate, see [9]. This approach strongly applies to determining dependent life-
times distributions in reliability (see [2] and also [4, 9, 10, 12]) or in some biomedical
problems [3]. Note, however, that the mechanism of changes in the hazard (failure) rate,
presented here, is essentially different than the one that was described for the first time in
1961 by Freund in [9].

The second possibility we consider requires a somewhat more general procedure. In this
case we tend to find a description of changes in the probability distribution or the
corresponding density through corresponding (hypothetical) changes of the density’s
parameters, see [5 - 8]. Thus, in this case, the pattern relies on (statistical) ‘measuring’
change of the (original) pdf 's parameter value(s) 02. The changed value of that parameter
is assumed to be functionally dependent on a magnitude of the first random realization of
quantity (X1 = x1).

1.2 In other words, we develop a powerful while still simple, method for determining
stochastic dependences of various kinds of random variables as well as of random vectors.
Application of this method to various practical problems of the ‘real life’ produces a
remarkably wide range of flexible stochastic models.

Roughly speaking, a huge variety of models and their more specific versions is based on

a simple observation that the stochastic dependence of a random quantity, say Y (whose
cdf, in an absence of considered in this work stresses is denoted by F(y; 6 ) ) on a set of other
(explanatory) random variables { Xi, ... ,Xx } can nicely be described in a proper
mathematical model.
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For a more compact definition of the stochastic dependence suppose that an elementary
random event (Xj, ... ,Xk) = (x1, ... , Xk ) has happened.

Mathematically, we define the dependence as a result of rather new, but quite “obvious”,
kind of the transformations:

(x1, ..., xx) > F(y;0), ()]

that we propose to call “weak”, or “stochastic” in a contrast to the ordinary “strong” or
“algebraic” transformation (Xi, ... , Xx) 2> Y.

Among several ways the weak transformation can be determined, we have chosen possibly
the simplest by claiming that the impact of the random quantities ( say, “stresses” ) X, ...
Xk on the cdf of the quantity of interest Y, exhibits itself as an impact on the scalar or
vector parameter O of the cdf. F(y; 0 ).

Thus the defined above weak transformation can be shorten to the relation:

0> 0(xy, ... ,XK), (2)

where the symbol ‘0" alone, represents the cdf’s parameter original numerical value i.e., the
value in an absence of the stresses Xy, ... , X .

The new (random) value 6 (X, ... ,Xx ) # 6, of the parameter of the Y’s cdf may, in most
general case, be considered as just any continuous function (!) of its k arguments.
However, for the sake of tractability of further statistical verification of the so constructed
models, it may become necessary to limit the class of the continuous functions to some
parametric classes . Thus, the statistical parametric procedures will be concerned now with
a given functions’ class (such as the exponential, say 6(x) = {Aexp[ bx ] } or power,
polynomials etc ... ) parameters, instead of the original numerical values of the previous
parameter 0 itself. In general, the number of such a function’s parameters ( for example,
the parameters A, b in the above exponential model for the transformed value of 6, where it
also may assumed, that © = A ') should not be much more than double number of the
original parameters 6.

Notice, that the so obtained new cdf F(y; 0(x1, ... ,xk ) ), virtually is the defined conditional
distribution of Y given an elementary event (Xi, ... ,Xx) = (X1, ... ,xx ) and, actually the so
defined stochastic dependence of Y from the (Xj, ... ,Xk ) embraces the core idea of an
emerging new theory (compare this concept with the very similar structure of the classical
multivariate normal pdf ).

Obviously, the ordinary product of the conditional pdf, say :

f(y | x1, e %) = £(y; 0(x1, - X)) 3)

and the joint pdf g (x4, ... ,xk ) of the “explanatory” variables Xy, ... ,Xx provides the (k+1) -
variate joint pdf h(y, x1, ... ,xx ). In that way, most of the multivariate distributions can be
constructed within the theory presented here. Notice also the important fact that there is no
need for any assumptions concerning classes of probability distributions of all underlying
random variables such as Y, Xj, ... Xk . As a matter of fact, any of the variables, may belong
to any class of probability distributions (!). Moreover, the procedures delineated here are
expected to extend the classical regression methods. Namely, one can extend the regression
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models, typically met in form of the conditional expectations E [Y | x, ... ,xk ] to the ones
defined as the conditional probability distributions F(y | xi, ... ,xx ), whose densities (if
exist) are given by (3). Notice an obvious fact, that their expectations are the same as in
classical models for the regression.

Considering the various stochastic models, obtained by the common paradigm, given by the
scheme expressed in (1), (2) and (3) one finds that the generality of the described modeling
method may lead to a number of possible applications. The applications can likely spread
out over many “physically” different areas of the real world. We hope that the considered
here method will turn out to be fruitful in solving variety of practical problems.
Nevertheless, regardless of that remoteness of application areas the mathematical
(probabilistic) methods and the models’ structure is very similar, sometimes just ‘identical’
in some of “totally different” fields.

In our opinion, the most “natural” and relatively easy approach to explain the general idea
is the following two components system reliability” modeling case.

We have decided that in the next section this (first) topic in reliability will be a little more
elaborated than some other, mathematically similar, that will follow after.

2. The Reliability of Two Component Parallel System

Now, we start to investigate each of the system components’ failure mechanism as being
subjected to the following two, associated each to other, patterns of the components
interactions. The first scheme we call:

“Micro-shocks = Micro-damages” phenomena.

This relationship is considered in a junction with the second that may be understood as a
method of a “translation” some ‘physical’ phenomena to a proper mathematical model as
(the second): “Micro-damages = Micro-hazard rate (probability) changes” scheme. We
apply a continuous approximation approach to this phenomena. In that setting we also
describe cumulation (in the chosen model) of the stochastic micro-effects (or equivalently:
the “probability micro-changes’) by means of the calculus Riemann integral formalism.

Generally speaking, we encounter the following two situations.

The (random) life-times of two physical units uy, us are estimated in two distinct conditions
by use of the common statistical methods.

At first, both the units uj, uz are tested, in separation of each other in, say “laboratory” “off-
system’ conditions. It is assumed that, as a result one obtains good enough estimations of
the (“baseline”) probability distributions Fi(x1), F2 (x2 ) of the life-times Ty, T> .

Because of the physical separation at this stage of the research (that eventually may be
considered as first stage of “mental experiment”) the resulting life-times T1, T2, of the units
are stochastically independent.

At the second stage of the procedure the units are considered as components installed (in
parallel) into the system. Now, as we assume, “side-effects” of various physical
phenomena, associated with operating of any of the components, contribute to the failure
mechanism of the other. Therefore, unlike in the previous off-system conditions, additional
physical stresses are put on each of the two system components uy, ua.
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As a result of the component’s “harmful” activities, some changes in the other component’s
physical structure, such as micro-damages, occur. These micro-damages accelerate (or, in
some cases delay) the processes leading to the component failures.

The objective is to find as “good” as possible stochastic model for such a system’s
reliability.

(For a similar construction’s pattern, see [9]).

For this sake, one should admit that the physical phenomena associated with processes of
the components interaction may turn out to be too complicated to be followed and analyzed
adequately in traditional deterministic ways. This is the reason we rely on stochastic
description by constructing a joint probability distribution of the “in-system” component
life-times Xy, Xz .

The key idea to start with the construction is: Express the stochastic dependences in terms
of some extra (due to the new ‘in-system’ conditions) increments in the ‘original’ (off-
system) component failure rates, say A1(x1), A2 (x2).

Recall, these failure (hazard) rates are associated with the ‘original” life-time cdfs Fi(x1), F2
(x2) of T1, T2 (so the changes in one equivalently parallel changes in other).

On the physical part of the problem, the mutual impact of any component on the other can
be explained in the following manner. During the components’ in-system performance
either of the two creates such a situation that the other component is “constantly
bombarded” by a string of harmful (or beneficial) “micro-shocks”. Each such a “micro-
shock” causes a corresponding “micro-damage” in the affected unit’s physical constitution.
Interpreting that physical processes ‘language’ into the ‘language’ of the corresponding
probabilistic facts, one can say that the micro-damages of the components are equivalent to
corresponding small (micro) changes in the original failure (hazard) rates (probability
distribution) of their life-times.

On the other hand, each such a micro-damage is very small so that there is no practical
possibility as to detect immediately any significant effect. However, after a time period long
enough, the micro-damages cumulate their effects so that after that time the difference in
the corresponding probability distributions may become quite significant.

To express the “smallness” of the micro-effects and then their significant accumulation, in
the language related to the constructed analytical model we utilize (as it is frequently
applied in modeling such phenomena like many those considered in physics) the familiar
calculus notions of an ‘infinitesimal quantity’ and that of the Riemann integral. Here, the
integral will be applied as a “formal tool” to “sum up”(in the approximating analytical
model ) ‘all’ of the “infinitely many infinitesimal damages” in terms of the related micro-
changes in the given value of the component’s baseline failure rate (or in a distribution’s
parameter(s) ). As a result of that integration over some finite time interval (of the
component functioning) of length t one obtains a finite, practically recognizable,
probabilistic quantity, say o (t; ).

Generally speaking, we apply a continuous description as a “smoothing” approximation to
that kind of physical reality.

The goal is to construct a proper bi-variate probability distribution of the system
component life-times X3, X2 , which is a common type of the stochastic models in the system
reliability investigations.

For the classical examples, see [9, 12]; also see [4 - 8].
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3. The Reliability Problem’s Analytical Solution

In accordance with the general concept described in section 1 let us consider the previous
two component’ lifetimes X, Xp, as a “tandem” such that each of the two random variables
is “explanatory variable” for the other.

In this section we will find the joint probability distribution of the random vector (Xi, X2) in
terms of its joint survival function S(xi, x2) = Pr(X1 > x1, X2 > x2).

Recall, that the joint survival function s*(x1, x2) of the independent off-system component
life-times Ty, T2 is given by the following ‘product form”:

X1 2
s*(x1, x2) =exp[- | m(t)dtr - [ Aa(t2)dt2], (4)
0 0

where A1(t1), A2 (t2) are the components’ off-system (baseline) failure rates.

When the components u;, uz work in the system then, in accordance with the adopted (in
the analytical model) assumption, in “every” infinitesimal small time interval [Ty, Tx + d k)
an occurrence of an infinitesimal micro-damage of the component, say ux, k=1,2; ( that
is caused by ‘side effects” accompanying an activity of the component um,, wherem =1, 2;
m #k ) results in an infinitesimal increment ok m (tx ) dtk of theux’s failure rate.
For every ‘past’ time instant Ty, that increment is given by a predetermined quantity o x
m (T x ) that, in a stochastic way reflects “an amount” of the physical influence of a
component u , on the component u x . That quantity is chosen (and then must be
statistically estimated and verified for fit to data available) to be a continuous function of
all the past epochs Tk the micro-damages occurred.

All the stochastic effects ax m (tx )d Tk (of the physical micro-damage’s ) “sum up” over
the time. Each of their “partial accumulation” (created from the time zero, up to the
“current” epoch, say ty) is expressed as the following Riemann integral:

(pk(l'k)=(J.Otkm(‘tk)d‘ck,(kim). %)
0

This integral is a non decreasing continuous function of the current time ty as is taken over
all time intervals [ 0, tx], with0 <ty < xx <o, for k=1, 2.

Both the variables xx (k=1,2) as present in the foregoing condition are the arguments of
the survival function (4).

At every “current” time instant ti, the ‘in-system’ failure rate ry (tx) of the

component ux (k=1,2) is defined to be a simple arithmetic sum of the ‘off-system’
baseline failure rate Ay (tx)and the “additional failure rate” given by the integral

tx
ox(ti)=lokm(k)dre, (k#m).
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This integral will be thought off as a measure of a “magnitude” of the ux ‘s micro-damage’s
accumulation up to the current time epoch ty.

Thus, at every time epoch t i one obtains the following formula for the “in-system’

failure rate ry (ti ) of the component u x:

fic
ri(te) =Axti) +Jokm(@T)drx, (6)
0
as k,m =1,2, and k#m.
We consider the failure rate formula (6) to be valid for each time argument t i satisfying 0
< tx <x, where x = minimum (x 1, X2 ) is considered to be the time of the first failure in
the system. From the above one obtains the following survival function:

Si(x) = Pr (min(X1, X2 ) > x), with x=min(xs, x2) ),

for the first order statistics X of the set of random variables: { X;, X»}. That is:

X

Sl(x)=exp[-]§'r1(t1)dt1 - [ra(ty)dta], @)
0

0

where ri(t;) and r2(t2) are given by (1) for k=1, 2.

These two functions represent the ‘in system’ failure rates of the components u; and u
respectively (at the time instances t;, t2), both prior to the time, say x, after which the first
failure in the system occurs. In other words, (7) represents the reliability function S;(x) of
the system as a whole if its reliability structure is series.

Continuing with the concept of parallel reliability structure, we consider the system’s
residual life -time’s failure rate, say ry (t) i.e., the failure rate of either surviving component
ck atany time t satisfying x <t <y . Recall that x, y are the time epochs of the first and the
second failure in the system respectively. For that period of time we have chosen the
following failure pattern.

Namely, we define the failure rate r (t) in the time interval [x, y] as the following arithmetic
sum:

rk(t)=kk(t)+ﬁqkm(r)d‘c (8)
0

X

In this context, the integral [y a.x m (7) dT is constant over time past x which ‘now’ is
fixed (k, m =1,2, and k#m).

The reason for its constancy is based on a simple observation that in the time interval [x , y]
only (one) component ¢ i is working in the system, and thus the process of the micro -
damages accumulation is terminated as the time x passed. This integral ( present as a part
in (9), (9*) that follow ) is an additional part of the overall failure rate r (t) of component cy,
and may be understood as a measure of “memory” of the micro-incentives the ci received
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before the other component ¢ n, , stopped its activity at time x. For more on that see
Remark 1.

The Final Formula for the joint survival function S(x1, x2) = Pr(X; > x1, X2 > x2 ) of the
in-system component life-times Xj, X is given as follows:
X Y

Pr(Xi>x1,X2 >x2 | X1 <Xo)=exp[-Jo {A1(t1) + o ar2(t1)dr1}dt;

X ty )
“hfraa) + Joaz1(t2)dra) dta] exp[-J{A2(t2) dta) )
X1

*1
e -x1) b azi(ei)dri];

) t
Pr(Xs>x1, X2 >x2 | X1 >Xz)=exp[-Jo {A2(t2) + o az1(r2)d72}dt,

X t

1 X.

2 1
btritt) + I o, 2(t1)dr1) dtg] exp[-T {A1(t1) dty} 99

2

X2
(x1-x2) o1, 2(x1)dT1 ]

If in both the formulas (9), (9*) one sets x> =0, then one obtains the marginal probability
distribution of X; to be the same as the original probability distribution Fi(x;) of the off-
system life-time Ti , related to the given in advance original failure rate A 1 (t; ). The similar
result one obtains when imposing in (9), (9*) the condition x; = 0.

The latter condition yields the marginal distribution of the X to be equal Fa(x2).

As the conclusion one derives the following surprising property , shared by all the models
that obey the pattern expressed by (9), (9%).

Property 1. For any joint probability distribution S(x1, x2) that satisfies the pattern, defined
by (9), (9%), the given in advance original probability distributions Fi(x1), Fa(x2) of the off-
system life-times Ty, T> are preserved ! as the marginal distributions of the joint probability
distribution of the in-system life-times Xi, Xy (of the considered units u; , uz ).

From the Property 1, the following conclusion can be derived.

Corollary. Suppose we are given a pair of probability distributions Gi(x1), Ga(x2) that
belong to any class of probability distribution functions, whose all members posses
continuous failure (hazard) rates, say A1 (t1), A2(t2).

If one puts any arbitrary single pair of such distributions into the scheme defined by (9),
(9%) then, as a result one can generate a wide class of the bivariate survival functions S(xi,
x2), whose marginals remain to be the Gi(x1), Gz(x2). The class of the so obtained bivariate
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probability distributions “given the (fixed) marginals Gi(x1), Ga2(x2)” is determined by the
family of all the continuous functions o i, (ti), (i,j =1, 2, with i #j) that produce all the
integrals in (9), (9%) finite.

So, in this particular sense one can consider the “bivariate Weibull, gamma (in particular,
exponential), the extreme value” and other joint probability distributions.

Realize, however that the marginal distributions Gi(x1), Gz(xz), in Corollary 1 also may
represent two distinct distribution classes. The last possibility may be utilized in modeling
reliability of two stochastically dependent units (such as system components) each one
subjected to a different failure mechanism. Apparently such cases often are realistic.

Example 1 As a particular class of bivariate survival functions S(x1, x2), satisfying the pattern
given by (9), (9*), we now choose a class of bivariate exponential distributions given by two
arbitrary constant failure rates A1, A2 for the marginals.

We also restrict the dependence structure. In this case it is assumed to be determined only
by two arbitrary constant functions a1,2 ( ), @ 2, 1 ( ). Recall, they represent the rates of
increment in the failure (hazard) rate of the unit u; caused by u; and that failure rate
increment of uy, caused by uy, respectively.

The resulting class of the joint exponential survival functions can be expressed by the more
specific following formulas:

X1 b
Pr(Xa>x1,X2>x2 | Xa £ Xo)=exp[-lo{A1+ [ ar,2dr1}dts (10)

X t X

“hire + hoazidra ) dta] exp[-Ja (A2dta)- (@21%1) (x2-x1)1;

Xy t
PrXa>x1, X2 >x2 | Xa >Xo)=exp[-b {A2+ b az1 d712}dt; (10%)
Xy Y X
Sl {a + oy 2drr }dtilexp[-T{A1dti}-(as2 x2) (x1-x2)].
)

(Recall, that any power transformation applied to the random variables Xi, X, yields the
corresponding bivariate Weibull model.) Upon simplifying assumption that

a1, 2() =a 21( ) =a = constant, both the formulas (10), (10*) reduce to the following
single one:
Pr(Xi>x1, X2 >x2) =exp[-A1x1 -A2x2 - ax1x2]. (11)

Thus, as a special case one obtains the first bivariate exponential Gumbel probability
distribution as (perhaps a first time) the system reliability model (see [11] ).
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X
Remark 1. Return, for a while to the integral fo ax m(7)dr, discussed in this section in
association with the formula (8). In the models presented in this paper this additional
(constant over the time interval [x , y], where x, y denote the times of the first and the
second failure in the system, respectively ) value of the ey’s failure rate can be interpreted
as a measure of “an amount of memory” of the two components past interaction. The
memory is assumed to be kept by any survived component u i after the failure of the other
componentu, (k,m=1,2).
Actually, the assumption of preserving the whole memory for all the residual time is rather
strong and for many “physical’” (real) entities not realistic.
As usually, the reason it was adopted in this work was the common need to preserve a
reasonable level of the simplicity.

Once it was done, next step in a process of the models construction would be adopting the
models to more realistic situations when the memory varies.

Consider the following two phenomena. In the first, one assumes that due to some kind of
“elasticity” of the units, no memory at all is kept by any component after the first failure.

To adopt our previous models to this case we set the extra failure rates given by the
integrals

X1 *2

fhoazi(ti)dri, hay2)dza, present in (9), (9%), respectively to zero.

In the second case, typical, for example in biomedical phenomena, the memory does not
vanish but instead decays with the time (as result of ‘rest’ or ‘recovery’). To describe that
case we can multiply the considered here integrals by continuous functions (called the
“forgetting factors”) decreasing with the time, from one to zero, and then integrate the so
obtained products over the remaining time. Thus, in expressions (9), (9*) we replace the
integrals:
X1 x2
(x2-x1)Jo az1(t1)dr1,and (xi-x2)}h a1, 2(t2)d7a,

by the following expressions:

*1 )
ylexp {-y(x2-x1)}Jo az1(t1)dt1, and ylexp{-y(xa-x)}l a1, 2(t2)d12,

where y is ( to be estimated ) a positive constant that may be called the “coefficient of
decay”.

In such a way one obtains other variants of the stochastic models defined earlier in this
work.

Remark 2 Observe that the dependence of the units uj, uy failure mechanisms and its
stochastic description in section 2 somehow resembles the multiple shock models pretty
frequently met in literature. See for example “a successive damage model” in [3] . As for the
difference, in all such models the shocks were considered to form a discrete kind of sets
(mostly finite). Also unlike with the failure mechanisms we consider, every single shock




NEW STOCHASTIC DEPENDENCES PARADIGM
AND ITS APPLICATION IN PROBABILISTIC MODELING 375

from that (discrete) set is a significant, in the sense it always could cause the unit’s failure
with a positive probability. Nevertheless, these differences may only be regarded as a usual
conceptual difference between discrete and continuous approach to basically similar
phenomena. The continuous model is only thought off as an approximating limiting
transition if a number of weak “shocks” becomes very large and is “densely” redistributed
over the time. Therefore, the (“smoothed”) model of the failure mechanism as described in
section 2, we propose to call “Continuous ‘micro shock - micro damage” model”, whenever
in reliability framework. In more general settings we propose to call it Continuous “micro
action” — “micro_effect” model that might, for example, be applied for a joint description
of such random quantities like ‘level of employment versus rate of inflation “ in a macro
economy investigations or in other similar circles of practical problems.

4. Other Applications of the Dependence Paradigm

The pattern of the stochastic dependence, applied to reliability in previous sections, can
naturally be extended to the (mathematically similar) modeling of a variety bio-medical
phenomena and related, in many cases random, quantities, (for that see [3]). A simple but
vivid illustration of that kind of the modeling problems provides the following example of
actuary investigations.

Example 2. One of the pretty recently considered actuary problems (see [11]) is to improve
stochastic predictions on residual life-times for potential clients of a given age, who
possibly widowed in a recent time.

Two situations are considered and compared. Either a candidate for a given insurance plan
was living all the past life as a single or spent a significant of part of life in a marriage. It is
assumed that “at present” she or he is widowed.

The problem is based on statistical data evidence, which indicates that the two life-styles
significantly result in statistically different (in the sense of expected value or of an
underlying probability distribution) residual life-times for the two groups of the persons.
The persons besides are supposed to be “identical” with respect to any other essential
criteria that may influence the life-times. The statistical findings suggest that some physical,
psychological or mental interactions between the spouses in marriage produce some
additional stresses, which positively or negatively affect the client’s residual life-time or,
more precisely, its probability distribution. Also they suggest that, even if the person
widows, a “memory” of past experiences remains in a person’s psychophysical structure,
affecting her/his residual life-time.

Phenomena, like the one above, seem to be typical in many other similar situations that can
be present in a variety aspects of the real world, especially those of human’ life conditions
and accompanying events.

The problem of estimating the (random) length of a human’s residual life time is vital for life
insurance companies, and requires a use of advanced statistical methods. It is well known
that the average residual life time or well being of a person at a specific age (besides of his /
her “genetics”) depends on a variety of factors, the essential ones being “stresses” (and
corresponding times of their duration) such as smoking tobacco, excessive drinking alcohol,
the length of time being exposed to especially harsh conditions such as prison, war or other.
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In the vast majority of cases where statistical methods are employed, it is customary that the
conclusions derived from, say, randomized experiments or other tests, are reduced (in the
case of smoking versus nonsmoking, for example) to dichotomous statements on the
existence of the influence of a given stress on the residual life time, or lack of such influence
(given a significance level). In these cases, there is often lack of information on any
quantified relationship between the life time’s stochastic characteristics (such as, for
example, expectations, quantiles, hazard rates or other) and an ‘amount’ of stress a person
endured. In the case of tobacco smoking this amount can be measured as, for example, a
product (or some other function) of the time period of duration and the intensity (amount of
nicotine per day) of the given stress.

5. The ‘Micro-Incentives > Micro-Effects’ Scheme and the Related Stochastic

Dependences’ Pattern. General Formulation.

A comparison of the, given above, reliability and bio-medical examples exhibits a common
idea, in stochastic modeling procedures. The range of possible applications turns out to be
remarkably wide, entering far beyond the context of the reliability investigations.

The essence of the considered, in this work general pattern , first of all relies on reviling a
relation (if exists) of, say, “parallelism” between some (‘continuous’) “physical
interactions” of two or more observed entities, on one side, and the corresponding
infinitesimal changes in the mathematical (probabilistic) model’s parameters on the other
side.

This, rather a new pattern of the (physical versus stochastic) dependence can be considered
as an extension of the reliability scheme’s (described in Example 1) that, as a whole, could
be illustrated, by the following ‘diagram’:

“(“micro-shocks’ - “‘micro-damages’) versus (‘micro-probability -changes’)”, (12)

where the ‘physical’ parallels the ‘stochastic’. In (12), the meaning the word “versus” is the
same as the meaning of the “parallels”. The choice between the two words was dictated by
the (partly “esthetic”) structure of the above diagram.

Realize that the above pattern for reliability problems can be extended to a significantly
more general domain of the phenomena. Consequently, the diagram (12) can be replaced by
the following, more general, diagram:

“(“micro-incentives’ - ‘micro-physical changes’) versus
(‘micro-probability -changes’)”. (13)

The pattern described by (12) is special case of that given by (13).

To explain the similarities between the reliability settings and other (if appropriate) types of
‘real world” phenomena we refer to Example 2, as well as to a huge number of particular
situation ranging from econometric problems (like, possibly, stock market predictions) to
the bio-medicals.
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Look, for example, at the relationship between a human’s smoking tobacco (or other stress),
during a given time period and a probability distribution of his/ her life time: Y.
Physically, this problem may be “imagined” as “constant attacks” on the human’s body by a
sequence of very small “pieces” of the harmful substance that result in a corresponding
sequence of small micro-changes (damages) in some parts of the human’s body. An effect of
any single piece of the substance’s (in this case, say the nicotine) activity is usually too small
to be observed or even admitted. However, these effects cumulate and after some,
sufficiently long period of time, the total sum of them makes a significant contribution (a
“change”) to the biochemical processes that are “responsible” for an illness (such as hard
attack) or death by accelerating them.

As a corresponding stochastic effect the probability distribution of the life time Y may be
changed making the probabilities (or equivalently the hazard rates) of shorter life times
higher than the corresponding probabilities (the baseline hazard rate) for, the statistically
the same but differing by that “smoking factor”, persons.

Probably, in most of the cases, the “physics’ of the described above phenomena may be too
fugitive or complicated to be reasonably describable in terms of deterministic scientific
(including a “biomedical description’) language.

The introduced in this paper probabilistic approach is thought off as a shortcut, that
eventually may lead to a useful stochastic model.

For the stochastic model we have chosen a continuous one, despite discrete nature of the
physical reality. As this is a common procedure, applied, first of all, in science and
engineering, a continuous approximating description, of being considered ‘real-life’
phenomena, stand for analytically nice and sufficiently precise models (both, deterministic
and stochastic) if some (smoothing) conditions are satisfied.

In our case, the two such conditions are assumed to be satisfied: 1. Every string of micro-
incentives as well as that of the resulting “micro-physical changes’, only contains very small
pieces of, say “micro-actions”. 2. The time-distance between any such two consecutive
actions is also very small, so that a number of such actions in some reasonably long time
interval is “large”.

That smallness and a large number of the micro-changes that occur during any sufficiently
long time interval allows for averaging and smoothing the phenomena.

According to this possibility we treat, within the mathematical stochastic model (only) all
the micro-changes as ‘infinitesimals’, which are “continuously redistributed” along the
time.

That reasoning and the analytical efficiency of the mathematical calculus facilities, made us
to chose the continuous model(s) as the approximation(s) of the ‘real life’ phenomena, that
unfortunately are, by the nature, discrete.

In the following section we give an example of the one more and very important application
of the introduced in this work, kind of the stochastic dependences.

6. On the ‘Extended Regression’ Paradigm

Consider, once more, the conditional density g; (xj | X1, ... ,Xj1 ) that represents the main
object (as the general model) of the presented theory. Now, we admit the meaning of the
random variables Y and the Xy, ... Xk, to be ‘arbitrary’, with Xy, ... Xk considered as
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‘any” explanatory (random) variables for the Y, that is considered to be the actual variable
(or random vector) of interest. The random variables Xj, ... Xk may either be independent
or, if not, their joint probability distribution is, in general, assumed to be known.

We may restrict our investigation to each single unit (as characterized by the quantity “Y’),
separately, just for “practical’ needs, while resigning from developing a more general theory,
that would involve classes or “populations” of those units. In such a ‘practical” framework
instead of the model that contains the probability distribution of the explanatory random
variables Xj, ... Xk one must rely on their deterministic realizations Xy, ... ,xx , as they can
be known, in each single case, ‘post factum’, by direct observations followed by proper
measurements. The way out from this limitation could be, whenever possible, an
(approximating) assumption on stochastic independence of the r. variables Xj, ... , Xk .

The crucial fact, behind the above description, is that the so defined and relatively easily
achievable (!) stochastic dependences of a considered random variable Y on the random
variables Xj, ... Xk , may directly lead to a modification and enrichment of the classical

regression methodology.

Recall, that the dependence of the Y on the random variables Xj, ... , Xk is not a direct
‘functional” one. Instead of usually considered direct (explicit) influence of the realizations
X1, ... Xk on value of Y, here the given realizations “only” influence (explicitly) the
probability distribution of the Y.

The new (conditional) probability distribution of Y (after it “enters to interaction with
some physical impacts” characterized by the random quantities Xy, ... ,Xk ) is obtained by a
direct transformation of the original (baseline) distribution” parameters into their new
values, that are continuously dependent on the realizations xy, ... ,xi of the “impacts”.

This is obvious that the pattern for the class of all the obtained conditional pdfs g (y | xi, ...
,Xk ) may provide significantly more information on the random quantity Y than just when
one considers its conditional expectation only. Nevertheless the latter is included in the
“extended regression model”: g (y | xi, ... ,xx), simply as its expectation. Also realize that
in the considered paradigm the normality assumption for the g (y | x1, ... ,xx ) is quite not
necessary as it becomes natural that g(y | ... ) can be arbitrary probability density in the
variable y.

The progress, we believe has been made in comparison to the present state of the art, first of
all relies on allowing any cdf’s parameter (in particular, an expectation and variance in
the case of normal distribution ) to be arbitrary continuous function of the_explanatory
(random) variables. We find that there is no necessity to restrict these functions to linear or
to simple polynomials only. The use (as the models) of most of the common (parameter)-
functions (such as the power, exponential, logarithmic, some trigonometric or their
combinations), in general does not involve estimation of much more unknown parameters
than it is used with the simple polynomial or even linear function” application.

The kind of the “regression techniques”, here suggested, may too be compared with a more
familiar (to reliability oriented readers), procedure associated with the well known
accelerated test models for the life-time of some technical devices. In that case the
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explanatory variables X, ... , Xk , that here we consider in a more general setting, can be
interpreted as various kinds of, say, random loads or stresses that may eventually be
multiplied by (also random) times these loads are to be endured by the tested units.

This subject is, for example, very well elaborated in [13].

Other illustration is associated with the common actuary problem as to estimate residual
life-time of a given age client who smoked tobacco during a time period T with an intensity
of X milligrams of nicotine per day. Supposing the client’ residual life-time Y is
approximate by a normal pdf N(y, o) in an absence of smoking. If, however, the smoking
took place, then we may hypothetically assume that the average life-time p “somehow”
depends on the (random, in case of the whole population of the clients or a known
deterministic in each individual case) load Z that is strictly proportional to the product of
TX associated with smoking tobacco.

This stochastic relationship between the life-time and the ‘smoking amount’, may be
explicitly given by the following conditional (normal in y) pdf of the residual life-time Y:

8(y | x 1) = [o(x)V2m)] expl- (y - p (xt) )2/ 2[0 (xB]2], (14)

where p(xt) and o(xt) are arbitrary (reasonable) continuous functions of the product xt.
Having known joint pdf f(x, t) of the T and X (across the smokers population) we may find
the unconditioned pfd of the time Y just by integrating out the variables t, x from the
product g(y | x, t) f(x, t) that represents the trivariate joint pdf h(x, t, y) of the random vector
(Y, T, X).

As hypothetical parameter functions, implicitly present in the model (14), we may, for
example, consider the functions p (xt) = p+a (xt) + A (xt)r, (with possibly a =0, while A,
r being positive real numbers), and o (x t) = constant (in this particular case). For many
more examples on that see [5,6,8].
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