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1. Introduction     

Parametric system identification of dynamic systems is the process of building 
mathematical, time domain models of plants, based on excitation and response signals.  In 
contrast to its nonparametric counterpart, this model based procedure leads to fixed 
descriptions, by means of finitely parameterized transfer function representations.  This fact 
provides increased flexibility and makes model-based identification a powerful tool with 
growing significance, suitable for analysis, fault diagnosis and control applications (Mrad et 
al, 1996, Petsounis & Fassois, 2001).  
Parametric identification techniques rely mostly on Prediction-Error Methods (Ljung, 1999). 
These methods refer to the estimation of a certain model’s parameters, through the 
formulation of one-step ahead prediction errors sequence, between the actual response and 
the one computed from the model. The evaluation of prediction errors is taking place 
throughout the mapping of the sequence to a scalar-valued index function (loss function). 
Over a set of candidate sets with different parameters, the one which minimizes the loss 
function is chosen, with respect to the corresponding fitness to data. However, in most cases 
the loss function cannot be minimized analytically, due to the non-linear relationship 
between the parameter vector and the prediction-error sequence. The solution then has to be 
found by iterative, numerical techniques. Thus, PEM turns into a non-convex optimization 
problem, whose objective function presents many local minima.  
The above problem has been mostly treated so far by deterministic optimization methods, 
such as Gauss-Newton or Levenberg-Marquardt algorithms. The main concept of these 
techniques is a gradient-based, local search procedure, which requires smooth search space, 
good initial ‘‘guess’’, as well as well-defined derivatives. However, in many practical 
identification problems, these requirements often cannot be fulfilled. As a result, PEM 
stagnate to local minima and lead to poorly identified systems.  
To overcome this difficulty, an alternative approach, based in the implementation of 
stochastic optimization algorithms, has been developed in the past decade. Several 
techniques have been formulated for parameter estimation and model order selection, using 
mostly Genetic Algorithms. The basic concept of these algorithms is the simulation of a 
natural evolution for the task of global optimization, and they have received considerable 
interest since the work done (Kristinsson & Dumont, 1992), who applied them to the 
identification of both continuous and discrete time systems. Similar studies are reported in 
literature (Tan & Li, 2002, Gray et al. , 1998, Billings & Mao, 1998, Rodriguez et al., 1997). 
Fleming & Purshouse, 2002 have presented an extended survey on these techniques, while 
Schoenauer & Sebag, 2002 address the use of domain knowledge and the choice of fitting 
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functions in Evolutionary System Identification. Yet, most of these studies are limited in 
scope, as they, almost exclusively, use Genetic Algorithms or Genetic Programming for the 
various identification tasks, they mostly refer to non-linear model structures, while test 
cases of dynamic systems are scarcely used. Furthermore, the fully stochastic nature of these 
algorithms frequently turns out to be computationally expensive, since they cannot assure 
convergence in a standard number of iterations, thus leading to extra uncertainty in the 
quality of the estimation results.  
This study aims at interconnecting the advantages of deterministic and stochastic 
optimization methods in order to achieve globally superior performance in PEM. 
Specifically, a hybrid optimization algorithm is implemented in the PEM framework and a 
novel methodology is presented for the parameter estimation problem. The proposed 
method overcomes many difficulties of the above mentioned algorithms, like stability and 
computational complexity, while no initial ‘‘guess’’ for the parameter vector is required. For 
the practical evaluation of the new method’s performance, a testing apparatus has been 
used, which consists of a flexible robotic arm, driven by a servomotor, and a corresponding 
data set has been acquired for the estimation of a Single Input-Single Output (SISO) 
ARMAX model. The rest of the paper is organized as follows: In Sec. 2 parametric system 
identification fundamentals are introduced, the ARMAX model is presented and PEM is 
been formatted in it’s general form. In Sec. 3 optimization algorithms are discussed, and the 
hybrid algorithm is presented and compared. Section 4 describes the proposed method for 
the estimation of ARMAX models, while in Sec. 5 the implementation of the method to 
parametric identification of a flexible robotic arm is taking place. Finally, in Sec. 6 the results 
are discussed and concluding remarks are given. 

2. Parametric identification fundamentals  

Consider a linear, time-invariant and casual dynamic system, with a single input and a 
single output, described by the following equation in the z-domain (Oppenheim & Schafer, 
1989), 

   (1) 

where X(z) and Y(z) denote the z-transforms of input and output respectively, and H(z) is a 
rational transfer function, with respect to the variable z, which describes the input-output 
dynamics. It should be noted that the selection of representing the true system in the z-
domain is justified from the fact that data are always acquired in discrete time units. Due to 
one-to-one relationship between the z-transform and it’s Laplace counterpart, it is easy to 
obtain a corresponding description in continuous time.  
The identification problem pertains to the estimation of a finitely parameterized transfer 
function model of a given structure, similar to that of H(z), by means of the available data 
set and taking under consideration the presence of noisy measurements. The estimated 
model must have similar properties to that of the true one, it should be able to simulate the 
dynamic system and, additionally, to predict future values of the output. Among a large 
number of ready-made models (known also as black-box models), ARMAX is widespread 
and has performed well in many engineering applications (Petsounis & Fassois, 2001).  
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2.1 The ARMAX model structure  
A SISO ARMAX(na,nb,nc,nk) model has the following mathematical representation  

   (2) 

where ut and yt, represent the sampled excitation and noise corrupted response signals, for 
time t = 1, ...,N respectively and et  is a white noise sequence with  and 

, where and  are Kronecker’s delta and white noise variance 

respectively. N is the number of available data, q denotes the backshift operator, so that yt·q
k 

=yt-k, and A(q), B(q), C(q) are polynomials with respect to q, having the following form  

   (3) 

   (4) 

   (5) 

The term q-nk
  
in (4) is optional and represents the delay from input to output.  

In literature, the full notation for this specific model is ARMAX(na, nb, nc, nk), and it is 
totally described by the order of the polynomials mentioned above, the numerical values of 
their coefficients, the delay nk, as well as the white noise variance  
In Eq. (2) it is obvious that ARMAX consists of two transfer functions, one between input 
and output  

   (6) 

which models the dynamics of the system, and one between noise and output  

   (7) 

which models the presence of noise in the output. For a successful representation of a 
dynamic system, by means of ARMAX models, the stability of the above two transfer 
functions is required. This can be achieved by letting the roots of A(q) polynomial lie 
outside the unit circle with zero origin, in the complex plane (Ljung, 1999, Oppenheim & 
Schafer, 1989). In fact, there is an additional condition that must hold and that is the  
invertibility of the noise transfer function H(q) (Ljung, 1999, Box et al.,1994, Soderstrom & 
Stoica, 1989). For this reason, C(q) polynomial must satisfy the same requirement as A(q).  

2.2 Formulation of PEM  
For a given data set over the time t, it is possible to compute the output yt of an ARMAX 
model, at time t +1. This fact yields, for every time instant, to the formulation of one step 
ahead prediction-errors sequence, between the actual system’s response and the one 
computed by the model  

   (8) 
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where p=[ai bi ci] is the parameter vector to be estimated, for given orders na, nb, nc and 
delay nk, yt+1 the measured output, the model’s output and  the prediction 
error (also called model residual). The argument (1/p) denotes conditional probability (Box 
et al., 1994) and the hat indicates estimator/estimate.  
The evaluation of residuals is implemented through a scalar-valued function (see 
Introduction), which in general has the following form  

   (9) 

Obviously, the parameter p which minimizes VN is selected as the most suitable 

   (10) 

Unfortunately, VN cannot be minimized analytically due to the non-linear relationship 
between the model residuals êt (1/p)  and the parameter vector p. This can be noted, by 
writing (2) in a slightly different form  

   (11) 

The solution then has to be found by iterative, numerical techniques and this is the reason 
for the implementation of optimization algorithms within the PEM framework.  

3. Optimization algorithms  

In this section, the hybrid optimization algorithm is presented. The new method is a 
combination of a stochastic and a deterministic algorithm. The stochastic component 
belongs to the Evolutionary Algorithms (EA’s) and the deterministic one to the quasi-
Newton methods for optimization.  

3.1 Evolution strategies  
In general, EA’s are methods that simulate natural evolution for the task of global 
optimization (Baeck, 1996). They originate in the theory of biological evolution described by 
Charles Darwin. In the last forty years, research has developed EA’s so that nowadays they 
can be clearly formulated with very specific terms. Under the generic term Evolutionary 
Algorithms lay three categories of optimization methods. These methods are Evolution 
Strategies (ES), Evolutionary Programming (EP) and Genetic Algorithms (GA) and share 
many common features but also approximate natural evolution from different points of 
view.  
The main features of ES are the use of floating-point representation for the population and 
the involvement of both recombination and mutation operators in the search procedure. 
Additionally, a very important aspect is the deterministic nature of the selection operator. 
The more advanced and powerful variations are the multi-membered versions, the so-called 
(┤+┣)-ES and (┤,┣)-ES which present self-adaptation of the strategy parameters.  
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3.2 The quasi-Newton BFGS optimization method  
Among the numerous deterministic optimization techniques, quasi-Newton methods are 
combining accuracy and reliability in a high level (Nocedal & Wright, 1999). They are 
derived from the Newton’s method, which uses a quadratic approximation model of the 
objective function, but they require significantly less computations of the objective function 
during each iteration step, since they use special formulas in order to compute the Hessian 
matrix. The decrease of the convergence rate is negligible. The most popular quasi-Newton 
method is the BFGS method. This name is based on its discoverers Broyden, Fletcher, 
Goldfarb and Shanno (Fletcher, 1987).  

3.3 Description of the hybrid algorithm  
The optimization procedure presented in this paper focuses in interconnecting the 
advantages presented by EA’s and mathematical programming techniques, and aims at 
combining high convergence rate with increased reliability in the search for the global 
optimum in real parameter optimization problems. The proposed algorithm is based on the 
distribution of the local and the global search for the optimum. The method consists of a 
super-positioned stochastic global search and an independent deterministic procedure, 
which is activated under conditions in specific members of the involved population. Thus, 
while every member of the population contributes in the global search, the local search is 
realized from single individuals. Similar algorithmic structures have been presented in 
several fully stochastic techniques that simulate biological procedures of insect societies. 
Such societies are distributed systems that, in spite of the simplicity of their individuals, 
present a highly structured social organization. As a result, such systems can accomplish 
complex tasks that in most cases far exceed the individual’s capabilities. The corresponding 
algorithms use a population of individuals, which search for the optimum with simple 
means. The synthesis, though, of the distributed information enables the overall procedure 
to solve difficult optimization problems. Such algorithms were initially designed to solve 
combinatorial problems (Dorigo et al., 2000), but were soon extended to optimization 
problems with continuous parameters (Monamarche et al., 2000, Rjesh et al., 2001). A similar 
optimization technique presenting a hybrid structure has been already discussed in 
(Kanarachos , 2002), and it’s based on a mechanism that realizes cooperation between the 
(1,1)-ES and the Steepest Descent method.  
The proposed methodology is based on a mechanism that aims at the cooperation between 
the (┤+┣)-ES  and the BFGS method. The conventional ES (Baeck, 1996, Schwefel, 1995), is 
based on three operators that take on the recombination, mutation and selection tasks. In 
order to maintain an adequate stochastic character of the new algorithm, the recombination 
and selection operators are retained with out alterations. The improvement is based on the 
substitution of the stochastic mutation operator by the BFGS method. The new deterministic 
mutation operator acts only on the ┥ non-privileged individuals in order to prevent loss of 
information from the corresponding search space regions, while three other alternatives 
were tested. In these, the deterministic mutation operator is activated by:  

• every individual of the involved population,  

• a number of privileged individuals, and  

• a number of randomly selected individuals.  
The above alternatives led to three types of problematic behavior. Specifically, the first 
alternative increased the computational cost of the algorithm without the desirable effect. 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

280 

The second alternative led to premature convergence of the algorithm to local optima of the 
objective function, while the third generated unstable behavior that led to statistically low 
performance.  

3.4 Efficiency of the hybrid algorithm  
The efficiency of the hybrid algorithm is compared to that of the (15 +100)-ES, the (30, 0.001, 
5, 100)GA, as well as the (60, 10,  100)meta-EP method, for the Fletcher & Powell test 
function, with twenty parameters. Progress of all algorithms is measured by base ten 
logarithm of the final objective function value  

   (12) 

Figure 1 presents the topology of the Fletcher & Powell test function for n = 2. 

The maximum number of objective function evaluations is 2·10
5
. In order to obtain 

statistically significant data, a sufficiently large number of independent tests must be 
performed. Thus, the results of N = 100 runs for each algorithm were collected. The 
expectation is estimated by the average:  

   (13) 

 

 

 

Figure 1. The Fletcher & Powell test function 
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The results are presented in Table 1. 

Test Results  min1≤i≤100Pi max1≤i≤100Pi 

Hydrid -7.15 -8.98 3.12 

ES 3.94 2.07 5.20 

EP 4.13 3.14 5.60 

GA 4.07 3.23 5.05 

Table 1. Results on the Fletcher & Powell function for n = 20 

4. Description of the proposed method 

The proposed method for the parameter estimation of ARMAX(na,nb,nc,nk) models consists 
of two stages. In the first stage, Linear Least Squares are used to estimate an ARX(na,nb,nk) 
model of the form 

   (14) 

based upon the observation that the nonlinear relationship between the model residuals and 
the parameter vector would be overcome if C(q) polynomial was monic (see (11)). 
Considering the same loss function, as in (9), by expressing the ARX model in (14) as  

   (15) 

with 

   (16) 

being the regression vector and p*=[ai bi]  the parameter vector, the minimizing argument 
for the model in (14) can be found analytically, by setting the gradient of VN equal to zero, 
which yields   

   (17) 

The parameter vector p, as computed from (17), can be used as a good starting point for the 
values of A(q)  and B(q) coefficients. In other estimation methods, like the two Stage Least 
Squares or the Multi-Stage Least Squares (Petsounis & Fassois, 2001) the ARX model is 
estimated with sufficiently high orders. In the presented method this is not necessary, since 
the resulted from (17) values are constantly optimized within the hybrid algorithm. 
Additionally, this stage cannot be viewed as initial ‘‘guess’’, since the information that is 
used does not deal with the ARMAX model in question.  
It is rather an adaptation of the hybrid optimization algorithm to become problem specific.  
In the second stage the ARMAX(na, nb, nc, nk) model is estimated by means of the hybrid 
algorithm. The parameter vector now becomes  

   (18) 
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with ci denoting the additional parameters, due to the presence of C(q) polynomial. The 
values ci are randomly  chosen from the normal distribution. The hybrid algorithm is 
presented below, 

counter j :=0; 
initialize     (0) 
evaluate     (0) 
while        T{ (j)}≠ true do 

recombine:  ’(j)= (j)) 
evaluate:  (j) 
mutate:   (j)=m( (j)) 
evaluate:     (j) 
select:   (j+1)=s( (j)) 
j:=j+1 

end while 

where j is the iteration counter,  (j) the current population, T the termination criterion, r the 
recombination operator, m the mutation operator (provided by the BFGS) and s the selection 
operator (see Sec. 3). The evaluation of parameter vector at each iteration is realized via the 
calculation of objective function.  
For the successful realization of the hybrid algorithm, two issues must be further examined: 
the choice of the predictor, which modulates the residual sequence and the choice of the 
objective function, from which this sequence is evaluated at each iteration. An additional 
topic is the choice of the ‘‘best’’ model among a number of estimated ones. This topic is 
covered by statistical tests for order selection.  

4.1 Choice of predictor  
It is obvious that in every iteration of the hybrid algorithm the parameter vector (j) is 
evaluated, in order to examine its quality. Clearly, this vector formulates a corresponding 
ARMAX model with the ability to predict the output . 
For parametric models there is a large number of predictor algorithms, whose functionality 
depends mostly on the kind of the selected model, as well as the occasional scope of 
prediction. For the ARMAX case, a well-suited, one step-ahead predictor is stated in (Ljung, 
1999) and has the following form:  

   (19) 

In Eq. (19) the predictor can be viewed as a sum of filters, acting upon the data set and 
producing model’s output at time t+1. Both of these filters have the same denominator 
dynamics, determined by C(q), and they are required to be stable, in order to predict stable 
outputs. This is achieved by letting the roots of C(q) have magnitude greater than one, 
requirement which coincides with the invertibility property of H(q) transfer function (see 
Sec. 2). 

4.2 Choice of objective function  
The choice of an appropriate objective function performs vital role in any optimization 
problem. In most of the cases the selection is problem-oriented and, despite its importance, 
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this topic is very often undiscussed. However, in optimization theory stands as the starting 
point for any numerical algorithm, deterministic or stochastic, and is in fact the tool for 
transmitting any given information of the test case into the algorithm, in a way that allows 
functionality. For the ARMAX parameter estimation problem, the objective function that has 
been designed lies in the field of quadratic criterion functions, but takes a slightly different 
form, which enforces the adaptivity of the hybrid optimization algorithm to the measured 
data.  
The objective function (of ) is computed from the following pair of equations  

   (20) 

where 

   (21) 

Equation (21) can be considered as the ratio of the absolute error integral to the absolute 
response integral. When fit reaches the value 100, the predicted time-series is identical with 
the measured one. In this case, of results to zero, which is the global minimum point. 
Nevertheless, it must be noted that for a specific parameter vector, the global minimum 
value of the corresponding objective function is not always equal to zero, since the selected 
ARMAX structure may be unable to describe the dynamics of the true system.  
The proposed method, as already mentioned, guarantees the stability of the estimated 
ARMAX model, by penalizing the objective function when at least one root of  A(q) or C(q) 
polynomials lies within the unit circle of the complex plane. Thus, the resulted models 
satisfy the required conditions stated in Sec. 2.  

4.3 Model order selection 
The selection of a specific model among a number of estimated ones, is a matter of crucial 
importance. The model which shall be selected for the description of the true system’s 
dynamics, must have as small over-determination as possible. There is a large number of 
statistical tests that determine model order selection, but the most common are the Residual 
Sum of Squares (RSS) and the Bayesian Information Criterion (BIC).  
The RSS criterion is computed by a normalized version of (9), that is,  

   (22) 

where ||.|| denotes the Euclidian norm. The RSS criterion generally leads to over-
determination of model order, as it usually decreases for increasing orders. The BIC criterion 
overcomes this fact by penalizing models with relatively high model order  

   (23) 

Clearly, both of the methods indicate the ‘‘best’’ model, as the one minimizing (22) and (23) 
respectively.  
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5. Implementation of the method  

In this Section the proposed methodology is implemented to the identification of a testing 
apparatus described below, by means of SISO ARMAX models. The process of parametric 
modelling consists of three fundamental stages: In the first stage, the delay nk shall be 
determined, in the second stage ARMAX(na,nb,nc,nk) models will be estimated, using the 
method described in Sec. 4, while in the third, the corresponding (selected) ARMAX model 
will be further examined and validated.  

 

Figure 2. The testing apparatus 

5.1 The testing apparatus 
The testing apparatus is presented in Fig. 2. A motion control card, through a motor drive 
unit, which controls a brushless servomotor, guides a flexible robotic arm. A piezoelectric 
sensor is mounted on the arm’s free end and acquires its transversal acceleration, by means 
of a DAQ device. The transfer function, considered for estimation in this study, is that 
relating the velocity of the servomotor with the acceleration of the arm. The velocity signal 
selected to be a stationary, zero-mean white noise sequence. The sampling frequency was 
100 Hz and the number of recorded data was N = 5000, for both input and output signals. 

5.2 Post-treatment of data 
The sampled acceleration signal found to be strongly non-stationary, with no fixed variance 
and mean. Thus, stationarity transformations made before the ARMAX estimation phase. 
Firstly, the BOX-COX (Box et al., 1994) transformation was used with ┣BC = 1.1, for the 
stabilization of variance, and afterwards difference transformations with d= 2 for the 
stabilization of mean value were implemented. The resulted acceleration signal, as well as the 
velocity one, was zero-mean subtracted. The final input-output data set is presented in Fig. 3. 
For the estimation of acceleration’s spectral density, Thompson’s multi-paper method [23] has 
been implemented, with time-bandwidth product nT = 4, and number of Fast Fourier 
Transforms NFFT = 213. The estimated spectral density is presented in Fig. 4. Clearly, there are 
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three spectral peaks appearing in the graph, corresponding to natural frequencies of the system 
at about 2, 5 and 36 Hz, while an extra area of natural frequency can be considered at about 17 
Hz. An additional inference that can be extracted, is the high-pass trend of the system.  

 
Figure 3. The input-output data set 

 
Figure 4. Acceleration’s estimated spectrum 

For the subsequent tasks, and after excluding the first 500 points to avoid transient effects, 
the data set was divided into two subsets: the estimation set, used for the determination of 
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an appropriate model by means of the proposed method, and the validation one, for the 
analysis of the selected ARMAX model. 

 
Figure 5. Selection of system’s delay 

5.3 Determination of the delay 

 

Figure 6. Autocorrelation of residuals 

For the determination of delay, ARMAX(k, k, k, nk) models were estimated, with k = 6, 7, 8, 
9 and nk = 0,1,2,3. The resulted models were evaluated using the RSS and BIC criterions. 
Figure 5 presents the values of the two criterions, with respect to model order, for the 
various delays. The models with delay nk = 3 presented better performance and showed 
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smaller deviations between them. Thus the delay of the system was set to nk = 3. This is an 
expected value, due to the flexibility  of the robotic arm, which corresponds to delayed 
acceleration responses in it’s free end. 

5.4 Estimation of ARMAX(na, nb, nc, 3) models 

The selection of an appropriate ARMAX model, capable of describing input-output 
dynamics, and flexible enough to manage the presence of noise, realizes through a three-
phase procedure:  

• In the first phase, ARMAX(k, k, k, 3) models where estimated, for k = 6 : 14. The low 
bound for k is justified from the fact that the three peaks in the estimated spectrum (see 
Fig. 4), correspond to three pairs of complex, conjugate roots of A(q) characteristic 
polynomial. The upper bound was chosen in order to avoid over-determination. The 
resulted models qualified via BIC and RSS criteria and the selected model was 
ARMAX(7, 7, 7, 3). 

• The second phase dealt with the determination of C(q) polynomial. Thus, ARMAX(7, 7, 
k, 3) models were estimated, for k = 2 : 16. Again, BIC and RSS criteria qualified 
ARMAX(7, 7, 7, 3) as the best model, and also the one with the lowest variance of 
residuals’ sequence.  

• In the third stage ARMAX(7, k, 7, 3) models were estimated for the selection of B(q) 
polynomial. Using the same criteria, the ARMAX(7, 6, 7, 3) model was finally selected 
for the description of the system.  

 

Figure 7. Model’s frequency response 

The implementation of the proposed methodology in the above procedure presented 
satisfying performance, as the hybrid optimization algorithm presented quick convergence 
rate despite model order, the resulted models were stable and invertible and over-
determination was avoided.  
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5.5 Validation of ARMAX(7,6,7,3) 

For an additional examination of the ARMAX(7, 6, 7, 3) model, some common tests of it’s 
properties have been implemented. Firstly, the sampled autocorrelation function of model 
residuals was computed for 1200 lags  and it is presented in Fig. 6. It is clear that, except few 
lags, the residuals are uncorrelated (within the 95% confidence interval) and can be 
considered white. In Fig. 7, the frequency response of the transfer function G(q) (see (6)) is 
presented. The high-pass performance of the system is obvious and coincides with the same 
result that was extracted from the estimated spectral density in Fig.4. Figure 8 displays a 
simulation of the system, using a fresh data set that was not used in the estimation tasks (the 
validation set). The dash line represents model’s simulated acceleration, while the 
continuous line the measured one. 

 

Figure 8. One second simulation of the system 

Finally, in Table 2 the natural frequencies in Hz and the corresponding percentage damping 
of the model are presented. While the three displayed frequencies were detected 
successfully, the selected model was unable to detect the low frequency of 2 Hz, probably 
due to it’s high-pass performance. Yet, this specific frequency was unable to detected, even 
from higher order estimated models.  

Poles ωn(Hz) ζ(%) 

0.94±0.33i 5.36 0.91 

0.43±0.71i 16.65 17.50 

-0.67±0.70i 37.00 1.07 

Table 2. Natural frequencies and corresponding damping 
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6. Conclusion  

In this paper a new method for the estimation of SISO ARMAX models was presented. The 
proposed methodology lies in the context of Evolutionary system identification. It consists 
of a hybrid optimization algorithm, which interconnects the advantages of its deterministic 
and stochastic components, providing superior performance in PEM, as well as a two-stage 
estimation procedure, which yields only stable models. The method’s main characteristics 
can be summarized as follows:  

• improvement of PEM is implemented through the use of a hybrid optimization 
algorithm,  

• initial ‘‘guess’’ is not necessary for good performance, 

• convergence in local minima is avoided,  

• computational complexity is sufficiently decreased, compared to similar methods for 
Evolutionary system identification. Furthermore, the method has competitive 
convergence rate to conventional gradient-based techniques,  

• stability is guaranteed in the resulted models. The unstable ones are penalized through 
the objective function,  

• it is successive, even in the presence of noise-corrupted measurement.  
The encouraging results suggest further research in the field of Evolutionary system 
identification. Specifically, efforts to design more flexible constraints are taking place, while 
the implementation of the method to Multiple Input-Multiple Output structures is also a 
topic of current research. Furthermore, the extraction of system’s valid modal characteristics 
(natural frequencies, damping ratios), by means of the proposed methodology, is an 
additive problem of crucial importance. 
Evolutionary system identification is an growing scientific domain and presents an ongoing 
impact in the modelling of dynamic systems. Yet, many issues have to be taken under 
consideration, while the knowledge of classical system identification techniques and, 
additionally, signal processing and statistics methods, is necessary. Besides, system 
identification is a problem-specific modelling methodology, and any possible knowledge of 
the true system’s performance is always useful. 
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