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1. Introduction 

It is clear that there exist many practical control problems in which the consideration of 
multiple objectives is typically required, and these objectives may conflict with each other. 
For example, in many practical control systems, control error often conflicts with energy 
consumption. In the past ten years, we have been studying the greenhouse environment 
control problem and have gained a considerable understanding of greenhouse dynamics. In 
a greenhouse, we must keep the temperature and humidity in certain range that is suitable 
for the plants. However, we are simultaneously required to minimize energy consumption 
to reduce the cost. The control means include ventilation, heating and spraying, of which 
heating and spraying are high-energy-consumption methods. In winter, we can improve the 
temperature by heating and decrease the humidity by heating and ventilating. With the 
traditional control strategy, we could maintain the temperature and humidity at a very 
precise point, but the high energy consumption and expensive cost of this strategy would 
make the greenhouse unprofitable, which implies that this control strategy would not to be 
chosen by any users. This type of problem is also widely found in industrial control. 
There have existed two main traditional methods to solve the above-mentioned multi-
objective problem. One is the trade-off weight method (Masaaki, 1997), which translates this 
multi-objective problem into a single-objective one by adding a set of trade-off weights 
(Masaaki, 1997; Rangan & Poolla, 1997; Eisenhart, 2003). The major advantage of this 
method is that the translated single-objective control problem is very easy to deal with, but 
the disadvantage is that the control result will be strongly associated with the trade-off 
weights chosen, and the controlled objectives may not be satisfactory if we provide bad 
weights. In addition, the selection of weights is very difficult for users and engineers in the 
practical situation. Another approach is the constraints method, which optimizes the most 
important control objective and translates the others into system constraints (Scherer, 1995; 
Scherer et al, 1997; Sznaier et al, 2000). The advantage of this approach is to satisfy all 
controlled objectives through constraints; however, the constraint bounds are very difficult 
for users or control engineers to determine suitably in a practical problem. Bounds that are 
too tight may bar the existence of a feasible solution for the optimization problem, while too 
loose bounds may make the optimization problem lose practical significance. 

Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,  
 ISBN 978-953-307-053-7, pp. 318, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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Since the traditional multi-objective control method cannot ensure the existence of a feasible 
controller in advance, we have adopted a multi-objective coordinated control system in the 
greenhouse. When these objectives conflict with each other, it is impractical to fix all the 
objectives at some given optimal "points".  To ensure the existence of a feasible controller, 
we are willing to "back off" on our desire that all the controlled objectives be precisely at 
their optimal values, relaxing these "point" controlled objectives to some suboptimal 
"intervals" or "regions," more generally—we call them "compatible objective regions". For 
example, in the greenhouse, we regulate the temperature objective to be in the interval 24-
30°C instead of exactly at 28°C, and the humidity objective to 60%-85% instead of exactly 
70%. According to the experts, this greenhouse environment is also very suitable for the 
plants. Then we design a controller by optimizing the energy consumption objective. This 
compatible control system can obtain better economic benefit than before and has gained 
considerable attention from users (Wu, 2003). 
Based on the successful application, we have generalized a common compatible control 
theory framework (Xu et al, 2006) from the practical experience obtained with the 
compatible objective region used in the greenhouse. We call this method "multi-objective 
compatible control (MOCC)". 
Control of urban traffic flow is also a typical complex multi-objective control problem, 
evidencing conflict between the main roads and support roads in the saturation state. 
Intensive research has focused on this problem to improve traffic management. MOCC has 
also been applied to this traffic flow control problem, including a Ph.D. dissertation written 
on the subject (Chen et al, 2008). 
Considering a general discrete-time system, the multi-objective control problem can be 
abstracted as 

 ( 1) ( ( ), ( ), )x k f x k u k k+ =   (1) 

where k denotes the time step, ( ) nx k R∈ denotes the state, and ( ) mu k R∈  is the control 

variable. The state and control variables are required to fulfill the following constraints 

 ( )u k X∈ , ( )u k U∈   (2) 

where X  and U  are subsets of nR  and mR , respectively, containing the origin as an 

interior point. Then the multi-objective control problem considered here consists in 

minimizing, at any time step k , 

 ))0(),...,1(),(),0(),...,1(),(()}1{(min )(,)( ukukuxkxkxhkJ iiUkuXkx −−=+∈∈
  (3) 

,...2,1,,...,2,1 == kni  

subject to the system dynamics (1), and 

 kjXjkx ,...,1,0,)( =∈− , kjUjku ,...,1,0,)( =∈−   (4) 

It is difficult to obtain the Pareto solutions by traditional optimization methods. A multi-
objective evolutionary algorithm (MOEA) is a robust search and optimization methodology 
that is able to cope with multiple objectives in parallel without translating the multiple 
objectives into one (see (Fleming & Purshouse, 2002; Goldberg, 1989), and among MOEA 
algorithms, especially when used for problems with only two objectives, NSGA-II performs 
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relatively well in both convergence and computing speed, see (Deb et al, 2002; Jensen, 
2003)). It permits a remarkable level of flexibility with regard to performance assessment 
and design specification.  
This paper is organized as follows. The second section is the description of two-layer MOCC 

with the precise model. The third section is the one-layer MOCC combining offline and 

online parts. A non-even spread reflecting the preference of the user is proposed in this 

section. The fourth section is the MOCC application to greenhouse environment control. The 

fifth section is the conclusion. 

2. Multi-objective compatible control strategy with a precise model 

In this section, we propose a two-layer MOCC framework suitable for a problem with a 

precise model. 

2.1 System description and two-layer MOCC strategy 

We first abstract the theoretical multi-objective control problem. Here the controlled system 

model can be described as follows: 

 ( 1) ( ( ), ( ), )x k f x k u k k+ =   (5) 

 ( ) ( )y k Cx k=   (6) 

where ( ) nx k R∈  denotes the plant states, ( ) ny k R∈  and ( ) mu k R∈  are the control outputs 

and inputs, subject to constraints || ( ) ||u k a∞≤ . The aim of control is to make ( ) | *ky k y→∞→ . 
Taking two objectives as an example, we aim to design controller  

( (0)) { (0), (1),..., ( 1)}
p
x u u u pπ = −  

and to minimize two conflicting objectives: control error, 1h , and control energy 

consumption 2h , defined as: 

 

* *
1

1

1

2

0

( ( ) ) ( ( ) )

( ) ( )

p
T

k

p
T

k

h y k y y k y

h u k u k

=

−

=

= − −

=

∑

∑
  (7) 

Then the multi-objective control problem (5)-(7) can be translated into the following multi-

objective optimization problem:  

 * *

1

1

min ( ( ) ) ( ( ) )
p

T

k

h y k y y k y
=

= − −∑   (8) 

  
1

2

0

min ( ) ( )
p

T

k

h u k u k
−

=

=∑   (9) 

. .s t  1.  ( (0)) { (0), (1),..., ( 1)}p x u u u pπ = −  

www.intechopen.com



 New Achievements in Evolutionary Computation 

 

116 

2.  || ( ) ||u k a∞≤  

3.  
1 1

Lh h≤   

4.  
2 2

Lh h≤  

In a practical control system, control error and control energy consumption always lie 

within an acceptable range; here we denote by 
1

Lh  and 
2

Lh the maximum acceptable values--

which are called the practical objective constraint condition L . Note that 
1

Lh  and 
2

Lh  are only 

the worst acceptable values and not our control objectives. For example, in a greenhouse, the 

worst acceptable values 
1

Lh  and 
2

Lh  only ensure that the plants survive, but not that they 

flourish; our aim is to construct a suitable environment for the plants to grow productively, 

and not only one in which they can survive. 
 

 

Fig. 1. Two-layer compatible control framework 

Next we describe what is meant by a compatible control framework. If the model is precise, 
the two-layer compatible control framework is as shown in Figure 1. In this section, the 
uncertainty in the model is all reflected as uncertainty of initial conditions, as will be 
described more fully in the next subsection. For a two-objective problem, compatible 
optimization will mean optimization of one of the objectives while maintaining both within 
an acceptable region of the space identified via the multi-objective search. It differs from the 
classical method of converting two-objective search to a single-objective search with a 
constraint on the other, since that approach does not use the Pareto front from the multi-
objective search to set the values for the constraints for the measure that is converted from 
an objective to a constraint. 
The first layer is compatible optimization and has the following two requirements: 
1. Obtain a compatible (multi-dimensional) controlled objective region 
2. The compatible controlled objective region must meet Pareto-optimality and the users' 

requirements. 
The second layer is the compatible control layer and is devoted to satisfy the following 
requirements: 
3. Design a real-time controller to control the system to remain within the (multi- 

dimensional) objective region determined in the first layer; 
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4. Optimize further the objective that is most critical to the user to optimize, rather than 
simply to keep within a specified region. 

 

 

Fig. 2. Space with two conflicting objectives 

In Figure 2, the shaded area in rectangle AM is the space of objectives in which control 
solutions exist; the cross-hatched area in rectangle AL is the area that meets the constraints 
of the practical problem; we shall call it the objective region with feasible control solutions; 
the bold curve is the Pareto optimal front of the objective space with control solutions. 
The "optimal point" A is not in the subset of the objective space that contains feasible control 
solutions when the objectives conflict. So A is not an optimal point objective that can be 
attained. This means that there is no controller to realize A(A is a "Utopia" point). To 
guarantee the existence of a solution, the point objective A will be expanded to a region 
objective AB, where AB is a rectangular region (it is an interval for each single objective in 
AB; that is why we have to expand the point objective to an interval objective). To ensure the 
existence of a solution (i.e., a compatible solution), B  must be in the region that includes a 
feasible control solution (the cross-hatched area in Figure 2). Since the selection of B would 
ideally optimize certain of the users' requirements, B should be a point on the Pareto 
optimal front, and included in rectangle AL (the bold Pareto front in Figure 2), in order not 
to be dominated by a better choice of B.  
To determine the position of B, we must have two steps in the first layer algorithm: the first 
step is to find the Pareto front of the objective space with control solutions--that is, to find 
multiple, uniformly distributed points on (or approximating) the Pareto front; the second 
step is, according to the requirements of the users, to select one point B on the Pareto front 
that best defines the users' objective region (that is, the users' desired region for keeping the 
objectives within). Thus, the compatible objective region is obtained and the first-layer task 
is finished. 
The second layer aims to design a compatible control system to realize the compatible 
multiple objectives from the first layer. In the controller design, we will not only realize 
these interval objectives, but also further optimize the objective that users are most 
concerned to minimize. The discussion above sketches the main ideas of our compatible 
control methodology.  
The detailed algorithm will be introduced in the next section. 
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2.2 Energy-saving multi-objective compatible control algorithm (Xu, 2006) 

Supposing the system model to be precise, an open-loop control method is adopted here. To 
conveniently illustrate our compatible control algorithm, we use as an example a linear 
discrete-time system as our controlled model 

 ( 1) ( ) ( )x k Ax k Bu k+ = +   (10) 

 ( ) ( ) ( )y k Cx k Du k= +   (11) 

where ( ) nx k R∈  denotes the plant states, ( ) qy k R∈  and ( ) mu k R∈ are the control outputs 

and inputs, respectively, with constraint || ( ) ||u k a∞≤ . Because of different practical 

situations, the initial conditions may be different. We suppose that the initial conditions lie 

in some given compact set, . .i e , 0 1 2 1 2{( , ) | [9,11], [9,11]}X x x x x= ∈ ∈  and the state-space 

matrices are 

0.8 0 1 0 1 0
, , , 0

0.1 0.9 0 1 0 1
A B C D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

We shall denote this kind of control problem with uncertain initial states as the  

. . ( (0))I C X− problem (namely, control under uncertain initial state).  

The control horizon is set 15p =  and * 0y =  here. We aim to minimize the following two 

control performance indexes (control error, 
1
h  , and energy consumption, 

2
h ). 

 
15

1

1

( ) ( )T

k

h y k y k
=

=∑   (12) 

 
14

2

0

( ) ( )T

k

h u k u k
=

=∑   (13) 

To reduce computation and ensure control performance, we enforce ( ) (5), 5u k u k= > .  

2.2.1 The compatible optimization layer-first layer 

The aim of the compatible optimization layer is to find a compatible and relatively optimal 
objective region. To achieve this, first we should have a method to compare points in the 
multi-objective space, judging them to be better or worse, or sometimes, neither. It is easy to 
compare points in a single objective problem. However, it is not so direct in multi--objective 
problems. In this paper, we adopt Pareto non-domination as the comparison method.  

In Figure 3 we assume that every individual i  in the population has two attributes: 1) Non-

domination rank 
i
r ; 2) Local crowding distance 

i
d . Here (1) (3) (5) 1,r r r= = = , 

(2) (6) 2,r r= = (4) 3r = . The next step is to seek a Pareto-optimal set--i.e., a set composed of 

many non-dominated solutions. In each generation of the GA, popsize offspring and 

popsize parents are sorted using non-dominated sorting, and the popsize best are retained 

as parents for the next generation. The non-dominated sorting principle used to select 

solutions is: 

 
n

i j≺  if (
i j
r r< ) or ((

i j
r r= ) and 

i j
d d> )  (14) 
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Fig. 3. Three fronts according to non-domination 

 

Fig. 4. The crowding distance relationship calculation 

Based on the discussion above, and combined with the non-dominated sorting principle of 

NSGA-II, we propose our MOCC algorithm as follows, to determine the set of control inputs 

to be applied.  
 

Algorithm 2.1 Robust Multi-Objective Optimization Algorithm 

Step 1. Initialize parameters including the population size, NIND , the number of 

generations to calculate, MAXGEN , the number of variables NVAR , and the binary 

code length PRECI ; 

Step 2. For variables ( ), 0,1, 2, ...,14u k k = , create a random initial population Chrom  of 

candidate control vectors and set generation 0gen = ; 

Step 3. (0)X is the initial region. Calculate the maximum 
1
h  and 

2
h  values of the 

population Chrom  in the (0)X  region; 

Step 4. Based on the non-dominated solution definition, separate the population of 

solutions into consecutively ranked fronts and calculate the individual crowding 

distances 
i
d  within each front; 
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Step 5. If gen MAXGEN≤ , set _Chrom f Chrom= and store _Chrom f  as the parent 

population; 

Step 6. Selection operation: randomly choose pairs of solutions in the population and 

subject each pair to a tournament; the total number of tournaments is NIND . In each 

tournament, one solution is selected according to the solution's rank and crowding 

distance 
i
d  value, and then becomes a breeder in the new population, Chrom ; 

Step 7. Crossover operation: perform crossover on pairs of solutions in populationChrom ; 

Step 8. Mutation operation: mutate the solutions in populationChrom ; we obtain an 

offspring populationChrom ; 

Step 9. (0)X is the initial region. Calculate the maximum 
1
h  and 

2
h  values of the offspring 

population Chrom over the (0)X  region; 

Step 10. Compare the offspring population Chrom and parent population _Chrom f  

according to the Pareto non-domination definition and retain NIND  Pareto- 

optimal solutions; 

Step 11. Set 1gen gen= + ; if gen MAXGEN<  then return to Step 5; otherwise, stop the loop; 
Step 12. Display the Pareto-optimal solutions. 

Let 80, 150, 12, 2NIND MAXGEN NVAR PRECI= = = = . For the initial region control problem 

example here, we choose five arbitrary initial states (0)X  in the initial state region (0)X : 

[10.9, 10.8], [10.8, 10.9], [10.7, 11], [11, 10], [11, 9.5]; see Figure 5. The computational results of 

Algorithm 2.1 as a curve are shown in Figure 6.  
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Fig. 5. Pareto fronts for some fixed initial points, namely, [11,10], [11,9.5], [10.7,11], 
[10.8,10.9] and [10.9,10.8].   
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Fig. 6. The upper-right boundary of Pareto band and the user's selection of interval objective 
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Fig. 7. The control result of the second layer controller  
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Fig. 8. The control result of the first layer (corresponding to point B in Figure 6) 

2.2.2 Compatible control system design — the second layer 

The second layer aims to design a multi-objective compatible control system. Assume that 

we now take energy consumption 
2
h  as the objective that users are most concerned to 

minimize. 

If we normalize 
1
h  and 

2
h  in the intervals 

1
[0,800]h ∈  and 

2
[0,8]h ∈  as 1h and 2h , then the 

normalized constraints are computed to be 1 0.66h ≤ . We make the interval objective 

1 [0,0.6556]h ∈  from the first layer into a constraint. We now do constrained, single-objective 

optimization of 2h  subject to the 1h  constraint. The online multi-objective compatible 

control algorithm is now defined as follows: 
 

Algorithm 2.2 (Robust multi-objective compatible controller design) 

Step 1. For an arbitrary given initial condition (0) (0)x X∈  and randomly created initial 

values of variable ( ), 0,1, 2, ...,14=u k k ; 

Step 2. Determine the control input ( ), 0,1, 2, ...,14=u k k
best

by minimizing the 

performance index 2h  with plant performance constraints 1 [0,0.6556]h ∈  and input 

constraints ( ) 1, 0,1, 2, ...,14u k k≤ =  by traditional optimal methods with constraints 

for multiple variables; 

Step 3. Implement the control input ( ), 0,1, 2, ...,14u k k
best

= . 

The system control result for the example with control input ( )u k
best

 and (0) [10.8,10.8]x =  

is shown as Figure 7.  
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In order to show that the performance for the primary controlled objective h2 (i.e., energy 
consumption) has been improved in the second layer design, the control result of the first 
layer controller at the same point B is shown in Figure 8, and the difference of objective h2 

between the controllers of the first and second layers is quite apparent in Figure 9. 
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Fig. 9. Comparison of objective 
2
h  between the controllers of the first and second layers 

From Figure 9, compared with the controller obtained by algorithm 2.1 in the first layer at 

B , the energy consumption 
2
h  with control input ( )u k

best
 obtained by Algorithm 2.2 in 

the second layer has decreased from 2.338 to 1.5651 (actual energy consumption, not 

normalized). It indicates that our method not only ensured the robustness of the system but 

also obviously reduced energy consumption. 

3. Iterative MOCC based on preference selection strategy 

It is difficult to generate a model that matches the real-world system precisely, so the two-
layer method in the previous section is limited in its applicability. Disturbance and model 
error are usual in control problems. To make the method more usable for real-world 
problems, an online iterative MOCC algorithm is proposed in this section.  
 

 

Fig. 10. Control process with non-even staged Pareto front at every control step 

The control process can also be explained by figure 10. With the increasing of the time step 

k , the staged Pareto front will progress from 3
m  to 1

m  with selecting the control inputs 
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corresponding with 
3
B , 

2
B  and

1
B  step by step. Note that staged Pareto front 

3
m , 

2
m , or 

1
m represents an optimization at every time step k , that means the control input is 

computed by iteratively solving a suitable constrained optimization problem. Since k  

increases as the control system operates, the Pareto front of the control objective space is 

related to k , that is, it differs from the ultimate control problem Pareto front, but will 

converge to it. When the system is stable after certain steps, the Pareto front will also come 

to be stable. 
The multi-objective control problem (MOCP) is different from the pure MOEA because the 
state variables are time dependent. This is a big challenge because it means that the time to 
compute a satisfactory solution at each time step must be small, in order to allow for 
multiple time steps (essentially, allowing for on-line determination of the control.)  
Population size in the evolutionary algorithm dramatically affects the computation time, but 
it is necessary to keep a certain population size to make the control process stable. This 
variety of control problem is different from pure dynamic multi-objective optimization since 
the states between neighboring time steps are tightly related, which means the neighboring 
sets in the time series of solution sets are typically relatively close. This is the foundation for 
taking the evolved population (set of candidate solutions) calculated for any given step as 
the initial population for the next step, which can obviously decrease the computing load as 
well as improve system stability. In this section, based on NSGA-II, a multi-objective 
iterative compatible control algorithm is presented according to the principles above. The 
iterative MOCC process is as shown in Figure 11. 
 

Next

step

Stop

Y

N
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Initialize control input and

population

Multi-objective optimization

Preference

selection

strategy

Pareto solution set

Obtain the most

satisfactory solution

Impose the control

input on the system

Population as the

initial one of next

generation

Get new system

state

Dynamic

correction

 
Fig. 11. Iterative MOCC control flow chart with preference selection strategy 
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3.1 Preference selection strategy and iterative control algorithm (Hu(a) et al, 2009) 

Since the control problem is different from the pure optimization problem. For example, it 
concerns much more about the system stability, even on the sacrifice of losing certain 
optimal performance. There also exist disturbance and uncertainty in model structure. 
Therefore, without considering much more about the uniform spread of the solutions on the 
Pareto front, we take care more about the certain section of the Pareto front. This certain 
section is named as the optimal control objective area. To realize the non-uniform spread of 
the staged Pareto front, integrated with the niche technology that maintain the uniform 
spread of solutions in NSGA-II, an optimal control objective preference selection strategy is 
proposed which can be explained by the following eq.(15), where the right part is adopted 
to revise the fitness value of every solution according to its distance to the optimal control 

objective C

m
h . 

 
1 1( ) ( )

max min ( ) 2( )

m m

j j

m m m
j j j

I I

m m

I I I C
m m m m

h h W
d d

f f h h

+ −−
= +

− −
  (15) 

For the convergence of the system, whether or not the system is convergent can be evaluated 

through state variation, and convergence speed can be improved by selecting suitable 

individuals from the population. Since the system convergence cannot be judged from one 

or two steps, certain long step of system state should be tracked to evaluate whether the 

system is convergent or divergent. Whether a solution in the Pareto front is convergent or 

divergent is according to its oscillation at this point. The oscillation judgment should be 

after certain long time from the start of the control process since the system required the 

time to converge to the objective value. By this method, we can make sure which part in the 

full Pareto front is convergent. If it is, guide the state to an individual that locates in the 

nearest non-divergent segment of the Pareto front. The detailed algorithm shown as the 

flow chart in figure 11 is as follows. 
 

Algorithm 3.1 (Online iterative control process based on preference selection strategy) 

Step 1. Initialize parameters including the population size, NIND , the number of 

generations to calculate, MAXGEN , the number of variables, NVAR  and the binary 

code length PRECI ; for variable ( ), 0,1, 2, ...,14u k k =  (the control vector to be 

solved for), create a random initial population Chrom  and set generation 0gen = ; 

Step 2. Calculate the 1
h  and 2

h  values of population Chrom  based on the initial state 

(0)X ; according to the non-dominated sorting relationship, separate the 

population of solutions into consecutively ranked fronts and calculate the 

individual crowding distances i
d  within each front; 

Step 3. Set _Chrom f Chrom=  and store _Chrom f  as the parent population; selection 

operation: randomly choose pairs of solutions in the population Chrom  and subject 

each pair to a tournament, the total number of tournaments is NIND ; in each 

tournament, one solution is selected according to the solution's rank and crowding 

distance i
d  value, and then becomes a breeder in the new population, Chrom ; 

crossover operation: perform crossover on the solutions in the population, Chrom ; 

mutation operation: mutate the solutions in population Chrom ; obtain an offspring 

population Chrom ; compare the offspring population and parent population 
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_Chrom f  according to the Pareto non-domination definition and (when 

applicable) crowding, and retain NIND  Pareto-optimal solutions; 

Step 4. Set 1gen gen= + ; if gen MAXGEN≤ , then return to Step 3, otherwise, stop the loop; 

selection strategy: according to the user's preference strategy, however it may be 

algorithmically captured, select the individual in the population that is most 

satisfactory, and impose its control input on the system, then get the actual state; 

Step 5. Keep population Chrom  as the initial population of the online control calculation; 

initialize the online loop counter _MAXGEN Online and the initial state with the 

current state, and replace (0)X  with the current system state; 

Step 6. For as long as the process is to be controlled, repeat Step3 to Step5, only replace 

MAXGEN  with _MAXGEN Online , otherwise, stop the loop. 

3.2 Multi-objective control problem example 

This subsection intends to introduce a multi-objective control problem example with an 
oscillating Pareto front segment. 
(a) Control system model: 

 
2 2 2 2

1 1 1 1 2

2 1 2 1 2

( 1) 0.2 ( ) 0.2 ( ) 0.1 ( ) ( )

( 1) 0.3 ( ) 0.3 ( ) 0.1 ( ) ( )

x k x k x k u k u k

x k x k x k u k u k

+ = − − + − −
+ = − + + −

  (16) 

(b) Two Objectives:    

 2 2

1 1 2 2
min{ ( ) (1 ( )) , ( ) (1 ( )) }h k x k h k x k= + = +   (17) 

(c) Constraints:    

  
1 2
, [ 0.2,0.5]u u ∈ −  (18) 

(d) Initial point: 

  
1 2
(0) 1, (0) 1x x= =     (19) 

Since the -constraint method has the capability to determine non-convex Pareto solutions, it 
is applied in this section to get the ultimate Pareto front of the control problem. One Pareto 
solution on the ultimate Pareto front will be obtained with one constraint. The Pareto front 
will be found by calculating with enough different constraints to fill the possible range. The 
Pareto front of this control problem is as shown in Figure 12. 
The feature of this example is that when 0.95<c<1, objective h2 is oscillating (see Figure 12). 
Simulation results of the two-objective variation process are as shown in Figure 13 and 
Figure 14, where c=0.965. Obviously the system is unstable, from Figure 14. It is easy to find 
that the oscillation in Figure 14 is the swing between A1 and A2 in Figure 12. 
In this example, the control result is oscillating if the constraint c is located in 0.95-1.0. This 
subsection will try to design a selection strategy to judge and jump out if the control system 
is in the oscillating or divergent state, which can be embedded as the selection strategy in 
the flow chart shown in Figure 10. With Algorithm 3.1, if first h1 is set as h1<0.965, the same 
value as used in the -constraint method in the example, the algorithm will find that the state 
is not stable. A nearest non-divergent state will be found. See Figure 12, where a new 
suitable solution B is selected, and leads the system into a convergent state (see Figure 15 
and the oscillating part and evenly distributed part in Figure 16). 
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Fig. 12. Ultimate Pareto front of the oscillating multi-objective non-convex control problem 
example 
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Fig. 13. Variation of 
1
h  with intconstraε −  method at 0.965c =  
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Fig. 14. Variation of 2
h  with intconstraε −  method at 0.965c =  
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Fig. 15. Variation of 

1
h  with Algorithm3.1 
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 Fig. 16. Variation of 

2
h  with Algorithm 3.1 

4. Application of MOCC to greenhouse environment control 

It is well recognized that the greenhouse environment has a great influence on plant growth, 
production yield, quality, and maintenance processes of the plants. The greenhouse 
environment differs from a purely physical (non-biological) system, in that the greenhouse 
system is typically more complex and nonlinear, and the biological system is likely to have 
significant and numerous effects on its physical surroundings. Greenhouse interior 
temperature, air humidity and CO2 concentration are the main control components 
influencing plant growth and energy usage. These components can be changed through 
heating, fogging, CO2 injection, respectively, and ventilation affects all three of these 
components. Studies and research applications involving environmental control of 
greenhouses have been performed by many researchers (Pasgianos et al, 2003; Nielsen & 
Madsen, 1995; Young et al, 2000; Arvanitis et al. 2000; Taylor et al. 2000; Zolnier et al., 2000). 
These studies and researches are very important to engineering applications in the 
greenhouse. 
There exists a series of dynamic models for greenhouse environments in the literature. The 
central state variable of greenhouse climate is typically air temperature, with relative 

www.intechopen.com



 New Achievements in Evolutionary Computation 

 

128 

humidity and carbon dioxide concentration also considered. There are many disturbances to 
the greenhouse climate, which are primarily from solar radiation, outside temperature 
(conductive heat transfer and ventilation heat transfer) and interactions with occupants 
(plants), the controlled heating and ventilating equipment, and the floor. 
Taking into account these analysis mentioned above, a simple greenhouse heating/cooling/ 
ventilating model can be obtained from the extant literature as the following differential 
equations: 

 
( ) ( )1

[ ( ) ( ) ( )] [ ( ) ( )] [ ( ) ( )]in R

heater i fog in out in out

p T T p T

dT t V t UA
Q t S t Q t T t T t T t T t

dt C V V C V
λ

ρ ρ
= + − − ⋅ − − − (20) 

 
( )( ) ( )1

[ ( ( ), ( ))] [ ( ) ( )]
fogin R

i in in out

H H H

Q tdw t V t
E S t w t w t w t

dt V V V
= + − ⋅ −   (21) 

( )
( ( ), ( ))] ( )i

i in T in

S t
E S t w t w tα β

λ
= −  

where /in outT T  is the inside/outside air temperature( oC ), /in outw w  is the inside/outside 

relative humidity(%), UA is the heat transfer coefficient of enclosure (
1WK −

), V is the 

geometric volume of the greenhouse (
3m ), ρ  is the air density ( 31.2kgm− ), pC  is the 

specific heat of air ( 1 11006Jkg K− − ), heaterQ is the heat provided by the greenhouse 

heater(W), 
fogQ is the water capacity of the fog system ( 1

2gH Os− ), iS  is the intercepted solar 

radiant energy (W), λ  is the latent heat of vaporization (2257 1Jg − ), RV  is the ventilation 

rate (
3 1m s− ), ( , )i inE S w is the evapotranspiration rate of the plants ( 1

2gH Os− ), which is 

affected by the given solar radiation, α and Tβ are scaling parameters, TV  and HV  are the 

temperature and humidity of the actively mixing air volumes, respectively. Generally, TV  

and HV are as small as 60%-70% of the geometric volume V  of the greenhouse. 

4.1 Description of the MOCC algorithm based on energy-saving preference  

Classical Multi-objective Control Problem methods commonly pursue a precise point as the 
control objective, and then optimize its tolerance with the reference value. In greenhouse 
climate, energy consumption and control precision conflict with each other. Low control 
deviation tolerance is at the cost of high energy consumption. If the greenhouse climate is 
controlled to a precise point, energy consumption must be high. In practical greenhouse 
engineering, plants can grow and flourish in some interval or region of humidity and 
temperature rather than only at one precise point. So it is unnecessary for the greenhouse 
climate control problem to pursue low control deviation tolerance. Humidity and 
temperature setpoints can be enlarged to intervals, which can reduce energy consumption 
while keeping the greenhouse climate suitable for plants to grow and flourish. 

4.2 Control objectives  

In greenhouse climate, 
heater fogQ Q， and RV  are the control inputs. In order to save energy, 

they should be minimized as much as possible. In practical greenhouse engineering, these 

three inputs have different power requirements. We set these three power ratios as 

1 2 3: :λ λ λ  respectively. Then the energy objective function can be described as follows: 
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1 1 ,% 2 %,fog 3 ,%

,% %,fog ,%
(0 , , 1)

heart R

heart R

f Q Q V

Q Q V

λ λ λ= + +

≤ ≤
  (22) 

In the greenhouse climate model, although energy saving is an optimization objective, the 
temperature and humidity must also be kept in a range that promotes healthy plant growth. 
If the interior temperature and humidity of the greenhouse are unfit for plant growth, 
energy saving loses its practical significance. So energy consumption must be reduced while 
maintaining a greenhouse climate suitable for plant growth. 
According to the analysis above, temperature and humidity objective functions will be cast 
as tolerances around a pre-set point, shown as: 

  2 ( )in setf abs T T= −   (23) 

 3 ( )in setf abs W W= −   (24) 

,set setT W  are the optimal values of the temperature and humidity ranges that will serve as 

the midpoints of the allowable ranges to be determined as suitable for plant growth. In the 
control process, if the values of (23) and (24) are within the ranges to be determined, then 
these objectives will be treated as having the same value, and will allow have no effect on 
the multi-objective optimization, which will consider only energy consumption. 

4.3 The preference interval of energy-saving information (Xu et al, 2009) 

In the greenhouse climate control problem, the energy-saving preference information is 

incorporated into the optimization process. In this situation, solutions with lower energy 

consumption are superior to others. In standard NSGA-II, the definition of crowding 

distance is identical except for the extreme points. Crowding distance plays a key role in 

obtaining well-distributed Pareto optimal solutions. In order to obtain dense Pareto optimal 

solutions distributed in the preference interval, the crowding definition of standard NSGA-

II is modified. 

First, the special temperature and humidity intervals that are suitable for plant growth are 

defined. Second, the minimum energy consumption value J  within these special intervals 

can be obtained in each evolutionary generation. Because J  is changed in the evolutionary 

computation process, adaptation is applied in this algorithm and J  is updated in each 

evolutionary generation. Third, in the evolutionary process, J  is set as the preference point. 

According to the preference point, the preference interval 1J J Jθ≤ ≤ ∗  (here θ is a 

constant,1 θ< ) is defined. Finally, in each evolutionary generation, if the solution lies 

within the preference interval, its crowding distances is set to n times that of the standard 

NSGA-II crowding distance. The time step should be chosen appropriately and carefully. If 

it is too small, the preference information will lose its power and can’t direct the 

optimization, whereas if it is too larger, it can lead to the phenomenon of premature 

convergence.  
Through modification of NSGA-II, dense Pareto optimal solutions with energy-saving 
preference information are obtained in the neighborhood of minimum value J, and, to some 
degree because of the reduction of population diversity, the algorithm can quickly converge 
to Pareto-optimal solutions.  
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4.4 Simulation results (Hu(b) et al, 2009) 

In order to validate the effectiveness of the algorithm with energy-saving preference 

information, we use the classical greenhouse climate model mentioned above to illustrate it. 

Because 
heater fogQ Q， and RV  are normalized in the energy consumption function (22), 

coefficients 1 2 3, ,λ λ λ  are percents of maximum power, respectively. In practical greenhouse 

engineering, the energy consumption of a heater is higher than that of devices generating 

fog or ventilation, and ventilation has the lowest energy consumption of these three control 

inputs.  
In most scenarios, in summer, the control inputs used in a greenhouse are only fog and 
ventilation. So in that case, the energy consumption can be presented as: 

 
1 2 %,fog 3 ,%Rf Q Vλ λ= +  (25) 

In simulation, we set 2 3: 20 :1λ λ = and 27,setT = 0.7setW = . Then  

     2 ( 27)inf abs T= −   (26) 

 3 ( 0.7)inf abs W= −   (27) 

In the greenhouse climate model, the parameters of Table 1 are suitable for summer or 
winter. Their differences are the initial conditions. For the MOCC method, we set 24°C-30 °C 
and relative humidity 60%-80% as the control intervals. For the classical control method, we 
set 27 °C and relative humidity 70% as the control point. 
 

Parameters 
name 

Unit expression values 

0C  
0 1minW C −

 -324.67 

UA  
0 1W C−

 29.81 

vt  min  3.41 

λ′  W  465 

α ′  
3 1 1g minm W− − −

 0.0033 

1
V ′

 3 1g minm− −
 13.3 

Table 1. Identified greenhouse model parameters 

Operators and parameters values 

0

0

in T(0) ( )T C C=
 35 

0in (0) (%)ww C=
 35 

0

out ( )( )T t C  30 

out ( )(%)w t
 40 

2( )( / )iS t W m
 200 

Table 2. Initial parameters of greenhouse in summer 

Due to the rapidity of change of outdoor climate, we chose 15 minutes as the control step 

size and operate the control for 1.5 hours. In Figures 17 and 18, control results of the MOCC 
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method and classical control method (precise point control) in summer are shown. The 

horizontal axis represents control step and vertical axis is the control result. The total energy 

consumption is 4.1 for MOCC, and 8 for the precise point control. Because the control point 

is enlarged to an interval in MOCC, it allows much more room to compromise between 

control precision and energy consumption. In the greenhouse climate control problem, the 

requirement for control precision is low, and the control results of MOCC are suitable for 

plant growth, which allows a large reduction of energy consumption compared to precise 

point control. 

In winter, control inputs are heat, fog and ventilation, and solar radiant energy is weak, so  

Si(t) is chosen as 20 rather than 200 in summer. In simulation, the initial conditions are 

shown in Table 3, and the energy consumption function is described as follows: 

 
1 ,% %,fog ,%100 20heart Rf Q Q V= + +   (28) 

 
Fig. 17. The control results of Temperature in summer 

 

 Fig. 18. The control results of Humidity in summer 

In Figures 19 and 20, control results of the MOCC method and classical control method 

(precise point control) in winter are shown. The total energy consumption is 34.8 for MOCC, 

and 204.5 for precise point control. Comparing the energy consumption of MOCC and the 

classical control method, the MOCC method has an overwhelming advantage over classical 

control method with respect to energy saving. 
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Operators and parameters values 

0

0

in T(0) ( )T C C=  15 

0in (0) (%)ww C=  40 
0

out ( )( )T t C  -2 

out ( )(%)w t  20 
2( )( / )iS t W m  20 

temperature ‘interval’ control 
objective 

0 024 30C C−  

Humidity ‘interval’ control objective 60% 80%−  

Table 3. Initial parameters of greenhouse in winter 

 
Fig. 19. The control results of Temperature in winter 

 
Fig. 20. The control results of Humidity in winter 

5. Conclusions  

Based on ideas developed in addressing practical greenhouse environmental control, we 
propose a new multi-objective compatible control method. Several detailed algorithms are 
proposed to meet the requirements of different kinds of problem: 1) A two-layer MOCC 
framework is presented for problems with a precise model; 2) To deal with situations 
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including model error and disturbance in the practical problem, a MOCC combining offline 
and online parts is proposed; 3) MOCC is applied to practical greenhouse control. The result 
illustrates the validity of the new strategy. The result of applying MOCC to this problem 
shows that MOCC can be applied widely. 
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