
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Evolutionary Logic Synthesis of Quantum Finite
State Machines for Sequence Detection

Martin Lukac1 and Marek Perkowski2

1Intelligent Integrated Systems Laboratory GSIS, Tohoku University,
 2Department of Electrical and Computer Engineering, Portland State University

1Japan
2USA

1. Introduction

Quantum Finite State Machines (QFSM) are a well known model of computation that was
originally formalized by Watrous [Wat95a, Wat95b, Wat97], Kondacs [KW97] and more
generally Quantum Turing Machines (QTM) have been described by Bernstein [BV97]. In
particular the 2-way QFSM have been shown to be more powerful than classical FSM
[KW97]. Thus the interest in quantum computational models of automata and machines is
not only theoretical but has also possible applications realization of future quantum
computer and robotics controllers.
In this chapter we present the evolutionary approach to the synthesis of QFSM’s specified
by a quantum circuits. This approach was originally proposed by [LP09] and is possible on
yet only theoretical basis. In particular this approach requires a selective qubit-initialization
in a quantum register. In contrast the current methodology and approaches to practical
Quantum Computation, the current practical realization of quantum computation always
starts with the initialization of the whole quantum register and terminates by the
measurement of either all of the qubits or by the measurement of a given subset of qubits.
Moreover in general there is no reuse of any element of the quantum register.
In this text we analyze in details what type of QFSM can be successfully synthesized.
The evolutionary approach will evaluate the results based on both the correctness and the
cost of the evolved machines. Multiple parameters such as type of error evaluation,
synthesis constraints and evolutionary operators will be discussed when evaluating to the
obtained results.
In particular we show how to synthesize QFSMs as sequence detectors and illustrate their
functionality both in the quantum world and in the classical (observable) world. The application
of the synthesized quantum devices is illustrated by the analysis of recognized sequences.
Finally, we provide analytic method for the used evolutionary approach and we describe
the experimental protocol, and its heuristic improvements. We also discuss the results. In
addition, we investigate the following aspects of the Evolutionary Quantum Logic Synthesis:
• Quantum probabilistic FSM and Reversible FSM.

• Hardware acceleration for the Fitness evaluation using CBLAS [cbl] and using CUBLAS
[cud] (CUDA[cud] implemented Basic Linear Algebra Subprograms (BLAS)[cbl]
subroutines).

Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,
 ISBN 978-953-307-053-7, pp. 318, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 New Achievements in Evolutionary Computation

78

2. Background in quantum computing

In Quantum Computing the information is represented by a Quantum Bit also called qubit.
The wave equation is used to represent a qubit or a set of them. Equation 1 shows a general
form in the Dirac notation.

(1)

In Dirac notation |⋅〉 represents a column vector, also called a ket. The bra element denoted 〈⋅|
stands for hermitian conjugate. In this manner a bra-ket 〈⋅|⋅〉 represents the inner, dot-vector
product while |⋅〉〈⋅| represents the outer vector product. The general equation (1),

 can be written as and is

the probability of observing the state |0〉 while is the probability of observing |1〉.
In general, to describe basis states of a Quantum System, the Dirac notation is preferred to
the vector-based Heisenberg notation. However, Heisenberg notation can be more practical
to represent the exponential growth of the quantum register. Let two orthonormal quantum
states be represented in the vector (Heisenberg) notation eq. 2.

(2)

Different states in this vector notation are then multiplications of all possible states of the
system, and for a two-qubit system we obtain (using the Kronecker product[Gru99, Gra81,
NC00]) the states represented in eq. 3:

(3)

The Kronecker product exponentially increases the dimension of the space for matrices as well:

(4)

This tensor product operation for a parallel connection of to wires is shown in Figure 1.
Assume that qubit a (with possible states |0〉 and |1〉) is represented by
and qubit b is represented by . Each of them is represented by the

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

79

Fig. 1. Circuit representing the W ⊗X operation

superposition of their basis states, but put together the characteristic wave function of their
combined states will be:

(5)

with αa and βb being the complex amplitudes of states of each EP respectively. As shown

before, the calculations of the composed state used the Kronecker multiplication operator.

Hence comes the possibility to create quantum memories with extremely large capacities

and the requirement for efficient methods to calculate such large matrices.
Quantum Computation uses a set of Quantum properties. These are the measurement, the
superposition and the entanglement. First, however, the principles of multi-qubit system
must be introduced.

2.1 Multi-Qubit System
To illustrate the superposition let’s have a look at a more complicated system with two
quantum particles a and b represented by and
respectively. For such a system the problem space increases exponentially and is
represented using the Kronecker product [Gru99].

(6)

Thus the resulting system is represented by
 (5) where the double coefficients obey the unity (completeness) rule and

each of their powers represents the probability to measure the corresponding state. The
superposition means that the quantum system is or can be in any or all the states at the same
time. This superposition gives the massive parallel computational power to quantum
computing.

2.2 Entanglement and projective measurements
Assume the above two-particle vector (two-qubit quantum system) is transformed using
the quantum circuit from Figure 2.
This circuit executes first a Hadamard transform on the top qubit and then a Controlled-Not
operation with the bottom qubit as the target. Depending on the initial state of the quantum
register the output will be either .
Thus it is not possible to estimate with 100% probability the initial state of the quantum
register.
Let at level a (Figure 2). The first step is to apply the [H] gate on the qubit-a and
the resulting state at level b of the circuit is

www.intechopen.com

 New Achievements in Evolutionary Computation

80

Fig. 2. EPR producing circuit

(7)

Next the application of the CNOT gate results in:

(8)

For an output 0 (on the qubit-a), the projective measurement of the first (topmost) qubit
(qubit-a on Figure 2) on this stage would collapse the global state (with a single
measurement) to the state |00〉:

(9)

with

(10)

and

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

81

(11)

Similarly, the probability of measuring output on the qubit-a in state |0〉 is:

(12)

If one would look to the output of the measurement on the second qubit (qubit-b), the

probability for obtaining |0〉 or |1〉 is in this case the following:

(13)

Thus the expectation values for measuring both values 0 or 1 on each qubit independently
are .

If however one looks on the second and non-measured qubit (if the qubit-a is measured, it is
the qubit-b, and vice versa) and calculates the output probabilities, the output is

www.intechopen.com

 New Achievements in Evolutionary Computation

82

contradictory to the expectations given by standard probabilistic distribution such as a coin
toss q = 1 − p. To see this let’s start in the state

(14)

and measure the qubit-a and obtain a result. In this case assume the result of the
measurement is given by:

(15)

Then measuring the second qubit (qubit-b) will not affect the system because the
measurement of the qubit-a has collapsed the whole system into a single basis state:

 (16)

The probability for obtaining a |1〉 on the qubit-b is thus 0 and the measurement on qubit-b
(after having measured qubit-a) has no effect on the system at all. The states of qubits are
thus correlated. This non-locality paradox was first described by Einstein-Podolsky-Rosen
work[EPR35] and is known as the EPR paradox. This particular phenomenon is one of the
most powerful in quantum mechanics and quantum computing, as it allows together with
superposition the speedup of finding solutions to certain types of problems. Finally, it can
be noted that mathematically, the entangled state is such that it cannot be factored into

simpler terms. For example, the state

and thus it can be factored.

However, the states as those introduced in eq. 15 cannot be transformed in such a manner
and are thus entangled; physically implying that they are related through measurement or

observation.

2.3 Single-Qubit quantum gates
We are now concerned with matrix representation of operators. The first class of important
quantum operators are the one-qubit operators realized in the quantum circuit as the one-
qubit (quantum) gates. Some of their matrix representations can be seen in equation 17.

(17)

Each matrix of an Operator has its inputs from the top (from left to right) and the outputs on
the side (from top to bottom). Thus taking a state (eq.18) and an unitary operator H (eq. 19)

 (18)

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

83

(19)

the result of computation is represented in equation 20.

(20)

(21)

Equation 21 shows the inputs (input minterms) on the top of the matrix and the output
minterms on the left side. Thus for an input |10〉 (from the top) the output is |11〉 (from the
side).

2.4 Multi-Qubit quantum gates
The second class of quantum gates includes the Controlled-U gates. Schematic
representation of such gates can be seen in Figure 3. Gates in Figure 3a – Figure 3c represent
the general structures for single-control-qubit single-qubit gate, two-control-qubit single-
qubit gate, single-control-qubit two-qubit gate and two-control-qubit two-qubit gate
respectively. The reason for calling these gates Controlled is the fact that they are based on
two operations: first there is one or more control bits and second there is a unitary
transformation similar to matrices from equation 17 that is controlled. For instance the
Feynman gate is a Controlled-NOT gate and has two input qubits a and b as can be seen in

Fig. 3. Schematic representation of Controlled-U gates: a) general structure of single-qubit
controlled-U gate (control qubit a, target qubit, b) two-qubit controlled, single-qubit
operation, c) single-qubit controlled, two-qubit target quantum gate, d) Feynman (CNOT),
e) Toffoli (CCNOT), f) Fredkin. a, b, c are input qubits and a’, b’ and c’ are respective
outputs.

www.intechopen.com

 New Achievements in Evolutionary Computation

84

Figure 3. Its unitary matrix with input and output minters is shown in eq. (21). Thus qubits
controlling the gate are called the control qubits and the qubits on which the unitary
transform is applied to are called the target qubits.
Figures 3d - Figure 3f represent special cases where the controlled unitary operator is Not,
Not and Swap, respectively. The respective unitary matrices are in equations 21, 22a and
22b.
Equation 21 shows that if the input state is for instance |00〉 (from the top) the output is
given by . Similarly for all other possible input /output

combinations.

(a) (b)

(22)

The Controlled-U gate means that while the controlled qubit a is equal to 0 the qubits on
output of both wires are the same as they were before entering the gate (a’ = a, b’ = b). Now
if qubit a equals to 1, the result is a’ = a and b’ = ¬b according to matrix in equation (17.a). It
can be easily verified that the CCNOT (Toffoli) gate is just a Feynman gate with one more
control qubit and the Fredkin gate is a controlled swap as shown on Figure 3.
A closer look at equations (21 and 22) gives more explanation about what is described in eq.
21: CNOT, eq. 22a : Toffoli and eq. 22b : Fredkin gates. For instance, equation 21 shows that
while the system is in states |00〉 and |01〉 the output of the circuit is a copy of the input. For
the inputs |10〉 and |11〉 the second output is inverted and it can be seen that the right-lower
corner of the matrix is the NOT gate. Similarly in the other two Controlled gates the NOT
gate matrix can be found.

2.5 NMR-based quantum logic gates
The NMR (Nuclear Magnetic Resonance) technology approach to quantum computing
[Moo65, PW02, DKK03] is the most advanced quantum realization technology used so far,
mainly because it was used to implement the Shor algorithm [Sho94] with 7 qubits [NC00].
Yet other technologies such as Ion trap [DiV95], Josephson Junction [DiV95] or cavity QED
[BZ00] are being used. The NMR quantum computing has been reviewed in details in
[PW02, DKK03] and for this paper it is important that it was so far the NMR computer that
allowed the most advanced algorithm (7 qubit logic operation) to be practically realized and
analyzed in details. Thus it is based on this technology that the constraints of the synthesis
are going to be established for the cost and function evaluation. Some prior work on
synthesis has been also already published [LLK+06] and few simple cost functions have been
established.
For the NMR-constrained logic synthesis the conditions are:

• Single qubit operations: rotations Rx,Ry,Rz for various degrees of rotation θ. With each

unitary rotation (Rx, Ry, Rz) represented in equation 23

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

85

(23)

• Two-qubit operation; depending on approach the Interaction operator is used as Jzz or

Jxy for various rotations θ

Thus a quantum circuit realized in NMR will be exclusively built from single qubit rotations

about three axes x,y,z and from the two-neighbor-qubit operation of interaction allowing to

realize such primitives as CNOT or SWAP gates. Examples of gates realized using NMR

quantum primitives are shown in Figure 5 to Figure 8.

Fig. 4. Structure of the Toffoli gate

Fig. 5. Single pulse Logic gate – NOT

Fig. 6. Two-pulses logic gate – Hadamard

Fig. 7. Detailed Realization of Feynman Gate with five EM pulses.

Fig. 8. Five-pulses logic gate - Controlled-V

Also, the synthesis using the NMR computing model using EM pulses, is common to other
technologies such as Ion Trap [CZ95, PW02] or Josephson Junction [BZ00]. Thus the cost
model used here can be applied to synthesize circuits in various technologies, all of these

www.intechopen.com

 New Achievements in Evolutionary Computation

86

technologies having the possibility to express the implemented logic as a sequence of EM
pulses.

3. Quantum finite state machines

The paradigms of quantum circuits from Section 2 are applied in this paper to the synthesis
of computational models such as QFSM as defined in [LPK09]. This section briefly
introduces the knowledge about Quantum computational models and their properties as
well as specifies the types of devices that are going to be synthesized. We describe the 1-way
Quantum Finite State Machines (FSM) from both the theoretical (computational) point of
view as well as from the engineering (circuit) point of view. Most of the work in this area is
still on the theoretical level but the proofs of concept quantum devices [Dun98, SKT04,
MC06, RCHCX+08, YCS09] allow to speculate that such models will be useful for quantum
logical devices that will appear in close future.

3.1 1-way quantum finite automata
Quantum Finite State Machines (QFSM) are a natural extension of classical (probabilistic)
FSM’s. Two main types of QFSM are well known: One-way QFSM (1QFSM) [AF98, MC00]
and two-way QFSM (2QFSM)[AW02, KW97]. As will be illustrated and explained the
1QFSM, can accept sequentially classical input, quantize it, process it and measures its
quantum memory after each operation (Figure 9). In this work the focus is on the synthesis
of the 1QFSM from Figure 9(b). From now on the general designation of QFSM will refer to
1QFSM in this work. Other type of described QFSMs will be specifically named.

Fig. 9. Schematic representation of a 1QFSM; (a) after each computation step the machine
state is measured, (b) after each computation step the output is measured, (c) after each
computational step the machine state and the output state are measured.

In contrast to that, the 2QFSM is designed to operate on quantum input data (allowing to

put the reading head in superposition with the input tape, and requiring all the input data

to be present at once for the maximum efficiency) and the measurement is done only at the

end of a whole process.

Definition 3.1

Quantum State Machine - a QFSM is a tuple Γ = {Q,Λ, q0,Qac,QrjI , δ}, where Q is a finite set

of states, σ is the input alphabet, δ is the transition function. The states q0 ∈ Q′, Qac ⊂ Q and

Qrj ⊂ Q are the initial states, the set of accepting states and the set of rejected states,

respectively.

The QFSM machine action maps the set of machine states and the set of input symbols into

the set of complex machine next states. The computation of such machine is required to be

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

87

done using unitary operators and is performed on the basis set

B

q
 using unitary operators

Uθ, θ ∈Θ. In particular the QFSM uses a set of Unitary Operators corresponding to the input

of input characters on the input tape. Thus for a given string to be processed and prior to the

whole process termination (string either accepted or rejected), the overall processing can be

represented as:

 (24)

with M being the application of the operator to the current state and creating the

configuration |q〉 followed by the measurement of the current state M (projecting the

state into G).
The 1QFSM was proven to be less powerful or equally powerful to its classical counterpart
1FSM [Gru99, KW97] in that it can recognize the same classes of regular languages as the
classical FSM can recognize.
The above described 1QFSM is also called the measure-many quantum finite automaton
[KW97]. A model called measure-once quantum finite automata was also introduced and
studied by Moore [MC00]. The measure-many 1QFSM is similar to the concepts of the
2QFSM. For comparison we illustrate the main differences between the 1QFSM and 2QFSM
below.
Example 3.1.1 1QFSM
Let be two possible states (including the accepting and rejecting states) of a

single-qubit machine M and with transition functions specified by the transitions defined in
eq. 25 corresponding to the state diagram in Figure 10a.

Fig. 10. (a) State transition diagram for the 1QFSM defined by the transition function 25, (b)

the representation of the QFSM using quantum multiplexers. Observe two control outputs

|q 〉 specifying the machine action/states and the input symbols selecting the appropriate

unitary transform Vλ for λ ⊂ {#, $, 0, 1}.

www.intechopen.com

 New Achievements in Evolutionary Computation

88

(25)

The machine M, specified in eq. 25 represents a state machine that uses the H gate when the
input is 0 (V0 = H) and the Pauli-Z rotation gate when the input is 1 (V1 = Z). Observe that
machine M would have different behavior for measure-once and measure-many
implementation. In the measure-many case, the machine generates a quantum coin-flip
while receiving input 0 and while receiving input 1 the Pauli-Z rotation is applied. Observe

in the measure-once case, that for example for the string input θ = ”010” the many-measure
machine will implement a NOT using [H][Z][H].

Note that in this approach to QFSM each input symbol λ∈{#, $, 0, 1} is represented by a

unitary transform that can be seen as shown in Figure 10. No measurement is done here on

|q〉 while the sequence of quantum operators is applied to this state. The 2QFSM operates on a
similar principle as the 1QFSM model but with the main difference being the application of the
measurement. This is schematically shown in Figure 11 for the completeness of explanation.

Fig. 11. Schematics representing the difference between the 1QFSM and 2QFSM. On the top,
the 1QFSM - for each input character read from left to right from the tape, a unitary
transform U is applied on the state and the state is measured. On the bottom, the 2QFSM
moves on the input tape left and right, the unitary transform U is applied on the state and
only once the computation is terminated the final state is observed/measured.

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

89

3.2 Quantum logic synthesis of sequence detectors
The problem to synthesize the QFSM is to find the simplest quantum circuit for a given set

of input-output sequences thus letting the state assignment problem for this machine be

directly solved by our synthesis algorithm. This direct synthesis approach can be applied to

binary, multiple-valued and fuzzy quantum machines with no principle differences - only

fitness functions are modified in an evolutionary algorithm [LPG+03, LP05].

Let us assume that there exists a sequential oracle that represents for instance Nature, robot

control or robot’s environment. In our example this oracle is specified by a state diagram in

Figure 12a. This oracle can represent partial knowledge and a deterministic or probabilistic

machine of any kind. Assume that there is a clearing signal (denoted by an arrow in Figure

12a) to set the oracle into its initial state. By giving initial signals and input sequences and

observing output sequences the observer can create a behavior tree from Figure 12b.

Fig. 12. Example of a deterministic oracle and its diagnostic tree.

As in general this oracle is never fully known, we perform experiments with it to determine

some of its input-output behaviors. Assume that the oracle from Figure 12a is represented

by the sequences from the experiments. These input-output sequences are shown in eq. 26

with |iqo〉 represents the input qubit, the state qubit and the output qubit respectively.

Observe that the diagnostic tree form Figure 12(b) shows the state with {a, b} and the inputs

and the outputs as 0 and 1.

www.intechopen.com

 New Achievements in Evolutionary Computation

90

(26)

As the full knowledge of the oracle is in general impossible - the oracle is approximated by
sets of input-output sequences and the more such sequences that we create - the more
accurate characterization of the oracle as a QFSM can be created.

The overall procedure for the detection of a sequence of length j can be summarized as

follows:
1. Initialize all qubits of the quantum register to the initial desired state,

2. repeat j times:
a. Initialize the input qubit to a desired state and set the output qubit to |0〉
b. Apply the quantum operator on the quantum register of the QFSM
c. Measure the output qubit and observe the result

Using the procedure describe above one can synthesize quantum circuits for oracles being
well known universal quantum gates such as Fredkin. The input-output sequences found
from this oracle are next used to synthesize the QFSM from Figure 13a. Figure 13b shows
the state-diagram of the machine.

Fig. 13. Example of implementation of Fredkin gate as a quantum FSM of first class. Observe

the notation where |i〉 is the input, |q〉 is the machine state and |o〉 is the machine output.

We will call the machine in Figure 13(a) the QFSM of the first class. This is because both the
output and the input qubits are initialized after each computation. Observe that it is
represented with feedback lines as in Figure 9 with input and output being initialized for
each input and the state initialized only once - at the beginning of the computation. The
interested reader can read more on this representation in [LP09], however it is important to

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

91

understand that the feedback lines are shown here only as the equivalent notation to the
classical FSM as in Figure 9. The circuit-based approach to QFSM does not require this
notation as this ”loop” is represented by the fact that the quantum qubit preserves its state
[LP09].
A set of input-output sequences defining partially the "Fredkin QFSM" is represented in eq. 27.

(27)

A class two QFSM has in turn the initialization In applied only to the input qubit. This way

the generated sequence is now expressed not only as a function but rather as

. This means that now the output is directly dependent also on the previous

output state. This QFSM of the second class is shown in Figure 14. The difference between
the QFSM of the first and of the second class can be seen on the output qubit where in

the case of the QFSM of the first class the initialization means the initialization of the

output at each computation step while the class two QFSM uses initializes the output

only once, at the beginning of the computation.

Fig. 14. Example of implementation of Fredkin gate as a quantum FSM of second class
where the output is initialized only once and the measurement is done either after each
input or only completely at the end.

For instance, a class two QFSM constructed from a "Fredkin oracle" differs from the class by

different possible state transition. This is shown in Table 1. The first column represent the

current state of the quantum register build from the input, state and output qubits |iqo〉. The

second column shows the state transitions of the class one QFSM. Observe that as the output

qubit is always being initialized to |0〉 only four possible initial states exists (see eq. 27). The

third column representing the state transitions of the class two QFSM and as can be seen in

this case the state transition function is the full "Fredkin oracle" function.

Moreover, the difference between the first and the second class of these QFSM’s has also

deeper implications. Observe that the QFSM presented in this paper, if implemented

without the measurement on the output and the input qubit (the measurement is executed

only after l computational steps) the QFSM becomes the well-known two-way QFSM

www.intechopen.com

 New Achievements in Evolutionary Computation

92

Table 1. Comparison of the state transition between the class one and class two QFSMs

[KW97] because the machine can be in superposition with the input and the output. This is
equivalent to stating that the reading head of a QFSM is in superposition with the input tape
as required for the time-quadratic recognition of the {anbn} language [KW97].
Observe that to represent the 1-way and the 2-way QFSM in the circuit notation the main
difference is in the missing measurement operations between the application of the different
CU (Controlled-U) operations. This is represented in Figures 15 and 16 for 1-way and the 2-
way QFSMs, respectively.

Fig. 15. Example of circuit implementing 1-way QFSM.

Fig. 16. Example of circuit implementing 2-way QFSM.

An interesting example of QFSM is a machine with quantum controls signals. For instance a

circuit with the input qubit in the superposition generating the EPR quantum state [NC00] is

shown in Figure 17.

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

93

Fig. 17. Example of the EPR circuit used as a QFSM.

Observe the behavior of this QFSM as both class one and class two machine given in Table 2.
In this case the distinction between the class one and class two machines is negligible
because any measurement of the system collapses the whole system as the result of the
entanglement present in it.

Table 2. Comparison of the state transition between the class one and class two EPR circuit
QFSM

Figure 17 shows that because of the entanglement this machine has two distinct possible
recognizable sequences. When the machine uses exclusively the output qubit initialized to

|0〉 the possible initial states are only |00〉 and |10〉 because the measurement of the output

state resulting in and .

4. Evolutionary algorithms and quantum logic synthesis

In general the evolutionary problem solving can be split into two main categories; not

separated by the methods that each of the trends are using but rather by the problem

representation and by the type of problem solved. On one hand, there is the Genetic

Algorithm (GA) [Gol89, GKD89] and Evolutionary strategies (ES) [Bey01, Sch95] that in

general represents the information by strings of characters/integers/floats and in general

attempts to solve combinatorial problems. On the other hand the design of algorithms as

well as state machines was traditionally done by the Genetic Programming (GP) [Koz94,

KBA99] and the Evolutionary Programming (EP) [FOW66, ES03].

Each of this approaches has its particular advantages and each of them has been already
more or less successfully applied to the Quantum Logic synthesis. In the EQLS field the
main body of research was done using the Genetic Programming (GP) for the synthesis of
either quantum algorithms and programs [WG98, Spe04, Lei04, MCS04] or some specific
types of quantum circuits[WG98, Rub01, SBS05, SBS08, LB04, MCS05]. While the GP
approach has been quite active area of research the Genetic Algorithm approach is less
popular and recently only [LP08, YI00] were using a Genetic Algorithm for the synthesis of
quantum circuits. However, it was shown in [LP09] that it is also possible to synthesize
quantum finite state machines specified as quantum circuit using a GA. The difference
between the popularity of the usage between the GP and the GA for EQLS is mainly due to

www.intechopen.com

 New Achievements in Evolutionary Computation

94

fact that the problem space of quantum computing is not well known and is extremely large.
Thus synthesizing quantum algorithms or circuits using the circuit approach (as in GA) can
be much harder than using a rule-based or a program based approach (as in GP). Thus one
could conclude that the GP approach deals only with the required information
(programming, logic rules, relations) while the GA circuit based approach synthesize the
overall unitary operator without any regards to the structure of the required information
itself.

5. Genetic algorithm

A Genetic algorithm is a set of directed random processes that make probabilistic decisions -
simulated evolution. Table 3 shows the general structure of a GA algorithm used in this
work and this section follows this structure with the focus on the information encoding in
the individuals and on the evaluation of the designed QFSMs that are created by the GA.

Table 3. Structure of a Genetic Algorithm

5.1 Encoding/Representation
For quantum logic synthesis the representation that we use is based on the encoding
introduced in [LPMP02]. This representation allows to describe any Quantum or Reversible
circuit [LPG+03, LP02]. All individuals in the GA are strings of ordered characters (each
character representing a quantum gate) partitioned into parallel Blocks (Figure 18). Each
block has as many inputs and outputs as the width of the quantum array (five in the case

Fig. 18. Transformation of a QC from the chromosome (on the top) encoded string, to a final
quantum circuit notation representation of this QC (on the right). Here SW is a Swap gate, H
is a Hadamard gate and I is a Identity. In the middle there is one CCNOT (Toffoli) gate.

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

95

of Figure 18). The chromosome of each individual is a string of characters with two types of

tags. First a group of characters is used to represent the set of possible gates that can be used

in the individual string representation. Second, a single character ’p’ is used as a separator

between parallel blocks of quantum gates. An example of a chromosome can be seen in

Figure 18. In this encoding each space (empty wire or a gate) is represented by a character

with appropriate decoding shown. Our problem-specific encoding was applied to allow the

construction of as simple genetic operators as possible. The advantage of these strings is that

they allow encoding of an arbitrary QL or RL circuit without any additional parameters.

Several such parameters were used in previous research [LPG+03, LP05] and using them

made the genetic algorithm more complicated. Please note that only the possibility to move

gate characters, remove and add them to the chromosome consequently make it possible to

construct an arbitrary circuit and also to modify this circuit in order to optimize it.

5.2 Initialization steps of GA
The GA requires an input file (c.f. Pseudo-Code 28 and Pseudo-Code 29) which specifies all

input parameters and required settings.

(28)

However, for the clarity of explanation we focus only on particular settings required for the

synthesis of the QFSM. The lines (20-38) shows the to search for a QFSM recognizing a

sequence, first the measurement is required (line 20), the index of the output qubit is given

(line 21) and finally the desired input sequence is given. This is done by both specifying the

input value (here 0 or 1) and the probability of detection (here 1). Observe that the

probabilities are specified as complex numbers with only the real component defined, e.g.

(1,0). The use of complex coefficients for these observation probabilities is due to the fact

that as in our previous work [LP05, Luk09] it allows to specify don't cares. For instance the

coefficient (0,1) represents a logical don't care.

The GA has several other settings, (common to most of GA methods) but also requires to

specify circuit specific parameters. The initial circuits are created with a random size within

the interval specified by a maximal (tmax) and minimal number of segments (tmin) in each

individual (chromosome). Thus the size of the chromosome is not limited during the

lifetime of an individual to a precise value, rather each individual has a dynamically

changing genome within the bounds defined by the above variables. The presented GA is a

subclass of the Messy GA [GKD89].

Another important parameter is related to the cost of the implemented Quantum Circuit.
Each evolutionary run has specified the minimal cost MinCost that represents the known

www.intechopen.com

 New Achievements in Evolutionary Computation

96

minimum for the target function or device. If such minimal value is not known, a small
value is used so that it always underestimates a possible minimal cost of the
implementation. This circuit cost value is used in the cost function described in Section 5.4.1.

(29)

The input specifications also include the elementary quantum gates to be used as
components, like the single qubit H, X, Y, Z or V gates and two qubit operations such as
CNOT or CV, which are the building blocks of the quantum circuits to be found. The
quantum gates are represented as quantum unitary (and Hermitian) matrices with the cost
specified for each gate. This is shown in eq. 29, where for each input gate the number of
wires and its cost is given as well. For instance, lines 66 to 69 in eq. 29 shows the unitary
matrix of the CV gate[BBC+95], line 64 shows the number of qubits of this gate and the line
65 shows its cost.
Observe that each unitary matrix is specified by complex coefficients with real and
imaginary component. For instance (1, 0) represents the real state while (0.5, 0.5) represents

a complex state with coefficient .

In the presented experiments various sets of Quantum gates have been used but only the

most succesful runs are presented. In particular only circuits with the most common gates

are shown. These gates include single-qubit gates such as Pauli rotations, the V and V† gates,

two-qubit gates such as CNOT, CV and CV† and three-qubit macros such as Toffoli gates.

5.3 Evaluation of synthesis errors in sequential quantum circuits
In order to properly evaluate a a QFSM for sequence detection the measurement operation

must by applied on several occasions during the detection procedure. As was explained in

the section 2, a quantum system must be measured in order for the information to be

obtainable and readable in the macro world. Moreover, the measurement is a vital operation

if one desires to reuse a quantum state. Recently, it was proven that a unknown quantum

state cannot be completely erased [PB99] but is also easily understandable by observing the

nature of the quantum computing.

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

97

The simplest explanation of the impossibility of completely erase an unknown state is due to
the fact that there is no such a reversible quantum operation that would bring any quantum
state to let’s say the |0〉 state. This is because every reversible operation is a permutation
(even when it contains complex coefficients) and any operation that would achieve such a
state reduction is inherently non reversible and by default non-quantum. An example of
such non-reversible operation is shown in eq. 30.

(30)

Thus measuring a quantum state allows to determine its observable and consequently
allows to apply a Unitary transformation that would generate the desired state. The model
of computation for Quantum Finite State Machines proposed in [LPK09] is used here as
model. Figure 19 shows steps of evaluation of a sequential Quantum Circuit. Observe that

this QFSM has one qubit |q〉 for state, one qubit |i〉 for input and one qubit |o〉 for output.

From the classical point of view this can be seen as an instance of a Mealy finite state
machine.
The synthesis process generates a unitary transformation matrix U, that during the
evaluation is applied to the sequence of quantum states. Observe that both the input qubit

and the output qubit must be measured in order to preserve a valid quantum state qubit |q〉
as well as allow to properly restore both the input and the output qubit. After each iteration of
the computation (application of the U operator) the output qubit is set to |0〉 while the input
qubit is set to either |0〉 or |1〉 depending on the the user specifications from the input file.
Equation 31 shows the first and the last step of the QFSM evaluation for the detection of the
input sequence starting with s = {10011001110001}. Note that the detection requires that for
all the input values but the last one the output qubit is set to |0〉 and is set to |1〉 for the last
character.

(31)

www.intechopen.com

 New Achievements in Evolutionary Computation

98

At the end of each evaluation sequence, the state of the output qubit and of the input qubit
is determined by the measurement and can be reset with desired Unitary transformation to
either |0〉 or to |1〉. The machine state qubit |q〉 is known only at the beginning of each
evaluation sequence. This means that the state of the qubit can be in superposition or an
orthonormal state. This also means that the machine state can be a multi qubit state that can
become entangled between the various state qubits.

Fig. 19. Schematic representation of the process of evaluation of a QC as a Measure-Many
(one-way)QFSM in this work.

Finally, the evaluation process is recored as a set of probabilities denoted as p0(0) and p0(1).
They represent the probability of observation of the desired output 0 or 1 during the
sequence detection. In particular, in this case the overall correctness of the detection can be
written as:

(32)

To evaluate the error of the detector either the eq. 32 was used as a direct measure (it
represents the correctness of the detection with respect to the selected observables), or a
more standard calculation was used. The eq. 33 shows the standard RMS error computation.
Both of these error evaluations are compared in the experimental section of this work.

(33)

5.4 Fitness functions of the GA
During the search for the QFSM’s a parameterized fitness function was used. This was done
in order to allow the minimization for both the error and the cost of the synthesized
Quantum circuit. This "weighted function" methodology was based on our previous
experience in the evolutionary quantum Logic synthesis [LPG+ 03, LP05, LP09].
The parameterization allows to select the weight with which the error of the circuit and the
cost of the circuit modifies the overall fitness value. The choice of this weight is left on the
user that can decide what criteria of evaluation is more important. However, we

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

99

experimentally determined some optimal settings that allowed correct circuits with minimal
cost to be synthesized.

5.4.1 The cost function
The cost function is based on a parameter known as the minimum cost that is provided by the
user and that permits to estimate a normalization constant. This means that the cost function
acts as a bonus inversely proportional to the size of the circuit to the fitness function for a
given estimated and unreachable minimum. In this work the cost function is defined by

(34)

where Mincost is the parameter given by the user and Cost, given by , is the sum of

costs of all gates in the evolved circuit. Equation 34 was experimentally determined to be
sensitive enough to influence both circuits far and close to the optimal cost.

5.4.2 The weighted fitness function
The weighted fitness functions used is shown in eq. 35 and an alternative version is in eq.
36. Both equations calculate the fitness value using the fitness function and the cost function
together. In this case, the error of the circuit (QFSM) is calculated with respect to the overall
probability of detecting the desired sequence as specified by eq. 32.

Each component of these weighted functions can be adjusted by the values of parameters α

and β.

 (35)

(36)

The reasons for these various fitness functions are the following:
• to allow different selection pressures during the individual selection process,

• by calibrating the cost to always underestimate the minimal possible size of the desired
circuit it is possible to further manipulate the selection process.

• the parameterization allows in the extreme cases to completely eliminate the cost
component and thus also includes fitness functions solely based on the correctness of
the circuit.

For instance the fitness function 35 is not equal to one, unless both the cost of the circuit and
the error are minimal. Thus a GA using such a weighted function has more freedom for
searching a solution, because the fitness function is now optimizing the circuit for two
parameters. Similarly in the case of the fitness function 36 which decreases the value of the
fitness of longer circuits, therefore preferring the shorter ones. Thus individuals with
different circuit properties will have equal fitness value.

5.5 Other evolutionary settings
For the clarity and the focus of this paper we present the rest of the settings in the Table 4.
Only the final parameters are shown and in particular only those that were used during the
runs that generated the presented results. To sum it up, the SUS[Bak87] selection method

www.intechopen.com

 New Achievements in Evolutionary Computation

100

was used with n = 4 individuals. The mutation operator was used both on the level of
individual quantum gates but also on the level of the parallel blocks. The crossover was a
two parent, two point recombination process that preserves the width of the quantum
circuit by selecting cut points only between the parallel blocks.

Table 4. Parameters of the GA used during the experiments.

5.6 CUDA acceleration
The CUDA framework was developed by NVIDIA for the growing usage of the GPU for
computing tasks. The acceleration implemented in the GA is restricted only to the matrix
calculation. Figure 20 shows where the CUDA acceleration is used.

Fig. 20. Schema representing the usage of the CUDA accelerator in the computation of a
Quantum Circuit Matrix Representation.

The reason for using the accelerated matrix multiplication only during the matrix

multiplication and not for the Kronecker matrix product is the fact that the Kronecker

product is less computationally expensive as it requires only 2n ×2n multiplications while the

matrix product requires 2n×2n multiplications and 2n additions. Moreover, in order to

maximize the CUDA usage it is more optimal to use multiplication on matrices of the same

dimensions without requiring to re-parameterize the CUDA device. This is the case in the

matrix multiplication between each parallel block in a Quantum Circuit.

6. Experiments and discussion

The experiments carried in this section confirms the possibility to design classical sequence
detectors using the 1-way (measure many) circuit-based QFSM’s model. The
experimentation was done over a set of random sequences of various length. Each sequence

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

101

was being tested for circuits with different number of state qubits. This was done in order to
observe the role of embedding of the non-reversible sequence into a larger, reversible
unitary matrix.
The general function that the QFSM generates on the output is described by the eq. 37

(37)

with λ being a symbol read from the input and j is the index of the λ symbol in the

sequence. Thus the minimal condition for each sequence to be detected properly is that the
amount of the states is large enough to embed all the zero output to one half of the truth
table. this is a required consequence because the QFSM must have both the output function
and the state transition function reversible.
The experimentation was done for 5 randomly generated binary sequences with 7, 10, 15, 20
and 35 binary digits each. The sequences are shown in eq. 38

(38)

Each sequence was synthesized using a circuit with 3,4,5 and 6 qubits. The six qubit circuit is

large enough to embed even the largest sequence so as a reversible function is synthesizable.

Figures 21, 24 and 27 shows some examples of obtained circuits for each of the sequences.

Figure 21 is an example of Quantum Circuit that was used to detect the s 7 sequence and

does not use any probabilistic states. For the sake of understanding let us analyze the

sequence detection procedure using this circuit. The desired sequence is s 7 = { 0 1 0 1 1 1 1 }

thus the set of input states is given by , with

|φ〉 being the unmeasured component of the automata state. Naturally there are cases where

it is going to be determined by the measurement but for the clarity it is left in symbolic form

and thus allowing it to be in superposed or entangled state.

Fig. 21. s 7-sequence exact detector

www.intechopen.com

 New Achievements in Evolutionary Computation

102

The size of the QFSM is four qubits with two topmost qubits |q0〉, |q1〉 are the state qubits,
|i〉 is the input qubit and |o〉 is the output qubit (Figure 21). Table 22 represents the
consecutive states as obtained during the QFSM procedure described in this work (Section
5.3). In particular this QFSM shows that it recognize the given sequence without the use of
any probabilistic or superposed states.
This can also be seen on the circuit matrix that can easily be build from the given sequence
of gates. For clarity the state transition is also shown in the form of a equation (eq. 39).

Fig. 22. Four qubits s7-sequence detector with deterministic input and output states

(39)

Observe that two different steps can be clearly distinguished in eq. 39; first a standard step

that acts directly on a previously generated machine state such as in steps s0, s3, s4, s5 and s6,

second a step that requires explicit modification of the previous machine state, in particular

a state that requires an initialization of the output and/or the input qubit, such as shown in

steps s1 to s2. Observe that this particular sequence detector does not requires - for this

sequence – any re-initialization of the input qubit as a result of previous step; the input qubit

is not modified by the automaton. Also observe that despite the fact that this circuit can

generate quantum states, these states are not generated during the sequence s7. This can be

seen on Figure 23.

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

103

The states in a circle represent natural states as would be obtained by the cycle of the
reversible function, while the states in the hexagons represents forced states that are
obtained after modifying the input qubit. The Figure 23 also represents the forced states
with one dotted arrow incoming and one outgoing dashed arrows. The arrow incoming to
the forced state is indexed with a binary number representing the required input change so
that the forced state is obtained. The outgoing arrow represents that the forced state is then
used as a normal natural state; i.e. a Unitary transform is applied to it and the result is
computed. For instance the s1 character recognition, starts with the machine in the state

|0000〉, which is forced to |0010〉 and then the Unitary transformation is applied and yields
|1110〉 state. The whole sequence detection can be in this manner analysed from eq. 39 and
Figure 23.

Fig. 23. The cycle of a Reversible Circuit used as a detector for the s7 sequence

A more interesting example is shown in Figure 24. The displayed circuit also recognizes the

same sequence s7 but in this case the automaton uses probabilistic and superposed quantum

states. This can be seen in Table 25; this table has every row split in half so that it fits in size.

For more details eq. 40 shows step by step the process of recognition performed by this

automaton. Observe that as the result of the last step the output of the circuit is |o〉 = |1 〉
thus confirming the correct sequence has been detected.

Fig. 24. s7-sequence detector with probabilistic and superposed states

www.intechopen.com

 New Achievements in Evolutionary Computation

104

(40)

Fig. 25. Four qubits s7-sequence detector with probabilistic input and output states

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

105

6.1 Sequence detection
The detection of a given sequence by the here formulated QFSM’s can be analyzed starting
from Reversible Circuits. Assume, the initial state is 0000 for the rest of this discussion. As
example take the reversible (deterministic) detector such as given in figure 21. It is obvious
that the power of properly detecting a given sequence; i.e. to generate a sequence 0 × n + 1 ×
1 is proportional to the cycle of this detector given by the reversible circuit for a fixed n and
to the fact of having the cycle connected to a finish sequence either by a forced change of
input or by a natural evolution.
To see this, just assume that the given circuit is specified by the following permutation cycle
(0, 4, 8, 12)(2, 6, 10, 14)(1, 3, 5, 7, 9, 11, 13, 15). Clearly, the first cycle (0, 4, 8, 12) represents
the states containing the 0 as input and 0 as output, the (2, 6, 10, 14) cycle represents the
states having 1 for input and 0 as output and the last cycle represents all outputs having the
output bit set to 1. The longest possible sequence this automaton can detect (without using
the force states transitions) is of length 0 becausethe detecting cycle is disjoint from both the
cycles identifying 0’s and 1’s.
For illustration assume the Reversible Circuit specifying the automaton be described by
(0,6,4,2) (8,12,10,14,1) (3,5,7,9,11,13,15) permutation cycles. This automaton will not detect
successfully any sequence if starting from the initial state 0000. This is shown in figure 26.
Observe that no matter the input change of any of the state of the cycle (0,6,4,2) will always
lead back to a state from the same cycle. Thus such a machine cannot generate a 1 on the

output when starting in the state |0000〉.

Fig. 26. The cycle of a Reversible Circuit used as a detector

The Figure 26 shows that in order to have a successful detector, at least one natural

transition or a forced transition must lead to a cycle that

allows to generate an output with value 1.
Now consider an Reversible Circuit defined by the permutations given by (0, 4, 8, 12, 3) (2, 6,
10, 14, 1) (5, 7, 9, 11, 13, 15). Such automaton now can detect any sequence that contains at

www.intechopen.com

 New Achievements in Evolutionary Computation

106

least four consecutive 0’s or four consecutive 1’s. To maximize the length of a given
sequence it is possible to allow the automaton to modify also its input qubit. In that case, as
also seen in the presented protocol in the Section 5.3, the maximal complexity of the
detected sequence is still equal to the sequence of maximum four 0’s and four 1’s.
The important cycles used for detection of the above specified Reversible circuit are shown
in Figure 28. Observe that only two out of three cycles are shown as the last cycle contains
all minterms that have 1 as output and thus can only be used as the end of sequence
indicator. Also the cycles are shown only up to a final state. Thus for instance the state

|0011〉 is not connected back to |0000〉 because once such state is attained the detection is
terminated. Such specified detector will detect any sequence that terminates with four 1’s or
four 0’s.

Fig. 27. Quantum circuits detecting the sequences s10 to s25

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

107

Fig. 28. The Reversible Circuit specified by the cycles (0,4,8,12,3) (2,6,10,14,1) (5,7,9,11,13,15)
used as a detector

Finally observe that for a given sequence it is possible to design a detector that is either
specified by only natural state transitions - as specified by the cycles of a reversible quantum
function or by combining the cycle with forced transitions. The former method will always
generate larger circuits while the later will allow more compact designs. However in the
framework of the presented Quantum detectors these approaches are equivalent from the
point of view of implementation. That is, at the begining of each computation cycle one need
to know exactly the input quantum state. Thus the main adavantage in designing detectors
with only natural state transitions resides in the fact that no initialization of the input qubit
is required because it is set at the output of the previous computational cycle.
To close this discussion about the detectors it is possible to synthesize detectors using both
purely Reversible or Quantum Unitary matrix. The size of the required circuit is dependent
on the amount of continuous 0’s or 1’s however it is not restricted by it. It is straight forward
to imagine such sequence detector that will have only smaller cycles and still will detect
similar sequence. This is because if the unitary transform modifies the input qubit, smaller
cycles can be combined to detect these particular sequences. For instance Figure 29 shows a
portion of a detector specified by a Reversible circuit. This detector will detect among others
the sequences terminating with three 0's or two 1's. Recall that only natural transitions are

used for the detection procedure. Thus for instance in figure 29 |1110〉 changes to state
|1100〉 when the input is changed from 1 to 0 and the consequent application of the Unitary
matrix on this state generates an 1 on output. This is the final state, and it indicates that at

www.intechopen.com

 New Achievements in Evolutionary Computation

108

least three 0 have been successfully detected before attaining it. The interested reader is
encouraged to read more about reversible and quantum sequence detector in [LP09, LPK09].
Table 5 shows the minimum number of qubits that have been experimentally obtained in

order to properly detect the sequences studied here. The sequence s7 has a sequence of four

1’s and a set of individual 1 and thus cannot be detected by less than circuit with 4 qubits.

Fig. 29. The Reversible Circuit detecting sequences ending with four 0’s or four 1’s.

Table 5. Minimum number of qubits required to detect a sequence: experimental
observations

The sequence s10 has two cycles at least: one with a sequence of two 1’s followed by a 0 and a

sequence of three 0’s. It is also not possible to construct such detector on 3 qubits because
the number of states required is at least 4 for both sequence and not counting the individual
0’s and 1’s. Similarly other sequences can be analyzed.
The Genetic Algorithm was run for multiple sizes for each sequence starting with three
qubits. The search was terminated when a circuit satisfying the constraints was found and
multiple searches were performed at the minimal width. Figure 30 shows the average of the

Fitness value for the s7, s10 and s15 sequences. The drawings show each curve over 500

generation cycles required for the detection of each of the sequences after which the
maximum generation is attained. Each curve is an average of 15 runs and the most
interesting feature is that similarly to quantum function logic synthesis the algorithm finds a
circuit that is very close to the complete solution and then stagnates before finding a
solution. This problem is related to both the difficulty of synthesis as well as the fact that

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

109

Quantum circuit are specified by Unitary matrices in which the error is of symmetric nature.
Such error can be seen as a step function where with each step a pair of coefficient in the
Unitary matrix is corrected.
Also observe how the fitness value stagnates with larger sequences with the presented qubits
despite the fact that a solution was found for each sequence for the presented number of

qubits. Interestingly, observe that the sequence s7 to s20 are from the same class as they have

been identified by detectors of similar size. This goes back to the discussion above about the
limits of a Quantum and Reversible circuit to recognize a particular class of sequences.

Fig. 30. Figures capturing the fitness average for four sequence detectors

7. Conclusion

In this paper we presented a methodology and we showed some experimental results
confirming that our approach is possible in simulated environment. Also because all
simulated elements of the presented experiments are based on existing Quantum
operations, the simulated detectors are Quantum-realizable.
It is well known that the state assignment problem is a NP-complete problem [Esc93] and
the finding a minimal State Assignment has been solved only for particular subsets of FSM’s
[LPD95] or using Quantum computing [ANdMM08]. This problem is here naturally solved
(without addressing it). The setup of this experimental approach automatically generates a
state assignment such that when the detection is successful the state assignment is as well.

www.intechopen.com

 New Achievements in Evolutionary Computation

110

This is a natural consequence of both the fact that the machine is reversible and the fact that
the sequence is successfully identified.
The presented algorithm proved successful in the design of Quantum detectors. Despite the
sequences were randomly generated the proposed approach was possible due to the
hardware accelerated computational approach. For more details about this approach the
reader can consult [LM09].
The synthesis of quantum detectors has not been completely explored and remains still an
open issue mainly because Quantum computing implementation is not a well established
approach. Each technology provides different possibilities and has different limitations. In
some cases specification using Quantum circuits is the most appropriate in others
Hamiltonians must be used. Thus one of the main remaining tasks is to completely describe
Quantum detectors and formally define their issues related with implementation and define
classes of circuits more approapriate for different technologies.

8. References

[AF98] A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths,
weaknesses and generalizations. pages 332–341, Nov 1998.

[ANdMM08] M.P.M. Araujo, N. Nedjah, and L. de Macedo Mourelle. Quantum-inspired
evolutionary state assignment for synchronous finite state machines. Journal of
Universal Computer Science, 14(15):2532–2548, 2008.

[AW02] A. Ambainis and J. Watrous. Two-way finite automata with quantum and classical
states. Theoretical Computer Science, 287(1):299–311, 2002.

[Bak87] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In In
Proceedings of the Second International Conference on Genetic Algorithms and their
Application, pages 14–21, 1987.

[BBC+95] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T.
Sleator, J. A. Smolin, and Weinfurter H. Elementary gates for quantum
computation. The American Physical Society, 5:3457–3467, 1995.

[Bey01] H.G. Beyer. The Theory of Evolution Strategies. Springer, 2001.
[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal of

computing, pages 1411–1473, 1997.
[BZ00] A. Blais and A. M. Zagoskin. Operation of universal gates in a solid state quantum

computer based on clean josephson junctions between d-wave superconductors.
Phys. Rev. A, 61, 2000.

[cbl] GSL CBLAS. http://www.gnu.org/software/gsl/manual/html node/GSLCBLAS-
Library.html.

[cud] NVIDIA CUDA. http://www.nvidia.com/object/cuda learn.html.
[CZ95] J.I. Cirac and P. Zoller. Quantum computation with cold trapped ions. Physical

Review letters, 74(20):4091, 1995.
[DiV95] P. DiVincenzo. Two-bit gate for quantum computation. Physical Review A, 50:1015, 1995.
[DKK03] L.M. Duan, A. Kuzmich, and H.J. Kimble. Cavity QED and quantum-information

processing with ’hot’ trapped atoms. Physical Review A, 67, 2003.
[Dun98] M. R. Dunlavey. Simulation of finite state machines in a quantum computer, 1998.
[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantummechanical description of

physical reality be considered complete? Phys. Rev., 47(10):777–780, May 1935.
[ES03] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2003.
[Esc93] B. Eschermann. State assignment for hardwired vlsi control units. ACM Comput.

Surv., 25(4):415–436, 1993.

www.intechopen.com

Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection

111

[FOW66] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence through Simulated
Evolution. John Wiley, 1966.

[GKD89] D.E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation,
analysis and first results. Complex Systems, 3:493– 530, 1989.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, MA, 1989.

[Gra81] A. Graham. Kronecker Products and Matrix Calculus With Applications. Ellis Horwood
Limited, Chichester, U.K., 1981.

[Gru99] J. Gruska. Quantum computing. Osborne/McGraw-Hill,U.S., 1999.
[KBA99] J.R. Koza, F.H. Bennett, and D. Andre. Genetic Programming III: Darwinian Invention

and Problem Solving. San Francisco, California: Morgan Kaufmann Publishers, 1999.
[Koz94] J.R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT

Press, 1994.
[KW97] A. Kondacs and J.Watrous. On the power of quantum finite state automata. In IEEE

Symposium on Foundations of Computer Science, pages 66–75, 1997.
[LB04] A. Leier and W. Banzhaf. Comparison of selection strategies for evolutionary

quantum circuit design. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pages 557–568, 2004.

[Lei04] A. Leier. Evolution of Quantum Algorithms Using Genetic Programming. PhD thesis,
University of Dortmund, 2004.

[LLK+06] S. Lee, S-J. Lee, T. Kim, J-S. Lee, J. Biamonte, and M. Perkowski. The cost of
quantum gate primitives. Journal of Multiple Valued Logic and Soft Computing,
12(5/6):561–574, 2006.

[LM09] Miller M. Perkowski M. Lukac M., Kameyama M. Evolutionary quantum logic
synthesis: Representation vs. micro-parallelism - submitted, 2009.

[LP02] M. Lukac and M. Perkowski. Evolving quantum circuit using genetic algorithm. In
Proceedings of the 2002 NASA/DoD Conference on Evolvable hardware, pages 177–185, 2002.

[LP05] M. Lukac and M. Perkowski. Combining evolutionary and exhaustive search to find
the least expensive quantum circuits. In Proceedings of ULSI symposium, 2005.

[LP08] M. Lukac and M. Perkowski. Inductive learning of quantum behaviors. Facta
Universitatis, special issue on Binary and Multiple-Valued Switching Theory and Circuit
Design, 2008.

[LP09] M. Lukac and M. Perkowski. Quantum finite state machines as sequential quantum
circuits. In Proceedings of ISMVL, 2009.

[LPD95] Shihming Liu, Massoud Pedram, and Alvin M. Despain. A fast state assignment
procedure for large fsms. In DAC ’95: Proceedings of the 32nd ACM/IEEE conference
on Design automation, pages 327–332, New York, NY, USA, 1995. ACM.

[LPG+03] M. Lukac, M. Perkowski, H. Goi, M. Pivtoraiko, C. H. Yu, K. Chung, H. Jee, B.-G.
Kim, and Y.-D. Kim. Evolutionary approach to quantum reversible circuit
synthesis. Artif. Intell. Review., 20(3-4):361–417, 2003.

[LPK09] M. Lukac, M. Perkowski, and M Kameyama. Sequential quantum devices: A
circuit-based approach, 2009.

[LPMP02] M. Lukac, M. Pivtoraiko, A. Mishchenko, and M. Perkowski. Automated
synthesis of generalized reversible cascades using genetic algorithms. In Proceedings
of Fifth Intern. Workshop on Boolean Problems, pages 33–45, 2002.

[Luk09] M. Lukac. Quantum Logic Synthesis and Inductive Machine Learning, Ph.D. dissertation.
PhD thesis, 2009.

[MC00] C. Moore and J.P. Crutchfield. Quantum automata and quantum grammars.
Theoretical Computer Science, 237:275–306, 2000.

www.intechopen.com

 New Achievements in Evolutionary Computation

112

[MC06] Jialin Mi and Chunhong Chen. Finite state machine implementation with single-
electron tunneling technology. In ISVLSI ’06: Proceedings of the IEEE Computer
Society Annual Symposium on Emerging VLSI Technologies and Architectures, page 237,
Washington, DC, USA, 2006. IEEE Computer Society.

[MCS04] P. Massey, J.A. Clark, and S. Stepney. Evolving quantum circuits and programs
through genetic programming. In Proceedings of the Genetic and Evolutionary
Computation conference (GECCO), pages 569–580, 2004.

[MCS05] P. Massey, J.A. Clark, and S. Stepney. Evolving of a humancompetitive quantum
fourier transform algorithm using genetic programming. In Proceedings of the
Genetic and Evolutionary Computation conference (GECCO), pages 1657–1664, 2005.

[Moo65] G.E. Moore. Cramming more components onto integrated circuits. In Electronics,
April 19, 1965.

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[PB99] Arun Kumar Pati and Samuel L. Braunstein. Impossibility of deleting an unknown
quantum state, 1999.

[PW02] J. Pachos and H. Walther. Quantum computation with trapped ions in an optical
cavity. Physical Review Letters, 89(18), 2002.

[RCHCX+08] Y. Rong-Can, L. Hong-Cai, L. Xiu, H. Zhi-Ping, and X. Hong. Implementing a
universal quantum cloning machine via adiabatic evolution in ion-trap system.
Communications in Theoretical Physics, 49(1):80–82, 2008.

[Rub01] B.I.P. Rubinstein. Evolving quantum circuits using genetic programming. In
Congress on Evolutionary Computation (CEC2001), pages 114–121, 2001.

[SBS05] R. Stadelhofer,W. Banzhaf, and D. Suter. Quantum and classical parallelism in
parity algorithms for ensemble quantum computers. Physical Review A, 71, 2005.

[SBS08] R. Stadelhofer, W. Banzhaf, and D. Suter. Evolving blackbox quantum algorithms
using genetic programming. Artif. Intell. Eng. Des. Anal. Manuf., 22:285–297, 2008.

[Sch95] H.P Schwefel. Evolution and Optimum Seeking. New York, Wiley & Sons, 1995.
[Sho94] P.W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.

In Proc. 35nd Annual Symposium on Foundations of Computer Science (Shafi Goldwasser,
ed.), pages 124– 134. IEEE Computer Society Press, 1994.

[SKT04] A. Sakai, Y. Kamakura, and K. Taniguchi. Quantum lattice-gas automata simulation
of electronic wave propagation in nanostructures. pages 241–242, Oct. 2004.

[Spe04] L. Spector. Automatic Quantum Computer Programming: A Genetic Programming
Approach. Kluwer Academic Publishers, 2004.

[Wat95a] J. Watrous. On one-dimensional quantum cellular automata. In Proceedings of the
36th Annual Symposium on Foundations of Computer Science, pages 528–537, 1995.

[Wat95b] J. Watrous. On one-dimensional quantum cellular automata. In Proceedings of the 36th
Annual Symposium on Foundations of Computer Science (FOCS’95), pages 528–532, 1995.

[Wat97] J. Watrous. On the power of 2-way quantum finite state automata. Technical Report
CS-TR-1997-1350, 1997.

[WG98] C. Williams and A. Gray. Automated design of quantum circuits. In in Proceedings of
QCQC 1998, pages 113–125, 1998.

[YCS09] A. YakaryIlmaz and A.C. Cem Say. Efficient probability amplification in two-way
quantum finite automata. Theoretical Computer Science, 410(20):1932 – 1941, 2009.
Quantum and Probabilistic Automata.

[YI00] T. Yabuki and H. Iba. Genetic algorithms for quantum circuit design, evolving a
simpler teleportation circuit. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pages 421–425, 2000.

www.intechopen.com

New Achievements in Evolutionary Computation

Edited by Peter Korosec

ISBN 978-953-307-053-7

Hard cover, 318 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Evolutionary computation has been widely used in computer science for decades. Even though it started as far

back as the 1960s with simulated evolution, the subject is still evolving. During this time, new metaheuristic

optimization approaches, like evolutionary algorithms, genetic algorithms, swarm intelligence, etc., were being

developed and new fields of usage in artificial intelligence, machine learning, combinatorial and numerical

optimization, etc., were being explored. However, even with so much work done, novel research into new

techniques and new areas of usage is far from over. This book presents some new theoretical as well as

practical aspects of evolutionary computation. This book will be of great value to undergraduates, graduate

students, researchers in computer science, and anyone else with an interest in learning about the latest

developments in evolutionary computation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Martin Lukac and Marek Perkowski (2010). Evolutionary Logic Synthesis of Quantum Finite State Machines for

Sequence Detection, New Achievements in Evolutionary Computation, Peter Korosec (Ed.), ISBN: 978-953-

307-053-7, InTech, Available from: http://www.intechopen.com/books/new-achievements-in-evolutionary-

computation/evolutionary-logic-synthesis-of-quantum-finite-state-machines-for-sequence-detection

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

