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1. Introduction 

Quantum Finite State Machines (QFSM) are a well known model of computation that was 
originally formalized by Watrous [Wat95a, Wat95b, Wat97], Kondacs [KW97] and more 
generally Quantum Turing Machines (QTM) have been described by Bernstein [BV97]. In 
particular the 2-way QFSM have been shown to be more powerful than classical FSM 
[KW97]. Thus the interest in quantum computational models of automata and machines is 
not only theoretical but has also possible applications realization of future quantum 
computer and robotics controllers. 
In this chapter we present the evolutionary approach to the synthesis of QFSM’s specified 
by a quantum circuits. This approach was originally proposed by [LP09] and is possible on 
yet only theoretical basis. In particular this approach requires a selective qubit-initialization 
in a quantum register. In contrast the current methodology and approaches to practical 
Quantum Computation, the current practical realization of quantum computation always 
starts with the initialization of the whole quantum register and terminates by the 
measurement of either all of the qubits or by the measurement of a given subset of qubits. 
Moreover in general there is no reuse of any element of the quantum register. 
In this text we analyze in details what type of QFSM can be successfully synthesized. 
The evolutionary approach will evaluate the results based on both the correctness and the 
cost of the evolved machines. Multiple parameters such as type of error evaluation, 
synthesis constraints and evolutionary operators will be discussed when evaluating to the 
obtained results. 
In particular we show how to synthesize QFSMs as sequence detectors and illustrate their 
functionality both in the quantum world and in the classical (observable) world. The application 
of the synthesized quantum devices is illustrated by the analysis of recognized sequences. 
Finally, we provide analytic method for the used evolutionary approach and we describe 
the experimental protocol, and its heuristic improvements. We also discuss the results. In 
addition, we investigate the following aspects of the Evolutionary Quantum Logic Synthesis: 
• Quantum probabilistic FSM and Reversible FSM. 

• Hardware acceleration for the Fitness evaluation using CBLAS [cbl] and using CUBLAS 
[cud] (CUDA[cud] implemented Basic Linear Algebra Subprograms (BLAS)[cbl] 
subroutines). 

Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,  
 ISBN 978-953-307-053-7, pp. 318, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 New Achievements in Evolutionary Computation 

 

78 

2. Background in quantum computing 

In Quantum Computing the information is represented by a Quantum Bit also called qubit. 
The wave equation is used to represent a qubit or a set of them. Equation 1 shows a general 
form in the Dirac notation. 

 

(1) 

In Dirac notation |⋅〉 represents a column vector, also called a ket. The bra element denoted 〈⋅| 
stands for hermitian conjugate. In this manner a bra-ket 〈⋅|⋅〉 represents the inner, dot-vector 
product while |⋅〉〈⋅| represents the outer vector product. The general equation (1), 

 can be written as  and is 

the probability of observing the state |0〉 while  is the probability of observing |1〉. 
In general, to describe basis states of a Quantum System, the Dirac notation is preferred to 
the vector-based Heisenberg notation. However, Heisenberg notation can be more practical 
to represent the exponential growth of the quantum register. Let two orthonormal quantum 
states be represented in the vector (Heisenberg) notation eq. 2. 

 

(2) 

Different states in this vector notation are then multiplications of all possible states of the 
system, and for a two-qubit system we obtain (using the Kronecker product[Gru99, Gra81, 
NC00]) the states represented in eq. 3: 

 

(3) 

The Kronecker product exponentially increases the dimension of the space for matrices as well: 

 

(4) 

This tensor product operation for a parallel connection of to wires is shown in Figure 1. 
Assume that qubit a (with possible states |0〉 and |1〉) is represented by  
and qubit b is represented by . Each of them is represented by the 
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Fig. 1. Circuit representing the W ⊗X operation 

superposition of their basis states, but put together the characteristic wave function of their 
combined states will be: 

 
(5) 

with αa and βb being the complex amplitudes of states of each EP respectively. As shown 

before, the calculations of the composed state used the Kronecker multiplication operator. 

Hence comes  the possibility to create quantum memories with extremely large capacities 

and the requirement for efficient methods to calculate such large matrices. 
Quantum Computation uses a set of Quantum properties. These are the measurement, the 
superposition and the entanglement. First, however, the principles of multi-qubit system 
must be introduced. 

2.1 Multi-Qubit System 
To illustrate the superposition let’s have a look at a more complicated system with two 
quantum particles a and b represented by  and  
respectively. For such a system the problem space increases exponentially and is 
represented using the Kronecker product [Gru99]. 

 

(6) 

Thus the resulting system is represented by  
 (5) where the double coefficients obey the unity (completeness) rule and 

each of their powers represents the probability to measure the corresponding state. The 
superposition means that the quantum system is or can be in any or all the states at the same 
time. This superposition gives the massive parallel computational power to quantum 
computing. 

2.2 Entanglement and projective measurements 
Assume the above two-particle vector  (two-qubit quantum system) is transformed using 
the quantum circuit from Figure 2. 
This circuit executes first a Hadamard transform on the top qubit and then a Controlled-Not 
operation with the bottom qubit as the target. Depending on the initial state of the quantum 
register the output will be either  . 
Thus it is not possible to estimate with 100% probability the initial state of the quantum 
register. 
Let   at level a (Figure 2). The first step is to apply the [H] gate on the qubit-a and 
the resulting state at level b of the circuit is 
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Fig. 2. EPR producing circuit 

 

(7) 

Next the application of the CNOT gate results in: 

 

(8) 

For an output 0 (on the qubit-a), the projective measurement of the first (topmost) qubit 
(qubit-a on Figure 2) on this stage would collapse the global state (with a single 
measurement) to the state |00〉: 

 

(9) 

with 

 

(10) 

and 

www.intechopen.com



Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection  

 

81 

 

(11) 

Similarly, the probability of measuring output on the qubit-a in state |0〉 is: 

 

(12) 

If one would look to the output of the measurement on the second qubit (qubit-b), the 

probability for obtaining |0〉 or |1〉 is in this case the following: 

 

(13) 

Thus the expectation values for measuring both values 0 or 1 on each qubit independently 
are  . 

If however one looks on the second and non-measured qubit (if the qubit-a is measured, it is 
the qubit-b, and vice versa) and calculates the output probabilities, the output is 
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contradictory to the expectations given by standard probabilistic distribution such as a coin 
toss q = 1 − p. To see this let’s start in the state 

 

(14) 

and measure the qubit-a and obtain a result. In this case assume the result of the 
measurement is given by: 

 

(15) 

Then measuring the second qubit (qubit-b) will not affect the system because the 
measurement of the qubit-a has collapsed the whole system into a single basis state: 

 (16) 

The probability for obtaining a |1〉 on the qubit-b is thus 0 and the measurement on qubit-b 
(after having measured qubit-a) has no effect on the system at all.  The states of qubits are 
thus correlated. This non-locality paradox was first described by Einstein-Podolsky-Rosen 
work[EPR35] and is known as the EPR paradox. This particular phenomenon is one of the 
most powerful in quantum mechanics and quantum computing, as it allows together with 
superposition the speedup of finding solutions to certain types of problems. Finally, it can 
be noted that mathematically, the entangled state is such that it cannot be factored into 

simpler terms. For example, the state 
 
and thus it can be factored. 

However, the states as those introduced in eq. 15 cannot be transformed in such a manner 
and are thus entangled; physically implying that they are related through measurement or 

observation.  

2.3 Single-Qubit quantum gates 
We are now concerned with matrix representation of operators. The first class of important 
quantum operators are the one-qubit operators realized in the quantum circuit as the one-
qubit (quantum) gates. Some of their matrix representations can be seen in equation 17. 

 

(17) 

Each matrix of an Operator has its inputs from the top (from left to right) and the outputs on 
the side (from top to bottom). Thus taking a state  (eq.18) and an unitary operator H (eq. 19) 

 (18) 
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(19) 

the result of computation is represented in equation 20. 

 

(20) 

 

(21) 

Equation 21 shows the inputs (input minterms) on the top of the matrix and the output 
minterms on the left side. Thus for an input |10〉 (from the top) the output is |11〉 (from the 
side). 

2.4 Multi-Qubit quantum gates 
The second class of quantum gates includes the Controlled-U gates. Schematic 
representation of such gates can be seen in Figure 3. Gates in Figure 3a – Figure 3c represent 
the general structures for single-control-qubit single-qubit gate, two-control-qubit single-
qubit gate, single-control-qubit two-qubit gate and two-control-qubit two-qubit gate 
respectively. The reason for calling these gates Controlled is the fact that they are based on 
two operations: first there is one or more control bits and second there is a unitary 
transformation similar to matrices from equation 17 that is controlled. For instance the 
Feynman gate is a Controlled-NOT gate and has two input qubits a and b as can be seen in  
 

 
Fig. 3. Schematic representation of Controlled-U gates: a) general structure of single-qubit 
controlled-U gate (control qubit a, target qubit, b) two-qubit controlled, single-qubit 
operation, c) single-qubit controlled, two-qubit target quantum gate, d) Feynman (CNOT), 
e) Toffoli (CCNOT), f) Fredkin. a, b, c are input qubits and a’, b’ and c’ are respective 
outputs. 
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Figure 3. Its unitary matrix with input and output minters is shown in eq. (21). Thus qubits 
controlling the gate are called the control qubits and the qubits on which the unitary 
transform is applied to are called the target qubits. 
Figures 3d - Figure 3f represent special cases where the controlled unitary operator is Not, 
Not and Swap, respectively. The respective unitary matrices are in equations 21, 22a and 
22b. 
Equation 21 shows that if the input state is for instance |00〉 (from the top) the output is 
given by . Similarly for all other possible input /output 

combinations. 

(a) (b) 

 

(22) 

The Controlled-U gate means that while the controlled qubit a is equal to 0 the qubits on 
output of both wires are the same as they were before entering the gate (a’ = a, b’ = b). Now 
if qubit a equals to 1, the result is a’ = a and b’ = ¬b according to matrix in equation (17.a). It 
can be easily verified that the CCNOT (Toffoli) gate is just a Feynman gate with one more 
control qubit and the Fredkin gate is a controlled swap as shown on Figure 3. 
A closer look at equations (21 and 22) gives more explanation about what is described in eq. 
21: CNOT, eq. 22a : Toffoli and eq. 22b : Fredkin gates. For instance, equation 21 shows that 
while the system is in states |00〉 and |01〉 the output of the circuit is a copy of the input. For 
the inputs |10〉 and |11〉 the second output is inverted and it can be seen that the right-lower 
corner of the matrix is the NOT gate. Similarly in the other two Controlled gates the NOT 
gate matrix can be found. 

2.5 NMR-based quantum logic gates 
The NMR (Nuclear Magnetic Resonance) technology approach to quantum computing 
[Moo65, PW02, DKK03] is the most advanced quantum realization technology used so far, 
mainly because it was used to implement the Shor algorithm [Sho94] with 7 qubits [NC00]. 
Yet other technologies such as Ion trap [DiV95], Josephson Junction [DiV95] or cavity QED 
[BZ00] are being used. The NMR quantum computing has been reviewed in details in 
[PW02, DKK03] and for this paper it is important that it was so far the NMR computer that 
allowed the most advanced algorithm (7 qubit logic operation) to be practically realized and 
analyzed in details. Thus it is based on this technology that the constraints of the synthesis 
are going to be established for the cost and function evaluation. Some prior work on 
synthesis has been also already published [LLK+06] and few simple cost functions have been 
established. 
For the NMR-constrained logic synthesis the conditions are: 

• Single qubit operations: rotations Rx,Ry,Rz for various degrees of rotation θ. With each 

unitary rotation (Rx, Ry, Rz) represented in equation 23 
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(23) 

• Two-qubit operation; depending on approach the Interaction operator is used as Jzz or 

Jxy for various rotations θ 

Thus a quantum circuit realized in NMR will be exclusively built from single qubit rotations 

about three axes x,y,z and from the two-neighbor-qubit operation of interaction allowing to 

realize such primitives as CNOT or SWAP gates. Examples of gates realized using NMR 

quantum primitives are shown in Figure 5 to Figure 8. 
 

 

Fig. 4. Structure of the Toffoli gate 
 

 

Fig. 5. Single pulse Logic gate – NOT 
 

 

Fig. 6. Two-pulses logic gate – Hadamard 
 

 

Fig. 7. Detailed Realization of Feynman Gate with five EM pulses. 
 

 

Fig. 8. Five-pulses logic gate - Controlled-V 

Also, the synthesis using the NMR computing model using EM pulses, is common to other 
technologies such as Ion Trap [CZ95, PW02] or Josephson Junction [BZ00]. Thus the cost 
model used here can be applied to synthesize circuits in various technologies, all of these 
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technologies having the possibility to express the implemented logic as a sequence of EM 
pulses. 

3. Quantum finite state machines 

The paradigms of quantum circuits from Section 2 are applied in this paper to the synthesis 
of computational models such as QFSM as defined in [LPK09]. This section briefly 
introduces the knowledge about Quantum computational models and their properties as 
well as specifies the types of devices that are going to be synthesized. We describe the 1-way 
Quantum Finite State Machines (FSM) from both the theoretical (computational) point of 
view as well as from the engineering (circuit) point of view. Most of the work in this area is 
still on the theoretical level but the proofs of concept quantum devices [Dun98, SKT04, 
MC06, RCHCX+08, YCS09] allow to speculate that such models will be useful for quantum 
logical devices that will appear in close future. 

3.1 1-way quantum finite automata 
Quantum Finite State Machines (QFSM) are a natural extension of classical (probabilistic) 
FSM’s. Two main types of QFSM are well known: One-way QFSM (1QFSM) [AF98, MC00] 
and two-way QFSM (2QFSM)[AW02, KW97]. As will be illustrated and explained the 
1QFSM, can accept sequentially classical input, quantize it, process it and measures its 
quantum memory after each operation (Figure 9). In this work the focus is on the synthesis 
of the 1QFSM from Figure 9(b). From now on the general designation of QFSM will refer to 
1QFSM in this work. Other type of described QFSMs will be specifically named. 
 

 

Fig. 9. Schematic representation of a 1QFSM; (a) after each  computation step the machine 
state is measured, (b) after each computation step the output is measured, (c) after each 
computational step the machine state and the output state are measured. 

In contrast to that, the 2QFSM is designed to operate on quantum input data (allowing to 

put the reading head in superposition with the input tape, and requiring all the input data 

to be present at once for the maximum efficiency) and the measurement is done only at the 

end of a whole process. 

Definition 3.1 

Quantum State Machine - a QFSM is a tuple Γ = {Q,Λ, q0,Qac,QrjI , δ}, where Q is a finite set 

of states, σ is the input alphabet, δ is the transition function. The states q0 ∈ Q′, Qac ⊂ Q and 

Qrj ⊂ Q are the initial states, the set of accepting states and the set of rejected states, 

respectively.                                                                                                                                            

The QFSM machine action maps the set of machine states and the set of input symbols into 

the set of complex machine next states. The computation of such machine is required to be 

www.intechopen.com



Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection  

 

87 

done using unitary operators and is performed on the basis set
 
B

q
 using unitary operators 

Uθ, θ ∈Θ. In particular the QFSM uses a set of Unitary Operators corresponding to the input 

of input characters on the input tape. Thus for a given string to be processed and prior to the 

whole process termination (string either accepted or rejected), the overall processing can be 

represented as: 

 (24) 

with M  being the application of the  operator to the current state and creating the 

configuration |q〉 followed by the measurement of the current state M (projecting the 

state into G). 
The 1QFSM was proven to be less powerful or equally powerful to its classical counterpart 
1FSM [Gru99, KW97] in that it can recognize the same classes of regular languages as the 
classical FSM can recognize. 
The above described 1QFSM is also called the measure-many quantum finite automaton 
[KW97]. A model called measure-once quantum finite automata was also introduced and 
studied by Moore [MC00]. The measure-many 1QFSM is similar to the concepts of the 
2QFSM. For comparison we illustrate the main differences between the 1QFSM and 2QFSM 
below. 
Example 3.1.1 1QFSM 
Let be two possible states (including the accepting and rejecting states) of a 

single-qubit machine M and with transition functions specified by the transitions defined in 
eq. 25 corresponding to the state diagram in Figure 10a. 
 

 

Fig. 10. (a) State transition diagram for the 1QFSM defined by the transition function 25, (b) 

the representation of the QFSM using quantum multiplexers. Observe two control outputs 

|q 〉 specifying the machine action/states and the input symbols selecting the appropriate 

unitary transform Vλ for λ ⊂ {#, $, 0, 1}. 
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(25) 

The machine M, specified in eq. 25 represents a state machine that uses the H gate when the 
input is 0 (V0 = H) and the Pauli-Z rotation gate when the input is 1 (V1 = Z). Observe that 
machine M would have different behavior for measure-once and measure-many 
implementation. In the measure-many case, the machine generates a quantum coin-flip 
while receiving input 0 and while receiving input 1 the Pauli-Z rotation is applied. Observe 

in the measure-once case, that for example for the string input θ = ”010” the many-measure 
machine will implement a NOT using [H][Z][H].                                                                            

Note that in this approach to QFSM each input symbol λ∈{#, $, 0, 1} is represented by a 

unitary transform that can be seen as shown in Figure 10.  No measurement is done here on 

|q〉 while the sequence of quantum operators is applied to this state. The 2QFSM operates on a 
similar principle as the 1QFSM model but with the main difference being the application of the 
measurement. This is schematically shown in Figure 11 for the completeness of explanation. 
 

 

Fig. 11. Schematics representing the difference between the 1QFSM and 2QFSM. On the top, 
the 1QFSM - for each input character read from left to right from the tape, a unitary 
transform U is applied on the state and the state is measured. On the bottom, the 2QFSM 
moves on the input tape left and right, the unitary transform U is applied on the state and 
only once the computation is terminated the final state is observed/measured. 
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3.2 Quantum logic synthesis of sequence detectors 
The problem to synthesize the QFSM is to find the simplest quantum circuit for a given set 

of input-output sequences thus letting the state assignment problem for this machine be 

directly solved by our synthesis algorithm. This direct synthesis approach can be applied to 

binary, multiple-valued and fuzzy quantum machines with no principle differences - only 

fitness functions are modified in an evolutionary algorithm [LPG+03, LP05]. 

Let us assume that there exists a sequential oracle that represents for instance Nature, robot 

control or robot’s environment. In our example this oracle is specified by a state diagram in 

Figure 12a. This oracle can represent partial knowledge and a deterministic or probabilistic 

machine of any kind. Assume that there is a clearing signal (denoted by an arrow in Figure 

12a) to set the oracle into its initial state. By giving initial signals and input sequences and 

observing output sequences the observer can create a behavior tree from Figure 12b. 

 
 

 
 

Fig. 12. Example of a deterministic oracle and its diagnostic tree. 

As in general this oracle is never fully known, we perform experiments with it to determine 

some of its input-output behaviors. Assume that the oracle from Figure 12a is represented 

by the sequences from the experiments. These input-output sequences are shown in eq. 26 

with |iqo〉 represents the input qubit, the state qubit and the output qubit respectively. 

Observe that the diagnostic tree form Figure 12(b) shows the state with {a, b} and the inputs 

and the outputs as 0 and 1. 
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(26) 

As the full knowledge of the oracle is in general impossible - the oracle is approximated by 
sets of input-output sequences and the more such sequences that we create - the more 
accurate characterization of the oracle as a QFSM can be created. 

The overall procedure for the detection of a sequence of length j can be summarized as 

follows: 
1. Initialize all qubits of the quantum register to the initial desired state, 

2. repeat j times: 
a. Initialize the input qubit to a desired state and set the output qubit to |0〉 
b. Apply the quantum operator on the quantum register of the QFSM 
c. Measure the output qubit and observe the result 

Using the procedure describe above one can synthesize quantum circuits for oracles being 
well known universal quantum gates such as Fredkin. The input-output sequences found 
from this oracle are next used to synthesize the QFSM from Figure 13a. Figure 13b shows 
the state-diagram of the machine. 
 

 

Fig. 13. Example of implementation of Fredkin gate as a quantum FSM of first class. Observe 

the notation where |i〉 is the input, |q〉 is the machine state and |o〉 is the machine output. 

We will call the machine in Figure 13(a) the QFSM of the first class. This is because both the 
output and the input qubits are initialized after each computation. Observe that it is 
represented with feedback lines as in Figure 9 with input and output being initialized for 
each input and the state initialized only once - at the beginning of the computation. The 
interested reader can read more on this representation in [LP09], however it is important to 
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understand that the feedback lines are shown here only as the equivalent notation to the 
classical FSM as in Figure 9. The circuit-based approach to QFSM does not require this 
notation as this ”loop” is represented by the fact that the quantum qubit preserves its state 
[LP09]. 
A set of input-output sequences defining partially the "Fredkin QFSM" is represented in eq. 27. 

 

(27) 

A class two QFSM has in turn the initialization In applied only to the input qubit. This way 

the generated sequence is now expressed not only as a function  but rather as 

. This means that now the output is directly dependent also on the previous 

output state. This QFSM of the second class is shown in Figure 14. The difference between 
the QFSM of the first and of the second class can be seen on the output qubit   where in 

the case of the QFSM of the first class the initialization  means the initialization of the 

output at each computation step while the class two QFSM uses  initializes the output 

only once, at the beginning of the computation. 
 

 

Fig. 14. Example of implementation of Fredkin gate as a quantum FSM of second class 
where the output is initialized only once and the measurement is done either after each 
input or only completely at the end. 

For instance, a class two QFSM constructed from a  "Fredkin oracle" differs from the class by 

different possible state transition. This is shown in Table 1. The first column represent the 

current state of the quantum register build from the input, state and output qubits |iqo〉. The 

second column shows the state transitions of the class one QFSM. Observe that as the output 

qubit is always being initialized to |0〉 only four possible initial states exists (see eq. 27). The 

third column representing the state transitions of the class two QFSM and as can be seen in 

this case the state transition function is the full  "Fredkin oracle" function. 

Moreover, the difference between the first and the second class of these QFSM’s has also 

deeper implications. Observe that the QFSM presented in this paper, if implemented 

without the measurement on the output and the input qubit (the measurement is executed 

only after l computational steps) the QFSM becomes the well-known two-way QFSM 
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Table 1. Comparison of the state transition between the class one and class two QFSMs 

[KW97] because the machine can be in superposition with the input and the output. This is 
equivalent to stating that the reading head of a QFSM is in superposition with the input tape 
as required for the time-quadratic recognition of the {anbn} language [KW97]. 
Observe that to represent the 1-way and the 2-way QFSM in the circuit notation the main 
difference is in the missing measurement operations between the application of the different 
CU (Controlled-U) operations. This is represented in Figures 15 and 16 for 1-way and the 2-
way QFSMs, respectively. 
 

 

Fig. 15. Example of circuit implementing 1-way QFSM. 
 

 
 

Fig. 16. Example of circuit implementing 2-way QFSM. 

An interesting example of QFSM is a machine with quantum controls signals. For instance a 

circuit with the input qubit in the superposition generating the EPR quantum state [NC00] is 

shown in Figure 17. 
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Fig. 17. Example of the EPR circuit used as a QFSM. 

Observe the behavior of this QFSM as both class one and class two machine given in Table 2. 
In this case the distinction between the class one and class two machines is negligible 
because any measurement of the system collapses the whole system as the result of the 
entanglement present in it. 
 

 

Table 2. Comparison of the state transition between the class one and class two EPR circuit 
QFSM 

Figure 17 shows that because of the entanglement this machine has two distinct possible 
recognizable sequences. When the machine uses exclusively the output qubit initialized to 

|0〉 the possible initial states are only |00〉 and |10〉 because the measurement of the output 

state resulting in  and . 

4. Evolutionary algorithms and quantum logic synthesis 

In general the evolutionary problem solving can be split into two main categories; not 

separated by the methods that each of the trends are using but rather by the problem 

representation and by the type of problem solved. On one hand, there is the Genetic 

Algorithm (GA) [Gol89, GKD89] and Evolutionary strategies (ES) [Bey01, Sch95] that in 

general represents the information by strings of characters/integers/floats and in general 

attempts to solve combinatorial problems. On the other hand the design of algorithms as 

well as state machines was traditionally done by the Genetic Programming (GP) [Koz94, 

KBA99] and the Evolutionary Programming (EP) [FOW66, ES03]. 

Each of this approaches has its particular advantages and each of them has been already 
more or less successfully applied to the Quantum Logic synthesis. In the EQLS field the 
main body of research was done using the Genetic Programming (GP) for the synthesis of 
either quantum algorithms and programs [WG98, Spe04, Lei04, MCS04] or some specific 
types of quantum circuits[WG98, Rub01, SBS05, SBS08, LB04, MCS05]. While the GP 
approach has been quite active area of research the Genetic Algorithm approach is less 
popular and recently only [LP08, YI00] were using a Genetic Algorithm for the synthesis of 
quantum circuits. However, it was shown in [LP09] that it is also possible to synthesize 
quantum finite state machines specified as quantum circuit using a GA. The difference 
between the popularity of the usage between the GP and the GA for EQLS is mainly due to 
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fact that the problem space of quantum computing is not well known and is extremely large. 
Thus synthesizing quantum algorithms or circuits using the circuit approach (as in GA) can 
be much harder than using a rule-based or a program based approach (as in GP). Thus one 
could conclude that the GP approach deals only with the required information 
(programming, logic rules, relations) while the GA circuit based approach synthesize the 
overall unitary operator without any regards to the structure of the required information 
itself. 

5. Genetic algorithm 

A Genetic algorithm is a set of directed random processes that make probabilistic decisions - 
simulated evolution. Table 3 shows the general structure of a GA algorithm used in this 
work and this section follows this structure with the focus on the information encoding in 
the individuals and on the evaluation of the designed QFSMs  that are created by the GA. 
 

 

Table 3. Structure of a Genetic Algorithm 

5.1 Encoding/Representation 
For quantum logic synthesis the representation that we use is based on the encoding 
introduced in [LPMP02]. This representation allows to describe any Quantum or Reversible 
circuit [LPG+03, LP02]. All individuals in the GA are strings of ordered characters (each 
character representing a quantum gate) partitioned into parallel Blocks (Figure 18). Each 
block has as many inputs and outputs as the width of the quantum array (five in the case 
 

 

Fig. 18. Transformation of a QC from the chromosome (on the top) encoded string, to a final 
quantum circuit notation representation of this QC (on the right). Here SW is a Swap gate, H 
is a Hadamard gate and I is a Identity. In the middle there is one CCNOT (Toffoli) gate. 

www.intechopen.com



Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection  

 

95 

of Figure 18). The chromosome of each individual is a string of characters with two types of 

tags. First a group of characters is used to represent the set of possible gates that can be used 

in the individual string representation. Second, a single character ’p’ is used as a separator 

between parallel blocks of quantum gates. An example of a chromosome can be seen in 

Figure 18. In this encoding each space (empty wire or a gate) is represented by a character 

with appropriate decoding shown. Our problem-specific encoding was applied to allow the 

construction of as simple genetic operators as possible. The advantage of these strings is that 

they allow encoding of an arbitrary QL or RL circuit without any additional parameters. 

Several such parameters were used in previous research [LPG+03, LP05] and using them 

made the genetic algorithm more complicated. Please note that only the possibility to move 

gate characters, remove and add them to the chromosome consequently make it possible to 

construct an arbitrary circuit and also to modify this circuit in order to optimize it. 

5.2 Initialization steps of GA 
The GA requires an input file (c.f. Pseudo-Code 28 and Pseudo-Code 29) which specifies all 

input parameters and required settings. 

 

(28) 

However, for the clarity of explanation we focus only on particular settings required for the 

synthesis of the QFSM. The lines (20-38) shows the to search for a QFSM recognizing a 

sequence, first the measurement is required (line 20), the index of the output qubit is given 

(line 21) and finally the desired input sequence is given. This is done by both specifying the 

input value (here 0 or 1) and the probability of detection (here 1). Observe that the 

probabilities are specified as complex numbers with only the real component defined, e.g. 

(1,0). The use of complex coefficients for these observation probabilities is due to the fact 

that as in our previous work [LP05, Luk09] it allows to specify don't cares. For instance the 

coefficient (0,1) represents a logical don't care. 

The GA has several other settings, (common to most of GA methods) but also requires to 

specify circuit specific parameters. The initial circuits are created with a random size within 

the interval specified by a maximal (tmax) and minimal number of segments (tmin) in each 

individual (chromosome). Thus the size of the chromosome is not limited during the 

lifetime of an individual to a precise value, rather each individual has a dynamically 

changing genome within the bounds defined by the above variables. The presented GA is a 

subclass of the Messy GA [GKD89]. 

Another important parameter is related to the cost of the implemented Quantum Circuit. 
Each evolutionary run has specified the minimal cost MinCost that represents the known 
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minimum for the target function or device. If such minimal value is not known, a small 
value is used so that it always underestimates a possible minimal cost of the 
implementation. This circuit cost value is used in the cost function described in Section 5.4.1. 

 

(29) 

The input specifications also include the elementary quantum gates to be used as 
components, like the single qubit H, X, Y, Z or V gates and two qubit operations such as 
CNOT or CV, which are the building blocks of the quantum circuits to be found. The 
quantum gates are represented as quantum unitary (and Hermitian) matrices with the cost 
specified for each gate. This is shown in eq. 29, where for each input gate the number of 
wires and its cost is given as well. For instance, lines 66 to 69 in eq. 29 shows the unitary 
matrix of the CV gate[BBC+95], line 64 shows the number of qubits of this gate and the line 
65 shows its cost. 
Observe that each unitary matrix is specified by complex coefficients with real and 
imaginary component. For instance (1, 0) represents the real state while (0.5, 0.5) represents 

a complex state with coefficient  . 

In the presented experiments various sets of Quantum gates have been used but only the 

most succesful runs are presented. In particular only circuits with the most common gates 

are shown. These gates include single-qubit gates such as Pauli rotations, the V and V† gates, 

two-qubit gates such as CNOT, CV and CV† and three-qubit macros such as Toffoli gates. 

5.3 Evaluation of synthesis errors in sequential quantum circuits 
In order to properly evaluate a a QFSM for sequence detection the measurement operation 

must by applied on several occasions during the detection procedure. As was explained in 

the section 2, a quantum system must be measured in order for the information to be 

obtainable and readable in the macro world. Moreover, the measurement is a vital operation 

if one desires to reuse a quantum state. Recently, it was proven that a unknown quantum 

state cannot be completely erased [PB99] but is also easily understandable by observing the 

nature of the quantum computing. 
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The simplest explanation of the impossibility of completely erase an unknown state is due to 
the fact that there is no such a reversible quantum operation that would bring any quantum 
state to let’s say the |0〉 state. This is because every reversible operation is a permutation 
(even when it contains complex coefficients) and any operation that would achieve such a 
state reduction is inherently non reversible and by default non-quantum. An example of 
such non-reversible operation is shown in eq. 30. 

 
(30) 

Thus measuring a quantum state allows to determine its observable and consequently 
allows to apply a Unitary transformation that would generate the desired state. The model 
of computation for Quantum Finite State Machines proposed in [LPK09] is used here as 
model. Figure 19 shows steps of evaluation of a sequential Quantum Circuit. Observe that 

this QFSM has one qubit |q〉 for state, one qubit |i〉 for input and one qubit |o〉 for output. 

From the classical point of view this can be seen as an instance of a Mealy finite state 
machine. 
The synthesis process generates a unitary transformation matrix U, that during the 
evaluation is applied to the sequence of quantum states. Observe that both the input qubit 

and the output qubit must be measured in order to preserve a valid quantum state qubit |q〉 
as well as allow to properly restore both the input and the output qubit. After each iteration of 
the computation (application of the U operator) the output qubit is set to |0〉 while the input 
qubit is set to either |0〉 or |1〉 depending on the the user specifications from the input file. 
Equation 31 shows the first and the last step of the QFSM evaluation for the detection of the 
input sequence starting with s = {10011001110001}. Note that the detection requires that for 
all the input values but the last one the output qubit is set to |0〉 and is set to |1〉 for the last 
character. 

 

(31) 
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At the end of each evaluation sequence, the state of the output qubit and of the input qubit 
is determined by the measurement and can be reset with desired Unitary transformation to 
either |0〉 or to |1〉. The machine state qubit |q〉 is known only at the beginning of each 
evaluation sequence. This means that the state of the qubit can be in superposition or an 
orthonormal state. This also means that the machine state can be a multi qubit state that can 
become entangled between the various state qubits. 
 

 

Fig. 19. Schematic representation of the process of evaluation of a QC as a Measure-Many 
(one-way )QFSM in this work. 

Finally, the evaluation process is recored as a set of probabilities denoted as p0(0) and p0(1). 
They represent the probability of observation of the desired output 0 or 1 during the 
sequence detection. In particular, in this case the overall correctness of the detection can be 
written as: 

 

(32) 

To evaluate the error of the detector either the eq. 32 was used as a direct measure (it 
represents the correctness of the detection with respect to the selected observables), or a 
more standard calculation was used. The eq. 33 shows the standard RMS error computation. 
Both of these error evaluations are compared in the experimental section of this work. 

 

(33) 

5.4 Fitness functions of the GA 
During the search for the QFSM’s a parameterized fitness function was used. This was done 
in order to allow the minimization for both the error and the cost of the synthesized 
Quantum circuit. This "weighted function" methodology was based on our previous 
experience in the evolutionary quantum Logic synthesis [LPG+ 03, LP05, LP09]. 
The parameterization allows to select the weight with which the error of the circuit and the 
cost of the circuit modifies the overall fitness value. The choice of this weight is left on the 
user that can decide what criteria of evaluation is more important. However, we 
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experimentally determined some optimal settings that allowed correct circuits with minimal 
cost to be synthesized. 

5.4.1 The cost function 
The cost function is based on a parameter known as the minimum cost that is provided by the 
user and that permits to estimate a normalization constant. This means that the cost function 
acts as a bonus inversely proportional to the size of the circuit to the fitness function for a 
given estimated and unreachable minimum. In this work the cost function is defined by 

 
(34) 

where Mincost is the parameter given by the user and Cost, given by , is the sum of 

costs of all gates in the evolved circuit. Equation 34 was experimentally determined to be 
sensitive enough to influence both circuits far and close to the optimal cost. 

5.4.2 The weighted fitness function 
The weighted fitness functions used is shown in eq. 35 and an alternative version is in eq. 
36. Both equations calculate the fitness value using the fitness function and the cost function 
together. In this case, the error of the circuit (QFSM) is calculated with respect to the overall 
probability of detecting the desired sequence as specified by eq. 32. 

Each component of these weighted functions can be adjusted by the values of parameters α 

and β. 

 (35) 

 
(36) 

The reasons for these various fitness functions are the following: 
• to allow different selection pressures during the individual selection process, 

• by calibrating the cost to always underestimate the minimal possible size of the desired 
circuit it is possible to further manipulate the selection process. 

• the parameterization allows in the extreme cases to completely eliminate the cost 
component and thus also includes fitness functions solely based on the correctness of 
the circuit. 

For instance the fitness function 35 is not equal to one, unless both the cost of the circuit and 
the error are minimal. Thus a GA using such a weighted function has more freedom for 
searching a solution, because the fitness function is now optimizing the circuit for two 
parameters. Similarly in the case of the fitness function 36 which decreases the value of the 
fitness of longer circuits, therefore preferring the shorter ones. Thus individuals with 
different circuit properties will have equal fitness value. 

5.5 Other evolutionary settings 
For the clarity and the focus of this paper we present the rest of the settings in the Table 4. 
Only the final parameters are shown and in particular only those that were used during the 
runs that generated the presented results. To sum it up, the SUS[Bak87] selection method 
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was used with n = 4 individuals. The mutation operator was used both on the level of 
individual quantum gates but also on the level of the parallel blocks. The crossover was a 
two parent, two point recombination process that preserves the width of the quantum 
circuit by selecting cut points only between the parallel blocks. 
 

 

Table 4. Parameters of the GA used during the experiments. 

5.6 CUDA acceleration 
The CUDA framework was developed by NVIDIA for the growing usage of the GPU for 
computing tasks. The acceleration implemented in the GA is restricted only to the matrix 
calculation. Figure 20 shows where the CUDA acceleration is used. 
 

 
 

Fig. 20. Schema representing the usage of the CUDA accelerator in the computation of a 
Quantum Circuit Matrix Representation. 

The reason for using the accelerated matrix multiplication only during the matrix 

multiplication and not for the Kronecker matrix product is the fact that the Kronecker 

product is less computationally expensive as it requires only 2n ×2n multiplications while the 

matrix product requires 2n×2n multiplications and 2n additions. Moreover, in order to 

maximize the CUDA usage it is more optimal to use multiplication on matrices of the same 

dimensions without requiring to re-parameterize the CUDA device. This is the case in the 

matrix multiplication between each parallel block in a Quantum Circuit. 

6. Experiments and discussion 

The experiments carried in this section confirms the possibility to design classical sequence 
detectors using the 1-way (measure many) circuit-based QFSM’s model. The 
experimentation was done over a set of random sequences of various length. Each sequence 

www.intechopen.com



Evolutionary Logic Synthesis of Quantum Finite State Machines for Sequence Detection  

 

101 

was being tested for circuits with different number of state qubits. This was done in order to 
observe the role of embedding of the non-reversible sequence into a larger, reversible 
unitary matrix. 
The general function that the QFSM generates on the output is described by the eq. 37 

 

(37) 

with λ being a symbol read from the input and j is the index of the λ symbol in the 

sequence. Thus the minimal condition for each sequence to be detected properly is that the 
amount of the states is large enough to embed all the zero output to one half of the truth 
table. this is a required consequence because the QFSM must have both the output function 
and the state transition function reversible. 
The experimentation was done for 5 randomly generated binary sequences with 7, 10, 15, 20 
and 35 binary digits each. The sequences are shown in eq. 38 

 

(38) 

Each sequence was synthesized using a circuit with 3,4,5 and 6 qubits. The six qubit circuit is 

large enough to embed even the largest sequence so as a reversible function is synthesizable. 

Figures 21, 24 and 27 shows some examples of obtained circuits for each of the sequences. 

Figure 21 is an example of Quantum Circuit that was used to detect the s 7 sequence and 

does not use any probabilistic states. For the sake of understanding let us analyze the 

sequence detection procedure using this circuit. The desired sequence is s 7 = { 0 1 0 1 1 1 1 } 

thus the set of input states is given by , with 

|φ〉 being the unmeasured component of the automata state. Naturally there are cases where 

it is going to be determined by the measurement but for the clarity it is left in symbolic form 

and thus allowing it to be in superposed or entangled state. 

 
 
 

 
 
 

Fig. 21. s 7-sequence exact detector 
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The size of the QFSM is four qubits with two topmost qubits |q0〉, |q1〉 are the state qubits, 
|i〉 is the input qubit and |o〉 is the output qubit (Figure 21). Table 22 represents the 
consecutive states as obtained during the QFSM procedure described in this work (Section 
5.3). In particular this QFSM shows that it recognize the given sequence without the use of 
any probabilistic or superposed states. 
This can also be seen on the circuit matrix that can easily be build from the given sequence 
of gates. For clarity the state transition is also shown in the form of a equation (eq. 39). 
 

 

Fig. 22. Four qubits s7-sequence detector with deterministic input and output states 

 

(39) 

Observe that two different steps can be clearly distinguished in eq. 39; first a standard step 

that acts directly on a previously generated machine state such as in steps s0, s3, s4, s5 and s6, 

second a step that requires explicit modification of the previous machine state, in particular 

a state that requires an initialization of the output and/or the input qubit, such as shown in 

steps s1 to s2. Observe that this particular sequence detector does not requires - for this 

sequence – any re-initialization of the input qubit as a result of previous step; the input qubit 

is not modified by the automaton. Also observe that despite the fact that this circuit can 

generate quantum states, these states are not generated during the sequence s7. This can be 

seen on Figure 23. 
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The states in a circle represent natural states as would be obtained by the cycle of the 
reversible function, while the states in the hexagons represents forced states that are 
obtained after modifying the input qubit. The Figure 23 also represents the forced states 
with one dotted arrow incoming and one outgoing dashed arrows. The arrow incoming to 
the forced state is indexed with a binary number representing the required input change so 
that the forced state is obtained. The outgoing arrow represents that the forced state is then 
used as a normal natural state; i.e. a Unitary transform is applied to it and the result is 
computed. For instance the s1 character recognition, starts with the machine in the state 

|0000〉, which is forced to |0010〉 and then the Unitary transformation is applied and yields 
|1110〉 state. The whole sequence detection can be in this manner analysed from eq. 39 and 
Figure 23. 

 

Fig. 23. The cycle of a Reversible Circuit used as a detector for the s7 sequence 

A more interesting example is shown in Figure 24. The displayed circuit also recognizes the 

same sequence s7 but in this case the automaton uses probabilistic and superposed quantum 

states. This can be seen in Table 25; this table has every row split in half so that it fits in size. 

For more details eq. 40 shows step by step the process of recognition performed by this 

automaton. Observe that as the result of the last step the output of the circuit is |o〉 = |1 〉 
thus confirming the correct sequence has been detected. 
 

 

Fig. 24. s7-sequence detector with probabilistic and superposed states 
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(40) 

 
Fig. 25. Four qubits s7-sequence detector with probabilistic input and output states 
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6.1 Sequence detection 
The detection of a given sequence by the here formulated QFSM’s can be analyzed starting 
from Reversible Circuits. Assume, the initial state is 0000 for the rest of this discussion. As 
example take the reversible (deterministic) detector such as given in figure 21. It is obvious 
that the power of properly detecting a given sequence; i.e. to generate a sequence 0 × n + 1 × 
1 is proportional to the cycle of this detector given by the reversible circuit for a fixed n and 
to the fact of having the cycle connected to a finish sequence either by a forced change of 
input or by a natural evolution. 
To see this, just assume that the given circuit is specified by the following permutation cycle 
(0, 4, 8, 12)(2, 6, 10, 14)(1, 3, 5, 7, 9, 11, 13, 15). Clearly, the first cycle (0, 4, 8, 12) represents 
the states containing the 0 as input and 0 as output, the (2, 6, 10, 14) cycle represents the 
states having 1 for input and 0 as output and the last cycle represents all outputs having the 
output bit set to 1. The longest possible sequence this automaton can detect (without using 
the force states transitions) is of length 0 becausethe detecting cycle is disjoint from both the 
cycles identifying 0’s and 1’s. 
For illustration assume the Reversible Circuit specifying the automaton be described by 
(0,6,4,2) (8,12,10,14,1) (3,5,7,9,11,13,15) permutation cycles. This automaton will not detect 
successfully any sequence if starting from the initial state 0000. This is shown in figure 26. 
Observe that no matter the input change of any of the state of the cycle (0,6,4,2) will always 
lead back to a state from the same cycle. Thus such a machine cannot generate a 1 on the 

output when starting in the state |0000〉. 
 

 

Fig. 26. The cycle of a Reversible Circuit used as a detector 

The Figure 26 shows that in order to have a successful detector, at least one natural 

transition  or a forced transition  must lead to a cycle that 

allows to generate an output with value 1. 
Now consider an Reversible Circuit defined by the permutations given by (0, 4, 8, 12, 3) (2, 6, 
10, 14, 1) (5, 7, 9, 11, 13, 15). Such automaton now can detect any sequence that contains at 
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least four consecutive 0’s or four consecutive 1’s. To maximize the length of a given 
sequence it is possible to allow the automaton to modify also its input qubit. In that case, as 
also seen in the presented protocol in the Section 5.3, the maximal complexity of the 
detected sequence is still equal to the sequence of maximum four 0’s and four 1’s. 
The important cycles used for detection of the above specified Reversible circuit are shown 
in Figure 28. Observe that only two out of three cycles are shown as the last cycle contains 
all minterms that have 1 as output and thus can only be used as the end of sequence 
indicator. Also the cycles are shown only up to a final state. Thus for instance the state 

|0011〉 is not connected back to |0000〉 because once such state is attained the detection is 
terminated. Such specified detector will detect any sequence that terminates with four 1’s or 
four 0’s. 
 

 

Fig. 27. Quantum circuits detecting the sequences s10 to s25 
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Fig. 28. The Reversible Circuit specified by the cycles (0,4,8,12,3) (2,6,10,14,1) (5,7,9,11,13,15) 
used as a detector 

Finally observe that for a given sequence it is possible to design a detector that is either 
specified by only natural state transitions - as specified by the cycles of a reversible quantum 
function or by combining the cycle with forced transitions. The former method will always 
generate larger circuits while the later will allow more compact designs. However in the 
framework of the presented Quantum detectors these approaches are equivalent from the 
point of view of implementation. That is, at the begining of each computation cycle one need 
to know exactly the input quantum state. Thus the main adavantage in designing detectors 
with only natural state transitions resides in the fact that no initialization of the input qubit 
is required because it is set at the output of the previous computational cycle. 
To close this discussion about the detectors it is possible to synthesize detectors using both 
purely Reversible or Quantum Unitary matrix. The size of the required circuit is dependent 
on the amount of continuous 0’s or 1’s however it is not restricted by it. It is straight forward 
to imagine such sequence detector that will have only smaller cycles and still will detect 
similar sequence. This is because if the unitary transform modifies the input qubit, smaller 
cycles can be combined to detect these particular sequences. For instance Figure 29 shows a 
portion of a detector specified by a Reversible circuit. This detector will detect among others 
the sequences terminating with three 0's or two 1's.  Recall that only natural transitions are 

used for the detection procedure. Thus for instance in figure 29 |1110〉 changes to state 
|1100〉 when the input is changed from 1 to 0 and the consequent application of the Unitary 
matrix on this state generates an 1 on output. This is the final state, and it indicates that at 
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least three 0 have been successfully detected before attaining it. The interested reader is 
encouraged to read more about reversible and quantum sequence detector in [LP09, LPK09]. 
Table 5 shows the minimum number of qubits that have been experimentally obtained in 

order to properly detect the sequences studied here. The sequence s7 has a sequence of four 

1’s and a set of individual 1 and thus cannot be detected by less than circuit with 4 qubits.  
 

 
Fig. 29. The Reversible Circuit detecting sequences ending with four 0’s or four 1’s. 
 

 

Table 5. Minimum number of qubits required to detect a sequence: experimental 
observations 

The sequence s10 has two cycles at least: one with a sequence of two 1’s followed by a 0 and a 

sequence of three 0’s. It is also not possible to construct such detector on 3 qubits because 
the number of states required is at least 4 for both sequence and not counting the individual 
0’s and 1’s. Similarly other sequences can be analyzed. 
The Genetic Algorithm was run for multiple sizes for each sequence starting with three 
qubits. The search was terminated when a circuit satisfying the constraints was found and 
multiple searches were performed at the minimal width. Figure 30 shows the average of the 

Fitness value for the s7, s10 and s15 sequences. The drawings show each curve over 500 

generation cycles required for the detection of each of the sequences after which the 
maximum generation is attained. Each curve is an average of 15 runs and the most 
interesting feature is that similarly to quantum function logic synthesis the algorithm finds a 
circuit that is very close to the complete solution and then stagnates before finding a 
solution. This problem is related to both the difficulty of synthesis as well as the fact that 
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Quantum circuit are specified by Unitary matrices in which the error is of symmetric nature. 
Such error can be seen as a step function where with each step a pair of coefficient in the 
Unitary matrix is corrected. 
Also observe how the fitness value stagnates with larger sequences with the presented qubits 
despite the fact that a solution was found for each sequence for the presented number of 

qubits. Interestingly, observe that the sequence s7 to s20 are from the same class as they have 

been identified by detectors of similar size. This goes back to the discussion above about the 
limits of a Quantum and Reversible circuit to recognize a particular class of sequences. 
 

 

Fig. 30. Figures capturing the fitness average for four sequence detectors 

7. Conclusion 

In this paper we presented a methodology and we showed some experimental results 
confirming that our approach is possible in simulated environment. Also because all 
simulated elements of the presented experiments are based on existing Quantum 
operations, the simulated detectors are Quantum-realizable.  
It is well known that the state assignment problem is a NP-complete problem [Esc93] and 
the finding a minimal State Assignment has been solved only for particular subsets of FSM’s 
[LPD95] or using Quantum computing [ANdMM08]. This problem is here naturally solved 
(without addressing it). The setup of this experimental approach automatically generates a 
state assignment such that when the detection is successful the state assignment is as well. 
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This is a natural consequence of both the fact that the machine is reversible and the fact that 
the sequence is successfully identified. 
The presented algorithm proved successful in the design of Quantum detectors. Despite the 
sequences were randomly generated the proposed approach was possible due to the 
hardware accelerated computational approach. For more details about this approach the 
reader can consult [LM09]. 
The synthesis of quantum detectors has not been completely explored and remains still an 
open issue mainly because Quantum computing implementation is not a well established 
approach. Each technology provides different possibilities and has different limitations. In 
some cases specification using Quantum circuits is the most appropriate in others 
Hamiltonians must be used. Thus one of the main remaining tasks is to completely describe 
Quantum detectors and formally define their issues related with implementation and define 
classes of circuits more approapriate for different technologies. 
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