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1. Introduction 

Many difficult computational problems from different application areas can be seen as 
constraint satisfaction problems (CSPs). Therefore, constraint satisfaction plays an important 
role in both theoretical and applied computer science. 
Constraint satisfaction deals essentially with finding a best practical solution under a list of 
constraints and priorities. Many methods, ranging from complete and systematic algorithms 
to stochastic and incomplete ones, were designed to solve CSPs. The complete and 
systematic methods are guaranteed to solve the problems but usually perform a great 
amount of constraint checks, being effective only for simple problems. Most of these 
algorithms are derived from the traditional backtracking scheme. Incomplete and stochastic 
algorithms sometimes solve difficult problems much faster; however, they are not 
guaranteed to solve the problem even if given unbounded amount of time and space. 
Because most of the real-world problems are over-constrained and do not have an exact 
solution, stochastic search is preferable to deterministic methods. In this light, techniques 
based on meta-heuristics have received considerable interest; among them, population-
based algorithms inspired by the Darwinian evolution or by the collective behavior of 
decentralized, self-organized systems, were successfully used in the field of constraint 
satisfaction. 
This chapter presents some of the most efficient evolutionary methods designed for solving 
constraint satisfaction problems and investigates the development of novel hybrid 
algorithms derived from Constraint Satisfaction specific techniques and Evolutionary 
Computation paradigms. These approaches make use of evolutionary computation methods 
for search assisted by an inference algorithm. Comparative studies highlight the differences 
between stochastic population-based methods and the systematic search performed by a 
Branch and Bound algorithm. 

2. Constraint satisfaction 

A Constraint Satisfaction Problem (CSP) is defined by a set of variables X = {X1, . . . ,Xn}, 
associated with a set of discrete-valued domains, D = {D1, . . . ,Dn}, and a set of constraints C 
= {C1, . . . ,Cm}. Each constraint Ci is a pair (Si,Ri), where Ri is a relation Ri ⊆ DSi defined on a 

subset of variables Si ⊆ X called the scope of Ci. The relation denotes all compatible tuples of 
DSi allowed by the constraint. 

Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,  
 ISBN 978-953-307-053-7, pp. 318, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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A solution is an assignment of values to variables x = (x1, . . . , xn), xi ∈ Di, such that each 
constraint is satisfied. If a solution is found, then the problem is named satisfiable or 
consistent. Finding a solution to CSP is a NP-complete task. 
However, the problem may ask for one solution, all solutions, or - when a solution does not 
exist - a partial solution that optimizes some criteria is desired. Our discussion will focus on 
the last case, that is, the Max-CSP problem. The task consists in finding an assignment that 
satisfies a maximum number of constraints. For this problem the relation Ri is given as a cost 

function Ci(Xi1 = xi1, . . . ,Xik = xik) = 0 if (xi1, . . . , xik) ∈ Ri and 1 otherwise. Using this 
formulation, an inconsistent CSP can be transformed into a consistent optimization problem. 
There are two major approaches to solve constraint satisfaction problems: search algorithms 
and inference techniques (Dechter, 2003). Search algorithms usually seek for a solution in 
the space of partial instantiations. Because the hybrid methods presented in this chapter 
make use of inference techniques, we present next an introduction to directional consistency 
algorithms. 

2.1 Inference: directional consistency 
Inference is the process of creating equivalent problems through problem reformulation. 
The variable domains are shrunk or new constraints are deduced from existing ones making 
the problem easier to solve with search algorithms. Occasionally, inference methods can 
even deliver a solution or prove the inconsistency of the problem without the need for any 
further search. 
Inference algorithms used to ensure local consistency perform a bounded amount of 
inference. The primary characteristic by which they are distinguished is the number of 
variables or the number of constraints involved. Any search algorithm will benefit from 
representations that have a high level of consistency. The complexity of enforcing i-
consistency is exponential in i, as this is the time and space needed to infer a constraint 
based on i variables. There is a trade-off between the time spent on inference and the time 
spent on subsequent search. 
Because of the nature of search algorithms which usually extend a partial solution in order 
to get a complete one, the notion of directional consistency was introduced. The inference is 
restricted relative to a given ordering of the variables. Directed arc-consistency is the 
simplest algorithm in this category; it ensures that any legal value in the domain of a single 
variable has a legal match in the domain of any other selected variable (Wallace, 1995; 
Larossa et al., 1999). 

2.1.1 Bucket Elimination 
Bucket Elimination (Dechter, 1999; 1996) is a less expensive directional consistency 

algorithm that enforces global consistency only relative to a certain variable ordering. The 

algorithm takes as input an ordering of variables and the cost functions. The method 

partitions the functions into buckets. Each function is placed in the bucket corresponding to 

the variable which appears latest in the ordering. After this step, two phases take place then. 

In the first phase the buckets are processed from last to first. The processing consists in a 

variable elimination procedure that computes a new function which is placed in a lower 

bucket. In the second phase, the algorithm considers the variables in increasing order. It 

builds a solution by assigning a value to each variable, consulting the functions created 

during the first phase. 
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Mini-bucket Elimination (MBE) (Dechter & Rish, 2003) is an approximation of the previous 

algorithm which tries to reduce space and time complexity. The buckets are partitioned into 

smaller subsets, called mini-buckets which are processed separately, in the same way as in 

BE. The number of variables from each mini-bucket is upper bounded by a parameter, i. The 

time and space complexity of the algorithm is O(exp(i)). The scheme allows this way 

adjustable levels of inference. This parameter controls the trade-off between the quality of 

the approximation and the computational complexity. 

For the Max-CSP problem, the MBE algorithm produces new functions computed as the 
sum of all constraint matrices and minimizes it over the bucket’s variable (Kask & Dechter, 
2000). 
 

 
 

The mini-bucket algorithm is expanded in (Kask & Dechter, 2000) with a mechanism to 

generate some heuristic functions. The functions recorded by MBE can be used as a lower 
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bound for the number of constraints violated by the best extension of any partial 

assignment. For this reason these functions can be used as heuristic evaluations functions in 

search. Given a partial assignment of the first p variables xp
 =(x1, . . . , xp), the number of 

constraints violated by the best extension of xp
 is: 

 

for the variable ordering d = (X1, ...,Xn). 
The previous sum can be computed as: 

 

where h*(xp) can be estimated by a heuristic function h(xp), derived from the functions 

recorded by the MBE algorithm. h(xp) is defined as the sum of all the  
 
functions that 

satisfy the following properties: 

• they are generated in buckets p + 1 through n, and 

• they reside in buckets 1 through p. 

 

 
represents the function created by processing the j-th mini-bucket in bucketk. The heuristic 

function f can be updated recursively: 

 

where H(xp) computes the cost of extending the instantiation xp-1 with the value xp for the 
variable placed on the position p in the given ordering: 

 

In the formula above Cpj are the constraints in bucket p, hpk are the functions in bucket p and 

 are the functions created in bucket p which reside in buckets 1 through p -1. 

3. Evolutionary algorithms for CSPs 

3.1 Existing approaches 
Evolutionary Computation techniques are population-based heuristics, inspired from the 

natural evolution paradigm. All techniques from this area operate in the same way: they 

maintain a population of individuals (particles, agents) which is updated by applying some 

operators according to the fitness information, in order to reach better solution areas. The 

most known evolutionary computation paradigms include evolutionary algorithms (Genetic 

Algorithms, Genetic Programming, Evolutionary Strategies, Evolutionary Programming) 

and swarm intelligence techniques (Ant Colony Optimization and Particle Swarm 

Optimization). 
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Evolutionary algorithms (Michalewicz, 1996) are powerful search heuristics which work 
with a population of chromosomes, potential solutions of the problem. The individuals 
evolve according to rules of selection and genetic operators. 
Because the application of operators cannot guarantee the feasibility of offspring, constraint 
handling is not straightforward in an evolutionary algorithm. Several methods were 
proposed to handle constraints with Evolutionary algorithms. The methods could be 
grouped in the following categories (Michalewicz, 1995; Michalewicz & Schoenauer, 1996; 
Coello & Lechunga, 2002): 

• preserving feasibility of solutions 
For particular problems, where the generic representation schemes are not appropriate, 
special representations and operators have been developed (for example, the 
GENOCOP (GEnetic algorithm for Numerical Optimization of COnstrained Problems) 
system (Michalewicz & Janikow, 1991). A special representation is used aiming at 
simplifying the shape of the search space. Operators are designed to preserve the 
feasibility of solutions. 
Other approach makes use of constraint consistency to prune the search space 
(Kowalczyk, 1997). Unfeasible solutions are eliminated at each stage of the algorithm. 
The standard genetic operators are adapted to this case. 
Random keys encoding is another method which maintains the feasibility of solutions 
and eliminates the need of special operators. It was used first for certain sequencing and 
optimization problems (Bean, 1994). The solutions encoded with random numbers are 
then used as sort keys to decode the solution. 
In the decoders approach (Dasgupta & Michalewicz, 2001), the chromosomes tell how 
to build a feasible solution. The transformation is desired to be computationally fast. 
Another idea, which was first named strategic oscillation, consists in searching the areas 
close to the boundary of feasible regions (Glover & Kochenberger, 1995). 

• penalty functions 
The most common approach for constraint-handling is to use penalty functions to 
penalize infeasible solutions (Richardson et al., 1989). Usually, the penalty measures the 
distance from the feasible region, or the effort to repair the solution. Various types of 
penalty functions have been proposed. The most commonly used types are: 
- static penalties which remain constant during the entire process 
- dynamic functions which change through a run 
- annealing functions which use techniques based on Simulated Annealing 
- adaptive penalties which change according to feedback from the search 
- co-evolutionary penalties in which solutions evolve in one population and penalty 

factors in another population 
- death penalties which reject infeasible solutions. 
One of the major challenges is choosing the appropriate penalty value. Large penalties 
discourage the algorithm from exploring infeasible regions, and push rapidly the EA 
inside the feasible region. For low penalties, the algorithm will spend a lot of time 
exploring the infeasible region. 

• repairing infeasible solution candidates 
Repair algorithms are problem dependent algorithms which modify a chromosome in 
such a way that it will not violate the constraints (Liepins & Vose, 1990). The repaired 
solution is used only for evaluation or can replace with some probability the original 
individual. 
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• separation of objectives and constraints 
The constraints and the objectives are handled separately. For example, in (Paredis, 
1994) a co-evolutionary model consisting of two populations, one of constraints, one of 
possible solutions is proposed. The populations influences each other; an individual 
with a high fitness from the population of potential solutions represents a solution 
which satisfies many constraints; an individual with a high fitness from the population 
of constraints represent a constraint that is violated by many possible solutions. 
Another idea is to consider the problem as a multi-objective optimization problem, in 
which we will have m+1 objectives, m being the number of constraints. Then we can 
apply a technique from this area to solve the initial problem. 

• hybrid methods 
Evolutionary algorithms are coupled with another techniques. 

There have been numerous attempts to use Evolutionary algorithms for solving constraint 
satisfaction problems (Dozier et al., 1994), (Paredis, 1994), (Eiben & Ruttkay, 1996). The 
Stepwise Adaptation of Weights is one of the best evolutionary algorithms for CSP solving. The 
constraints that are not satisfied are penalized more. The weights are initialized (with 1) and 
reset by adding a value after a number of steps. Only the weights for the constraints that are 
violated by the best individual are adjusted. An individual is a permutation of variables. A 
partial instantiation is constructed by considering the variables for assigning values in the 
order given by the chromosome. The variable is left uninstantiated if all possible values add 
a violation. The uninstantiated variables are penalized. The fitness is equal with the sum of 
all penalties. 
Another efficient approach is the Microgenetic Iterative Descent Algorithm (Dozier et al., 1994). 
The algorithm uses a small population size. At each iteration an offspring is created by 
crossover or mutation operator, the operator being chosen after an adaptive scheme. A 
candidate solution is represented by n alleles, a pivot and a fitness value. Each allele has the 
variable, its value, the number of constraint violations the variable is involved in and an 
hvalue used for initializing the pivot. The pivot is used to choose the variable that will 
undergo mutation. If the fitness of the child is worse than the parent value, the h-value of 
the pivot offspring is decremented. The pivot is updated next: for each allele, the sum of the 
number of constraint violations and its h-value are computed; the allele with the highest 
value is chosen as the pivot. The fitness function is adaptive, employing the Morris Breakout 
Creating Mechanism (Morris, 1993) to escape from local optima. 
Another approach for solving CSPs makes use of heuristics inside the evolutionary 
algorithm. In (Eiben et al., 1994) heuristics are incorporated into the genetic operators. The 
mutation operator selects a number of variables to be mutated and assigns them new values. 
The selected variables are those appearing in constraints that are most often violated. The 
new values are those that maximize the number of satisfied constraints. Another way of 
incorporating heuristic information in an evolutionary algorithm is described in (Marchiori 
& Steenbeek, 2000). The heuristics are not incorporated into operators, but as a standalone 
module. Individual solutions are improved by calling a local optimization procedure for 
each of them and then blind genetic operators are applied. 
In (Craenen et al., 2003) a comparison of the best evolutionary algorithms is given. 

3.2 Hybrid evolutionary algorithms for CSP 
Generally, to obtain good results for a problem we have to incorporate knowledge about the 
problem into the evolutionary algorithm. Evolutionary algorithms are flexible and can be 
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easily extended by incorporating standard procedures for the problem under investigation. 
The heuristic information introduced in an evolutionary algorithm can enhance the 
exploitation but will reduce the exploration. A good balance between exploitation and 
exploration is important. 
We will describe next the approach presented in (Ionita et al., 2006). The method includes 
information obtained through constraint processing into the evolutionary algorithm in order 
to improve the search results. The basic idea is to use the functions returned by the 
minibucket algorithm as heuristic evaluation functions. The selected genetic algorithm is a 
simple one, with a classical scheme. The special particularity is that the algorithm uses the 
inferred information in a genetic operator and an adaptive mechanism for escaping from 
local minima. 
A candidate solution is represented by a vector of size equal to the number of variables. The 
value at position i represents the value of the corresponding variable, xi. The algorithm 
works with complete solutions, i.e. all variables are instantiated. Each individual in the 
population has associated a measure of its fitness in the environment. The fitness function 
counts the number of violated constraints by the candidate solution. 
In an EA the search for better individuals is conducted by the crossover operator, while the 
diversity in the population is maintained by the mutation operator. 
The recombination operator is a fitness-based scanning crossover. The scanning operator 

takes as input a number of chromosomes and returns one offspring. It chooses one of the i-

th genes of the n parents to be the i-th gene of the offspring. For creating the new solution, 

the best genes are preserved. Our crossover makes use of the pre-processing information 

gathered with the inference process. It uses the functions returned by the mini-bucket 

algorithm, f *(xp) to decide the values of the offspring. The variables are instantiated in a 

given order, the same as the one used in the mini-bucket algorithm. A new value to the next 

variable is assigned by choosing the best value from the parents according to the evaluation 

functions f *. As stated before, these heuristic functions provide an upper bound on the cost 

of the best extension of a given partial assignment. 

 

 
 

This recombination operator intensifies the exploitation of the search space. It will generate 
new solutions if there is sufficient diversity in the population. An operator to preserve 
variation is necessary. The mutation operator has this function, i.e. it serves for exploration. 
The operator assigns a new random value for a given variable. 
After the application of the operators, the new individuals will replace the parents. Selection 

will take place next to ensure the preservation of fittest individuals. A fitness-based selection 

was chosen for experiments. 
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Because the crossover and the selection direct the search to most fitted individuals, there is a 
chance of getting stuck in local minima. There is a need to leave the local minima and to 
explore different parts of the search space. Therefore, we have included the earliest breakout 
mechanism (Morris, 1993). When the algorithm is trapped in a local minimum point, a 
breakout is created for each nogood that appears in this current optimum. The weight for 
each newly created breakout is equal to one. If the breakout already exists, its weight is 
incremented by one. A predefined percent of the total weights (penalties) for an individual 
that violates these breakouts are added to the fitness function. In this manner the search is 
forced to put more emphasis on the constraints that are hard to satisfy. The evaluation 
function is an adaptive function because it is changed during the execution of the algorithm. 

4. Particle swarm optimization for CSPs 

The idea of combining inference with heuristics was also tested on another population-
based paradigm, the Particle Swarm Optimization. The method presented in (Breaban et al., 
2007) is detailed next. 
 

 

4.1 Particle swarm optimization 
Particle Swarm Optimization is a Swarm Intelligence technique which shares many features 
with Evolutionary Algorithms. Swarm Intelligence is used to designate the artificial 
intelligence techniques based on the study of collective behavior in decentralized, self-
organized systems. Swarm Intelligence systems are typically made up of a population of 
simple autonomous agents interacting locally with one another and with their environment. 
Although there is no centralized control, the local interactions between agents lead to the 
emergence of global behavior. Examples of systems like this can be found in nature, 
including ant colonies, bird flocking, animal herding, bacteria molding and fish schooling. 
The PSO model was introduced in 1995 by J. Kennedy and R.C. Eberhart, being discovered 
through simulation of a simplified social model such as fish schooling or bird flocking 
(Kennedy & Eberhart, 1995). PSO consists of a group (swarm) of particles moving in the 
search space, their trajectory being determined by the fitness values found so far. 
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The formulas used to actualize the individuals and the procedures are inspired from and 
conceived for continuous spaces. Each particle is represented by a vector x of length n 
indicating the position in the n-dimensional search space and has a velocity vector v used to 
update the current position. The velocity vector is computed following the rules: 

• every particle tends to keep its current direction (an inertia term); 

• every particle is attracted to the best position p it has achieved so far (a memory term); 

• every particle is attracted to the best particle g in population (the particle having the 
best fitness value); there are versions of the algorithm in which the best particle g is 
chosen from topological neighborhood. 

Thus, the velocity vector is computed as a weighted sum of the three terms above. The 
formulas used to update each of the individuals in the population at iteration t are: 

 (1) 

 (2) 

4.2 Adapting PSO to Max-CSP 
Schoofs and Naudts (Schoofs & Naudts, 2002) have previously adapted the PSO algorithm 
for solving binary constraint problems. Our algorithm is formulated for the more general 
Max-CSP problem. The elements of the algorithm are presented below. 
An individual is an instantiation of all variables with respect to their domains. 
The evaluation (fitness) function counts the violated constraints. Because Max-CSP is 
formulated as a minimization problem smaller values of the evaluation function correspond 
to better individuals. 
The algorithm uses the basic idea of PSO: every particle tends to move towards his personal 
best and towards the global best. Updating the particle consists in instantiating its variables 
by choosing from the values of the two particles or keeping its own values. The decision is 
made based on the values of the heuristic function described in section 2.1.1. The MBE 
inference scheme is used as a preprocessing step. 
The velocity and the operators must be redefined in order to adapt the PSO formulas to the 
problem. This technique has already been used in order to adapt the PSO to discrete 
problems. For example, for permutation problems the velocity was redefined as a vector of 
transposition probabilities (X. Hu et al., 2003) or as a list of transpositions (Clerc, 2000) and 
the sum between a particle position and the velocity consists in applying the transpositions. 
We define the velocity which results from the subtraction of two positions  as 

the vector  where → represents as in (Schoofs & Naudts, 2002) a change of 

position. 
The sum  of the two velocities  produces the velocity  
given by 

 

where H is the heuristic function described in section 2.1.1. 
The addition  to a position  is defined by 

 
No parameter is used. 
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The PSO formulas become: 

 (3) 

 (4) 

Because the first term  in equation (3) is the velocity used to obtain the position  

at time t -1 we replace it with the velocity  In this way the resulted 
velocity formula selects the particle which has the smaller heuristic function value from the 
current position x, the personal best p and the global best g. 
The pseudocode of the algorithm is illustrated in Algorithm 4. 
The step (*) from the pseudocode can be described as: 
 

 
 

 
 

In order to explore the search space and to prevent the algorithm from getting trapped in 

local optima a mutation operator is introduced. This is identical to the one used in GAs: a 

random value is set on a random position. The role of the mutation is not only to maintain 

diversity but also to introduce values from variables’ domains which do not exist in the 

current population. To maintain diversity, the algorithm also uses the following strategies: 

1. in case of equal values for the evaluation function the priority is given to the current value 

and then to the personal optimum; 2. the algorithm is not implementing the online elitism: 

the best individual is not kept in population, the current optimum can be replaced by a 

worst individual in future iterations. 
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5. Tests and results 

5.1 Data suite 
Experiments were conducted only on binary CSPs (each constraint is built over at most two 
variables), but there is no reason that the algorithm could not be run on n-ary CSPs with  
n >2. 
The algorithms were tested on two well-known models for generating CSPs. 
The four-parameter model (Smith, 1994), called model B does not allow the repetition of the 
constraints. A random CSP is given by four parameters (N, K, C, T), where N represents the 
number of variables, K the domain size, C the number of constraints and T the constraint 
tightness. The tightness represents the number of tuples not allowed. C constraints are 
selected uniformly at random from the available N(N - 1)/2 ones and for each constraint T 

nogoods are selected from the available K2 tuples. We have tested the approach on some 

over-constrained classes of binary CSPs. The selected classes are sparse 〈25, 10, 37, T〉, with 

medium density 〈15, 10, 50, T〉 and complete graphs 〈10, 10, 45, T〉. For each class of problem 
the algorithms were tested on 50 instances. 
We investigate the hybrid approaches also against the set of CSP instances made available 
by Craenen et al. on the Web1. These instances are generated using the model E (Achlioptas 
et al., 2001). We have experimented with 175 solvable problem instances: 25 instances for 
different values of p in model E(20, 20, p,2). Parameter p takes the following values: {0.24, 
0.25, 0.26, 0.27, 0.28, 0.29, 0.30}. All instances considered were solvable. 

5.2 Algorithms settings 
The variable ordering used in MBE was determined with the min-induced-width heuristic. 
This method places the variable with the minimum degree last in the ordering. It connects 
then all of the variable neighbors, removes the node and all its adjacent edges and next 
repeats the procedure. 
Experiments were made for different levels of inference, changing the values of the 
parameter i in the MBE algorithm. Values 0 and 1 for parameter i means that no inference is 
used. Value 2 for i corresponds to a DAC (directed arc consistency) preprocessing adapted 
to Max-CSP: instead of removing values from variable domains cost functions are added for 
variable-value pairs that count the number of variables for which no legal value match is 
found. Greater values for parameter i generate new cost functions over at most i -1 variables. 
For model B, for each class of problems 50 instances were generated. The problems were 
first solved using a complete algorithm PFC-MRDAC (Larossa & Meseguer, 1998). This 
algorithm is an improved branch-and-bound algorithm, specifically designed for the Max-
CSP problem. The optimal solution was the solution found by the PFC-MRDAC algorithm. 
For each instance, for both PSO-MBE and GA-MBE, five independent runs were performed. 
The number of parents for the recombination operator in GA-MBE was established to five. 
The population size was set to 40 in the GA-MBE, while for PSO-MBE the swarm size was 
equal to 30 particles. A time limit of 30 seconds was imposed for all search algorithms (the 
time limit is used only for the search phase and does not include time needed for MBE). 
For comparison purposes the Branch and Bound algorithm described in (Kask & Dechter, 
2000) was implemented. 

                                                 
1 1http://www.xs4all.nl/ craenen/resources/csps modelE v20 d20.tar.gz 
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5.3 Results 
As measures of effectiveness we use as in (Craenen et al., 2003) the success rate and the 
mean error at termination. The success rate represents the percentage of runs that find a 
solution. The mean error at termination for a run is equal to the number of constraints which 
are violated by the best solution, at the end of the algorithm. 
The average number of constraint checks and the average duration of the algorithms until 
the optimum solution is reached was recorded only for the runs which find the optimum 
within the time limit. 

5.3.1 Results for MBE and Branch-and-Bound 
The results concerning the two criteria on model B instances for the inference algorithm and 
a Branch and Bound algorithm are given in Table 1. Each line of the table corresponds to a 
class of CSPs. 
Obviously, the Mini-bucket elimination algorithm solves more problems when the bound i 
increases. The Branch-and-Bound algorithm behaves similarly. However, the time needed to 
find a solution increases too (see Table 2). 
 

 

Table 1. Results on model B: the success rate and the mean error for Mini-Bucket Elimination 
(MBE) and Branch and Bound (B&B) algorithms for different levels of inference(i) 

The results on model E are given in Figure 1 and Figure 2. 
The Branch and Bound algorithm is not influenced at all by the low levels of inference 
performed (the three curves in Figure 1 and 2 overlap); higher levels of inference are 
necessary but they require much more time and space resources. 

5.3.2 Results for the hybrid evolutionary computation algorithms Model B 
The success rate and the mean error measures for the hybrid approaches are given in Table 3. 
The search phase of the hybrid algorithms improves considerably the performance of the 
inference algorithm. For the class of problems 15 – 10 – 50 – 84 the MBE with i = 4 did not 
find the optimum for any of the generated problems. GA-MBE and PSO-MBE have solved 
41%, respectively 52% of the problems. 
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Table 2. Results on model B: average time in seconds for MBE and B&B algorithms for the 
runs which return the optimum 

 

Fig. 1. Results on model E: Success rate for B&B 

Even when the optimum solution was not found, the hybrid algorithms return a solution 
closed to the optimum. This conclusion can be drawn from Table 3 by looking at the mean 
error values. 
We have also used an additional criterium for the evaluation of the hybrid algorithms. The 
standard measure of the efficiency of an evolutionary algorithm, the number of fitness 
evaluations is not very useful in this context. The use of heuristics implies more 
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Fig. 2. Results on model E: Average mean error for B&B 
 

 

Table 3. Results on model B: the success rate and the mean error for GA and PSO hybrid 
algorithms 

computation that is invisible for this metric. Therefore we have computed the average 

number of constraint checks, for the runs which return the optimum solution (see Table 4). 

Regarding the number of constraint checks performed by the two algorithms, one general 

rule can be drawn: the higher the inference level, the less the time spent on search. 
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Table 4. Results on model B: the average constraint checks of the hybrid evolutionary 
computation algorithms 

For sparse instances the efficiency of the preprocessing step is evident for the two 

algorithms: increasing the inference level more problems are solved. The Genetic Algorithm 

for medium density cases behaves similarly as for the sparse one. For complete graphs, the 

genetic algorithm for i = 0 (no inference) gives a good percent of solved problems. But the 

best results are for the larger level of inference. In almost all cases, the performance of the 

GAMBE is higher when using a higher i-bound. This proves that the evolutionary algorithm 

uses efficiently the information gained by preprocessing. 

When combined with PSO, inference is useful only on sparse graphs; on medium density 

and complete graphs low levels of inference slow down the search process performed by 

PSO and the success rate is smaller. Higher levels of inference (i = 6) necessitate more time 

spent on preprocessing and for complete graphs it is preferable to perform only search and 

no inference. 

Unlike evolutionary computation paradigms, the systematic Branch and Bound algorithm 

has much benefit from inference preprocessing for all classes of problems. When no 

inference is performed B&B solves only 2% of the sparse instances and 14% of the complete 

graphs. The approximative solutions returned after 30 seconds run are of lower quality than 

those returned by the evolutionary computation methods (the mean error is high). When 

inference is used the turnaround becomes obvious starting with value 4 for parameter i. 

Table 5 lists the average time spent by MBE and PSO algorithms for the runs which return 

the optimum. Similarly, Table 6 refers to MBE and B&B time. These tables are illustrative for 

the inference/search trade-off: increasing the inference level the time needed by the search 

algorithms to find the optimum decreases. 

An interesting observation can be drawn regarding the time needed by PSO to find the 

optimum: even if the algorithm is run for 30 seconds the solved instances required much 

shorter time; this is a clear indicator that PSO is able to find good solutions in a very short 

time but it gets stuck often in local optima and further search is compromised. 
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Table 5. Results on model B: average time in seconds for MBE and PSO algorithms for the 
runs which return the optimum 

Model E 
The results for model E corresponding to GA-MBE are given in Figure 3 and 4. Figures 5 
and 6 present the results for PSO-MBE. 
 

 

Table 6. Results on model B: average time in seconds for MBE and B&B algorithms for the 
runs which return the optimum 

The performance of the algorithms decreases with the difficulty of the problem. For smaller 
values of p (0.24) the percentage of solved problems increases with the inference level. For 
more difficult problems low levels of inference are useless. 
One can also observe that the mean error is small, meaning that the algorithm is stable 
(Figure 4 and Figure 6). This feature is very important for such kind of problems. 
Given that the bounded inference performed on the model E instances has low effect on 
subsequent search both for the randomized and the systematic methods, GA-MBE and  
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Fig. 3. Results on model E: success rate for GA-MBE 

 

Fig. 4. Results on model E: mean error for GA-MBE 

PSOMBE obtain better results than B&B: the percentage of solved problems (SR) is higher 
and the approximative solutions returned after 30 seconds run are better qualitatively. The 
average number of constraint checks on model E test instances increases with parameter p 

from 5 · 107 to 8 · 107 for PSO-MBE and from 9 · 107 to 2 · 108 for B&B. The average time for 
the runs which find the optimum increases with p from 9 seconds to 13 seconds for PSO-
MBE and from 10 seconds to 18 seconds for B&B. 
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Fig. 5. Results on model E: success rate for PSO-MBE 

 

 

Fig. 6. Results on model E: mean error for PSO-MBE 

Using the results from the comparative study of several genetic algorithms made by 
Craenen et al. (Craenen et al., 2003) we can conclude that the performance of the hybrid 
algorithms is comparable with that of the best GAs in the CSP field: Stepwise Adaptation of 
Weights and Glass-Box GA. Low levels of inference slightly improve the performance of our 
algorithm on difficult CSP instances; higher levels of inference are needed. 
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6. Conclusion 

The chapter presents some of the techniques based on Evolutionary Computation 
paradigms for solving constraints satisfaction problems. Two hybrid approaches based on 
the idea of using the heuristics extracted from an inference algorithm inside evolutionary 
computation paradigms are detailed. The effect of combining inference with randomized 
search was studied by exploiting the advantage of adaptable inference levels offered by the 
Mini-Bucket Elimination algorithm. Tests conducted on binary CSPs against a Branch and 
Bound algorithm show that the systematic search has more benefit from inference than the 
randomized search performed by evolutionary computation paradigms. However, on hard 
CSP instances the Branch and Bound algorithm requires higher levels of inference which 
imply a much greater computational cost in order to compete with evolutionary 
computation methods. 
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