
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

2

Evolutionary Computation
in Constraint Satisfaction

Madalina Ionita, Mihaela Breaban and Cornelius Croitoru
Alexandru Ioan Cuza University, Iasi,

Romania

1. Introduction

Many difficult computational problems from different application areas can be seen as
constraint satisfaction problems (CSPs). Therefore, constraint satisfaction plays an important
role in both theoretical and applied computer science.
Constraint satisfaction deals essentially with finding a best practical solution under a list of
constraints and priorities. Many methods, ranging from complete and systematic algorithms
to stochastic and incomplete ones, were designed to solve CSPs. The complete and
systematic methods are guaranteed to solve the problems but usually perform a great
amount of constraint checks, being effective only for simple problems. Most of these
algorithms are derived from the traditional backtracking scheme. Incomplete and stochastic
algorithms sometimes solve difficult problems much faster; however, they are not
guaranteed to solve the problem even if given unbounded amount of time and space.
Because most of the real-world problems are over-constrained and do not have an exact
solution, stochastic search is preferable to deterministic methods. In this light, techniques
based on meta-heuristics have received considerable interest; among them, population-
based algorithms inspired by the Darwinian evolution or by the collective behavior of
decentralized, self-organized systems, were successfully used in the field of constraint
satisfaction.
This chapter presents some of the most efficient evolutionary methods designed for solving
constraint satisfaction problems and investigates the development of novel hybrid
algorithms derived from Constraint Satisfaction specific techniques and Evolutionary
Computation paradigms. These approaches make use of evolutionary computation methods
for search assisted by an inference algorithm. Comparative studies highlight the differences
between stochastic population-based methods and the systematic search performed by a
Branch and Bound algorithm.

2. Constraint satisfaction

A Constraint Satisfaction Problem (CSP) is defined by a set of variables X = {X1, . . . ,Xn},
associated with a set of discrete-valued domains, D = {D1, . . . ,Dn}, and a set of constraints C
= {C1, . . . ,Cm}. Each constraint Ci is a pair (Si,Ri), where Ri is a relation Ri ⊆ DSi defined on a

subset of variables Si ⊆ X called the scope of Ci. The relation denotes all compatible tuples of
DSi allowed by the constraint.

Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,
 ISBN 978-953-307-053-7, pp. 318, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 New Achievements in Evolutionary Computation

18

A solution is an assignment of values to variables x = (x1, . . . , xn), xi ∈ Di, such that each
constraint is satisfied. If a solution is found, then the problem is named satisfiable or
consistent. Finding a solution to CSP is a NP-complete task.
However, the problem may ask for one solution, all solutions, or - when a solution does not
exist - a partial solution that optimizes some criteria is desired. Our discussion will focus on
the last case, that is, the Max-CSP problem. The task consists in finding an assignment that
satisfies a maximum number of constraints. For this problem the relation Ri is given as a cost

function Ci(Xi1 = xi1, . . . ,Xik = xik) = 0 if (xi1, . . . , xik) ∈ Ri and 1 otherwise. Using this
formulation, an inconsistent CSP can be transformed into a consistent optimization problem.
There are two major approaches to solve constraint satisfaction problems: search algorithms
and inference techniques (Dechter, 2003). Search algorithms usually seek for a solution in
the space of partial instantiations. Because the hybrid methods presented in this chapter
make use of inference techniques, we present next an introduction to directional consistency
algorithms.

2.1 Inference: directional consistency
Inference is the process of creating equivalent problems through problem reformulation.
The variable domains are shrunk or new constraints are deduced from existing ones making
the problem easier to solve with search algorithms. Occasionally, inference methods can
even deliver a solution or prove the inconsistency of the problem without the need for any
further search.
Inference algorithms used to ensure local consistency perform a bounded amount of
inference. The primary characteristic by which they are distinguished is the number of
variables or the number of constraints involved. Any search algorithm will benefit from
representations that have a high level of consistency. The complexity of enforcing i-
consistency is exponential in i, as this is the time and space needed to infer a constraint
based on i variables. There is a trade-off between the time spent on inference and the time
spent on subsequent search.
Because of the nature of search algorithms which usually extend a partial solution in order
to get a complete one, the notion of directional consistency was introduced. The inference is
restricted relative to a given ordering of the variables. Directed arc-consistency is the
simplest algorithm in this category; it ensures that any legal value in the domain of a single
variable has a legal match in the domain of any other selected variable (Wallace, 1995;
Larossa et al., 1999).

2.1.1 Bucket Elimination
Bucket Elimination (Dechter, 1999; 1996) is a less expensive directional consistency

algorithm that enforces global consistency only relative to a certain variable ordering. The

algorithm takes as input an ordering of variables and the cost functions. The method

partitions the functions into buckets. Each function is placed in the bucket corresponding to

the variable which appears latest in the ordering. After this step, two phases take place then.

In the first phase the buckets are processed from last to first. The processing consists in a

variable elimination procedure that computes a new function which is placed in a lower

bucket. In the second phase, the algorithm considers the variables in increasing order. It

builds a solution by assigning a value to each variable, consulting the functions created

during the first phase.

www.intechopen.com

Evolutionary Computation in Constraint Satisfaction

19

Mini-bucket Elimination (MBE) (Dechter & Rish, 2003) is an approximation of the previous

algorithm which tries to reduce space and time complexity. The buckets are partitioned into

smaller subsets, called mini-buckets which are processed separately, in the same way as in

BE. The number of variables from each mini-bucket is upper bounded by a parameter, i. The

time and space complexity of the algorithm is O(exp(i)). The scheme allows this way

adjustable levels of inference. This parameter controls the trade-off between the quality of

the approximation and the computational complexity.

For the Max-CSP problem, the MBE algorithm produces new functions computed as the
sum of all constraint matrices and minimizes it over the bucket’s variable (Kask & Dechter,
2000).

The mini-bucket algorithm is expanded in (Kask & Dechter, 2000) with a mechanism to

generate some heuristic functions. The functions recorded by MBE can be used as a lower

www.intechopen.com

 New Achievements in Evolutionary Computation

20

bound for the number of constraints violated by the best extension of any partial

assignment. For this reason these functions can be used as heuristic evaluations functions in

search. Given a partial assignment of the first p variables xp
 =(x1, . . . , xp), the number of

constraints violated by the best extension of xp
 is:

for the variable ordering d = (X1, ...,Xn).
The previous sum can be computed as:

where h*(xp) can be estimated by a heuristic function h(xp), derived from the functions

recorded by the MBE algorithm. h(xp) is defined as the sum of all the

functions that

satisfy the following properties:

• they are generated in buckets p + 1 through n, and

• they reside in buckets 1 through p.

represents the function created by processing the j-th mini-bucket in bucketk. The heuristic

function f can be updated recursively:

where H(xp) computes the cost of extending the instantiation xp-1 with the value xp for the
variable placed on the position p in the given ordering:

In the formula above Cpj are the constraints in bucket p, hpk are the functions in bucket p and

 are the functions created in bucket p which reside in buckets 1 through p -1.

3. Evolutionary algorithms for CSPs

3.1 Existing approaches
Evolutionary Computation techniques are population-based heuristics, inspired from the

natural evolution paradigm. All techniques from this area operate in the same way: they

maintain a population of individuals (particles, agents) which is updated by applying some

operators according to the fitness information, in order to reach better solution areas. The

most known evolutionary computation paradigms include evolutionary algorithms (Genetic

Algorithms, Genetic Programming, Evolutionary Strategies, Evolutionary Programming)

and swarm intelligence techniques (Ant Colony Optimization and Particle Swarm

Optimization).

www.intechopen.com

Evolutionary Computation in Constraint Satisfaction

21

Evolutionary algorithms (Michalewicz, 1996) are powerful search heuristics which work
with a population of chromosomes, potential solutions of the problem. The individuals
evolve according to rules of selection and genetic operators.
Because the application of operators cannot guarantee the feasibility of offspring, constraint
handling is not straightforward in an evolutionary algorithm. Several methods were
proposed to handle constraints with Evolutionary algorithms. The methods could be
grouped in the following categories (Michalewicz, 1995; Michalewicz & Schoenauer, 1996;
Coello & Lechunga, 2002):

• preserving feasibility of solutions
For particular problems, where the generic representation schemes are not appropriate,
special representations and operators have been developed (for example, the
GENOCOP (GEnetic algorithm for Numerical Optimization of COnstrained Problems)
system (Michalewicz & Janikow, 1991). A special representation is used aiming at
simplifying the shape of the search space. Operators are designed to preserve the
feasibility of solutions.
Other approach makes use of constraint consistency to prune the search space
(Kowalczyk, 1997). Unfeasible solutions are eliminated at each stage of the algorithm.
The standard genetic operators are adapted to this case.
Random keys encoding is another method which maintains the feasibility of solutions
and eliminates the need of special operators. It was used first for certain sequencing and
optimization problems (Bean, 1994). The solutions encoded with random numbers are
then used as sort keys to decode the solution.
In the decoders approach (Dasgupta & Michalewicz, 2001), the chromosomes tell how
to build a feasible solution. The transformation is desired to be computationally fast.
Another idea, which was first named strategic oscillation, consists in searching the areas
close to the boundary of feasible regions (Glover & Kochenberger, 1995).

• penalty functions
The most common approach for constraint-handling is to use penalty functions to
penalize infeasible solutions (Richardson et al., 1989). Usually, the penalty measures the
distance from the feasible region, or the effort to repair the solution. Various types of
penalty functions have been proposed. The most commonly used types are:
- static penalties which remain constant during the entire process
- dynamic functions which change through a run
- annealing functions which use techniques based on Simulated Annealing
- adaptive penalties which change according to feedback from the search
- co-evolutionary penalties in which solutions evolve in one population and penalty

factors in another population
- death penalties which reject infeasible solutions.
One of the major challenges is choosing the appropriate penalty value. Large penalties
discourage the algorithm from exploring infeasible regions, and push rapidly the EA
inside the feasible region. For low penalties, the algorithm will spend a lot of time
exploring the infeasible region.

• repairing infeasible solution candidates
Repair algorithms are problem dependent algorithms which modify a chromosome in
such a way that it will not violate the constraints (Liepins & Vose, 1990). The repaired
solution is used only for evaluation or can replace with some probability the original
individual.

www.intechopen.com

 New Achievements in Evolutionary Computation

22

• separation of objectives and constraints
The constraints and the objectives are handled separately. For example, in (Paredis,
1994) a co-evolutionary model consisting of two populations, one of constraints, one of
possible solutions is proposed. The populations influences each other; an individual
with a high fitness from the population of potential solutions represents a solution
which satisfies many constraints; an individual with a high fitness from the population
of constraints represent a constraint that is violated by many possible solutions.
Another idea is to consider the problem as a multi-objective optimization problem, in
which we will have m+1 objectives, m being the number of constraints. Then we can
apply a technique from this area to solve the initial problem.

• hybrid methods
Evolutionary algorithms are coupled with another techniques.

There have been numerous attempts to use Evolutionary algorithms for solving constraint
satisfaction problems (Dozier et al., 1994), (Paredis, 1994), (Eiben & Ruttkay, 1996). The
Stepwise Adaptation of Weights is one of the best evolutionary algorithms for CSP solving. The
constraints that are not satisfied are penalized more. The weights are initialized (with 1) and
reset by adding a value after a number of steps. Only the weights for the constraints that are
violated by the best individual are adjusted. An individual is a permutation of variables. A
partial instantiation is constructed by considering the variables for assigning values in the
order given by the chromosome. The variable is left uninstantiated if all possible values add
a violation. The uninstantiated variables are penalized. The fitness is equal with the sum of
all penalties.
Another efficient approach is the Microgenetic Iterative Descent Algorithm (Dozier et al., 1994).
The algorithm uses a small population size. At each iteration an offspring is created by
crossover or mutation operator, the operator being chosen after an adaptive scheme. A
candidate solution is represented by n alleles, a pivot and a fitness value. Each allele has the
variable, its value, the number of constraint violations the variable is involved in and an
hvalue used for initializing the pivot. The pivot is used to choose the variable that will
undergo mutation. If the fitness of the child is worse than the parent value, the h-value of
the pivot offspring is decremented. The pivot is updated next: for each allele, the sum of the
number of constraint violations and its h-value are computed; the allele with the highest
value is chosen as the pivot. The fitness function is adaptive, employing the Morris Breakout
Creating Mechanism (Morris, 1993) to escape from local optima.
Another approach for solving CSPs makes use of heuristics inside the evolutionary
algorithm. In (Eiben et al., 1994) heuristics are incorporated into the genetic operators. The
mutation operator selects a number of variables to be mutated and assigns them new values.
The selected variables are those appearing in constraints that are most often violated. The
new values are those that maximize the number of satisfied constraints. Another way of
incorporating heuristic information in an evolutionary algorithm is described in (Marchiori
& Steenbeek, 2000). The heuristics are not incorporated into operators, but as a standalone
module. Individual solutions are improved by calling a local optimization procedure for
each of them and then blind genetic operators are applied.
In (Craenen et al., 2003) a comparison of the best evolutionary algorithms is given.

3.2 Hybrid evolutionary algorithms for CSP
Generally, to obtain good results for a problem we have to incorporate knowledge about the
problem into the evolutionary algorithm. Evolutionary algorithms are flexible and can be

www.intechopen.com

Evolutionary Computation in Constraint Satisfaction

23

easily extended by incorporating standard procedures for the problem under investigation.
The heuristic information introduced in an evolutionary algorithm can enhance the
exploitation but will reduce the exploration. A good balance between exploitation and
exploration is important.
We will describe next the approach presented in (Ionita et al., 2006). The method includes
information obtained through constraint processing into the evolutionary algorithm in order
to improve the search results. The basic idea is to use the functions returned by the
minibucket algorithm as heuristic evaluation functions. The selected genetic algorithm is a
simple one, with a classical scheme. The special particularity is that the algorithm uses the
inferred information in a genetic operator and an adaptive mechanism for escaping from
local minima.
A candidate solution is represented by a vector of size equal to the number of variables. The
value at position i represents the value of the corresponding variable, xi. The algorithm
works with complete solutions, i.e. all variables are instantiated. Each individual in the
population has associated a measure of its fitness in the environment. The fitness function
counts the number of violated constraints by the candidate solution.
In an EA the search for better individuals is conducted by the crossover operator, while the
diversity in the population is maintained by the mutation operator.
The recombination operator is a fitness-based scanning crossover. The scanning operator

takes as input a number of chromosomes and returns one offspring. It chooses one of the i-

th genes of the n parents to be the i-th gene of the offspring. For creating the new solution,

the best genes are preserved. Our crossover makes use of the pre-processing information

gathered with the inference process. It uses the functions returned by the mini-bucket

algorithm, f *(xp) to decide the values of the offspring. The variables are instantiated in a

given order, the same as the one used in the mini-bucket algorithm. A new value to the next

variable is assigned by choosing the best value from the parents according to the evaluation

functions f *. As stated before, these heuristic functions provide an upper bound on the cost

of the best extension of a given partial assignment.

This recombination operator intensifies the exploitation of the search space. It will generate
new solutions if there is sufficient diversity in the population. An operator to preserve
variation is necessary. The mutation operator has this function, i.e. it serves for exploration.
The operator assigns a new random value for a given variable.
After the application of the operators, the new individuals will replace the parents. Selection

will take place next to ensure the preservation of fittest individuals. A fitness-based selection

was chosen for experiments.

www.intechopen.com

 New Achievements in Evolutionary Computation

24

Because the crossover and the selection direct the search to most fitted individuals, there is a
chance of getting stuck in local minima. There is a need to leave the local minima and to
explore different parts of the search space. Therefore, we have included the earliest breakout
mechanism (Morris, 1993). When the algorithm is trapped in a local minimum point, a
breakout is created for each nogood that appears in this current optimum. The weight for
each newly created breakout is equal to one. If the breakout already exists, its weight is
incremented by one. A predefined percent of the total weights (penalties) for an individual
that violates these breakouts are added to the fitness function. In this manner the search is
forced to put more emphasis on the constraints that are hard to satisfy. The evaluation
function is an adaptive function because it is changed during the execution of the algorithm.

4. Particle swarm optimization for CSPs

The idea of combining inference with heuristics was also tested on another population-
based paradigm, the Particle Swarm Optimization. The method presented in (Breaban et al.,
2007) is detailed next.

4.1 Particle swarm optimization
Particle Swarm Optimization is a Swarm Intelligence technique which shares many features
with Evolutionary Algorithms. Swarm Intelligence is used to designate the artificial
intelligence techniques based on the study of collective behavior in decentralized, self-
organized systems. Swarm Intelligence systems are typically made up of a population of
simple autonomous agents interacting locally with one another and with their environment.
Although there is no centralized control, the local interactions between agents lead to the
emergence of global behavior. Examples of systems like this can be found in nature,
including ant colonies, bird flocking, animal herding, bacteria molding and fish schooling.
The PSO model was introduced in 1995 by J. Kennedy and R.C. Eberhart, being discovered
through simulation of a simplified social model such as fish schooling or bird flocking
(Kennedy & Eberhart, 1995). PSO consists of a group (swarm) of particles moving in the
search space, their trajectory being determined by the fitness values found so far.

www.intechopen.com

Evolutionary Computation in Constraint Satisfaction

25

The formulas used to actualize the individuals and the procedures are inspired from and
conceived for continuous spaces. Each particle is represented by a vector x of length n
indicating the position in the n-dimensional search space and has a velocity vector v used to
update the current position. The velocity vector is computed following the rules:

• every particle tends to keep its current direction (an inertia term);

• every particle is attracted to the best position p it has achieved so far (a memory term);

• every particle is attracted to the best particle g in population (the particle having the
best fitness value); there are versions of the algorithm in which the best particle g is
chosen from topological neighborhood.

Thus, the velocity vector is computed as a weighted sum of the three terms above. The
formulas used to update each of the individuals in the population at iteration t are:

 (1)

 (2)

4.2 Adapting PSO to Max-CSP
Schoofs and Naudts (Schoofs & Naudts, 2002) have previously adapted the PSO algorithm
for solving binary constraint problems. Our algorithm is formulated for the more general
Max-CSP problem. The elements of the algorithm are presented below.
An individual is an instantiation of all variables with respect to their domains.
The evaluation (fitness) function counts the violated constraints. Because Max-CSP is
formulated as a minimization problem smaller values of the evaluation function correspond
to better individuals.
The algorithm uses the basic idea of PSO: every particle tends to move towards his personal
best and towards the global best. Updating the particle consists in instantiating its variables
by choosing from the values of the two particles or keeping its own values. The decision is
made based on the values of the heuristic function described in section 2.1.1. The MBE
inference scheme is used as a preprocessing step.
The velocity and the operators must be redefined in order to adapt the PSO formulas to the
problem. This technique has already been used in order to adapt the PSO to discrete
problems. For example, for permutation problems the velocity was redefined as a vector of
transposition probabilities (X. Hu et al., 2003) or as a list of transpositions (Clerc, 2000) and
the sum between a particle position and the velocity consists in applying the transpositions.
We define the velocity which results from the subtraction of two positions as

the vector where → represents as in (Schoofs & Naudts, 2002) a change of

position.
The sum of the two velocities produces the velocity
given by

where H is the heuristic function described in section 2.1.1.
The addition to a position is defined by

No parameter is used.

www.intechopen.com

 New Achievements in Evolutionary Computation

26

The PSO formulas become:

 (3)

 (4)

Because the first term in equation (3) is the velocity used to obtain the position

at time t -1 we replace it with the velocity In this way the resulted
velocity formula selects the particle which has the smaller heuristic function value from the
current position x, the personal best p and the global best g.
The pseudocode of the algorithm is illustrated in Algorithm 4.
The step (*) from the pseudocode can be described as:

In order to explore the search space and to prevent the algorithm from getting trapped in

local optima a mutation operator is introduced. This is identical to the one used in GAs: a

random value is set on a random position. The role of the mutation is not only to maintain

diversity but also to introduce values from variables’ domains which do not exist in the

current population. To maintain diversity, the algorithm also uses the following strategies:

1. in case of equal values for the evaluation function the priority is given to the current value

and then to the personal optimum; 2. the algorithm is not implementing the online elitism:

the best individual is not kept in population, the current optimum can be replaced by a

worst individual in future iterations.

www.intechopen.com

Evolutionary Computation in Constraint Satisfaction

27

5. Tests and results

5.1 Data suite
Experiments were conducted only on binary CSPs (each constraint is built over at most two
variables), but there is no reason that the algorithm could not be run on n-ary CSPs with
n >2.
The algorithms were tested on two well-known models for generating CSPs.
The four-parameter model (Smith, 1994), called model B does not allow the repetition of the
constraints. A random CSP is given by four parameters (N, K, C, T), where N represents the
number of variables, K the domain size, C the number of constraints and T the constraint
tightness. The tightness represents the number of tuples not allowed. C constraints are
selected uniformly at random from the available N(N - 1)/2 ones and for each constraint T

nogoods are selected from the available K2 tuples. We have tested the approach on some

over-constrained classes of binary CSPs. The selected classes are sparse 〈25, 10, 37, T〉, with

medium density 〈15, 10, 50, T〉 and complete graphs 〈10, 10, 45, T〉. For each class of problem
the algorithms were tested on 50 instances.
We investigate the hybrid approaches also against the set of CSP instances made available
by Craenen et al. on the Web1. These instances are generated using the model E (Achlioptas
et al., 2001). We have experimented with 175 solvable problem instances: 25 instances for
different values of p in model E(20, 20, p,2). Parameter p takes the following values: {0.24,
0.25, 0.26, 0.27, 0.28, 0.29, 0.30}. All instances considered were solvable.

5.2 Algorithms settings
The variable ordering used in MBE was determined with the min-induced-width heuristic.
This method places the variable with the minimum degree last in the ordering. It connects
then all of the variable neighbors, removes the node and all its adjacent edges and next
repeats the procedure.
Experiments were made for different levels of inference, changing the values of the
parameter i in the MBE algorithm. Values 0 and 1 for parameter i means that no inference is
used. Value 2 for i corresponds to a DAC (directed arc consistency) preprocessing adapted
to Max-CSP: instead of removing values from variable domains cost functions are added for
variable-value pairs that count the number of variables for which no legal value match is
found. Greater values for parameter i generate new cost functions over at most i -1 variables.
For model B, for each class of problems 50 instances were generated. The problems were
first solved using a complete algorithm PFC-MRDAC (Larossa & Meseguer, 1998). This
algorithm is an improved branch-and-bound algorithm, specifically designed for the Max-
CSP problem. The optimal solution was the solution found by the PFC-MRDAC algorithm.
For each instance, for both PSO-MBE and GA-MBE, five independent runs were performed.
The number of parents for the recombination operator in GA-MBE was established to five.
The population size was set to 40 in the GA-MBE, while for PSO-MBE the swarm size was
equal to 30 particles. A time limit of 30 seconds was imposed for all search algorithms (the
time limit is used only for the search phase and does not include time needed for MBE).
For comparison purposes the Branch and Bound algorithm described in (Kask & Dechter,
2000) was implemented.

1 1http://www.xs4all.nl/ craenen/resources/csps modelE v20 d20.tar.gz

www.intechopen.com

 New Achievements in Evolutionary Computation

28

5.3 Results
As measures of effectiveness we use as in (Craenen et al., 2003) the success rate and the
mean error at termination. The success rate represents the percentage of runs that find a
solution. The mean error at termination for a run is equal to the number of constraints which
are violated by the best solution, at the end of the algorithm.
The average number of constraint checks and the average duration of the algorithms until
the optimum solution is reached was recorded only for the runs which find the optimum
within the time limit.

5.3.1 Results for MBE and Branch-and-Bound
The results concerning the two criteria on model B instances for the inference algorithm and
a Branch and Bound algorithm are given in Table 1. Each line of the table corresponds to a
class of CSPs.
Obviously, the Mini-bucket elimination algorithm solves more problems when the bound i
increases. The Branch-and-Bound algorithm behaves similarly. However, the time needed to
find a solution increases too (see Table 2).

Table 1. Results on model B: the success rate and the mean error for Mini-Bucket Elimination
(MBE) and Branch and Bound (B&B) algorithms for different levels of inference(i)

The results on model E are given in Figure 1 and Figure 2.
The Branch and Bound algorithm is not influenced at all by the low levels of inference
performed (the three curves in Figure 1 and 2 overlap); higher levels of inference are
necessary but they require much more time and space resources.

5.3.2 Results for the hybrid evolutionary computation algorithms Model B
The success rate and the mean error measures for the hybrid approaches are given in Table 3.
The search phase of the hybrid algorithms improves considerably the performance of the
inference algorithm. For the class of problems 15 – 10 – 50 – 84 the MBE with i = 4 did not
find the optimum for any of the generated problems. GA-MBE and PSO-MBE have solved
41%, respectively 52% of the problems.

www.intechopen.com

Evolutionary Computation in Constraint Satisfaction

29

Table 2. Results on model B: average time in seconds for MBE and B&B algorithms for the
runs which return the optimum

Fig. 1. Results on model E: Success rate for B&B

Even when the optimum solution was not found, the hybrid algorithms return a solution
closed to the optimum. This conclusion can be drawn from Table 3 by looking at the mean
error values.
We have also used an additional criterium for the evaluation of the hybrid algorithms. The
standard measure of the efficiency of an evolutionary algorithm, the number of fitness
evaluations is not very useful in this context. The use of heuristics implies more

www.intechopen.com

 New Achievements in Evolutionary Computation

30

Fig. 2. Results on model E: Average mean error for B&B

Table 3. Results on model B: the success rate and the mean error for GA and PSO hybrid
algorithms

computation that is invisible for this metric. Therefore we have computed the average

number of constraint checks, for the runs which return the optimum solution (see Table 4).

Regarding the number of constraint checks performed by the two algorithms, one general

rule can be drawn: the higher the inference level, the less the time spent on search.

www.intechopen.com

Evolutionary Computation in Constraint Satisfaction

31

Table 4. Results on model B: the average constraint checks of the hybrid evolutionary
computation algorithms

For sparse instances the efficiency of the preprocessing step is evident for the two

algorithms: increasing the inference level more problems are solved. The Genetic Algorithm

for medium density cases behaves similarly as for the sparse one. For complete graphs, the

genetic algorithm for i = 0 (no inference) gives a good percent of solved problems. But the

best results are for the larger level of inference. In almost all cases, the performance of the

GAMBE is higher when using a higher i-bound. This proves that the evolutionary algorithm

uses efficiently the information gained by preprocessing.

When combined with PSO, inference is useful only on sparse graphs; on medium density

and complete graphs low levels of inference slow down the search process performed by

PSO and the success rate is smaller. Higher levels of inference (i = 6) necessitate more time

spent on preprocessing and for complete graphs it is preferable to perform only search and

no inference.

Unlike evolutionary computation paradigms, the systematic Branch and Bound algorithm

has much benefit from inference preprocessing for all classes of problems. When no

inference is performed B&B solves only 2% of the sparse instances and 14% of the complete

graphs. The approximative solutions returned after 30 seconds run are of lower quality than

those returned by the evolutionary computation methods (the mean error is high). When

inference is used the turnaround becomes obvious starting with value 4 for parameter i.

Table 5 lists the average time spent by MBE and PSO algorithms for the runs which return

the optimum. Similarly, Table 6 refers to MBE and B&B time. These tables are illustrative for

the inference/search trade-off: increasing the inference level the time needed by the search

algorithms to find the optimum decreases.

An interesting observation can be drawn regarding the time needed by PSO to find the

optimum: even if the algorithm is run for 30 seconds the solved instances required much

shorter time; this is a clear indicator that PSO is able to find good solutions in a very short

time but it gets stuck often in local optima and further search is compromised.

www.intechopen.com

 New Achievements in Evolutionary Computation

32

Table 5. Results on model B: average time in seconds for MBE and PSO algorithms for the
runs which return the optimum

Model E
The results for model E corresponding to GA-MBE are given in Figure 3 and 4. Figures 5
and 6 present the results for PSO-MBE.

Table 6. Results on model B: average time in seconds for MBE and B&B algorithms for the
runs which return the optimum

The performance of the algorithms decreases with the difficulty of the problem. For smaller
values of p (0.24) the percentage of solved problems increases with the inference level. For
more difficult problems low levels of inference are useless.
One can also observe that the mean error is small, meaning that the algorithm is stable
(Figure 4 and Figure 6). This feature is very important for such kind of problems.
Given that the bounded inference performed on the model E instances has low effect on
subsequent search both for the randomized and the systematic methods, GA-MBE and

www.intechopen.com

Evolutionary Computation in Constraint Satisfaction

33

Fig. 3. Results on model E: success rate for GA-MBE

Fig. 4. Results on model E: mean error for GA-MBE

PSOMBE obtain better results than B&B: the percentage of solved problems (SR) is higher
and the approximative solutions returned after 30 seconds run are better qualitatively. The
average number of constraint checks on model E test instances increases with parameter p

from 5 · 107 to 8 · 107 for PSO-MBE and from 9 · 107 to 2 · 108 for B&B. The average time for
the runs which find the optimum increases with p from 9 seconds to 13 seconds for PSO-
MBE and from 10 seconds to 18 seconds for B&B.

www.intechopen.com

 New Achievements in Evolutionary Computation

34

Fig. 5. Results on model E: success rate for PSO-MBE

Fig. 6. Results on model E: mean error for PSO-MBE

Using the results from the comparative study of several genetic algorithms made by
Craenen et al. (Craenen et al., 2003) we can conclude that the performance of the hybrid
algorithms is comparable with that of the best GAs in the CSP field: Stepwise Adaptation of
Weights and Glass-Box GA. Low levels of inference slightly improve the performance of our
algorithm on difficult CSP instances; higher levels of inference are needed.

www.intechopen.com

Evolutionary Computation in Constraint Satisfaction

35

6. Conclusion

The chapter presents some of the techniques based on Evolutionary Computation
paradigms for solving constraints satisfaction problems. Two hybrid approaches based on
the idea of using the heuristics extracted from an inference algorithm inside evolutionary
computation paradigms are detailed. The effect of combining inference with randomized
search was studied by exploiting the advantage of adaptable inference levels offered by the
Mini-Bucket Elimination algorithm. Tests conducted on binary CSPs against a Branch and
Bound algorithm show that the systematic search has more benefit from inference than the
randomized search performed by evolutionary computation paradigms. However, on hard
CSP instances the Branch and Bound algorithm requires higher levels of inference which
imply a much greater computational cost in order to compete with evolutionary
computation methods.

7. References

Achlioptas, D., Kirousis, L., Kranakis, E., Krizanc, D., Molloy, M. & Stamatiou, Y. (2001).
Random constraint satisfaction: A more accurate picture, Constraints 4(6): 329–344.

Bean, J. (1994). Genetic algorithms and random keys for sequencing and optimization, ORSA
Journal on Computing 6(2): 154–160.

Breaban, M., Ionita, M. & Croitoru, C. (2007). A new pso approach to constraint satisfaction,
Proceedings of IEEE Congress on Evolutionary Computation, pp. 1948–1954.

Clerc, M. (2000). Discrete particle swarm optimization. illustrated by the traveling salesman
problem, Technical report. Available at htpp://www.mauriceclerc.net.

Coello, C. & Lechunga, M. (2002). Mopso: A proposal for multiple objective particle swarm
optimization, Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1051–
1056.

Craenen, B., Eiben, A. & van Hemert, J. (2003). Comparing evolutionary algorithms on
binary constraint satisfaction problems, IEEE Transactions on Evolutionary
Computation 7(5): 424–444.

Dasgupta, D. & Michalewicz, Z. (2001). Evolutionary Algorithms in Engineering Applications,
Springer 1st edition.

Dechter, R. (1996). Bucket elimination: A unifying framework for probabilistic inference
algorithms, Uncertainty in Artificial Intelligence, pp. 211–219.

Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning, Artificial
Intelligence 113(1-2): 41–85.

Dechter, R. (2003). Constraint Processing, Morgan Kaufmann Publishers.
Dechter, R. & Rish, I. (2003). Mini-buckets: A general scheme for bounded inference, Journal

of the ACM 50(2): 107–153.
Dozier, G., Bowen, J. & Bahler, D. (1994). Solving small and large constraint satisfaction

problems using a heuristic-based microgenetic algorithm, Proceedings of the 1st IEEE
Conference on Evolutionary Computation, pp. 306–311.

Eiben, A., Raue, P.-E. & Ruttkay, Z. (1994). Solving constraint satisfaction problems using
genetic algorithms, Proceedings of the 1st IEEE Conference on Evolutionary
Computation, pp. 542–547.

Eiben, A. & Ruttkay, Z. (1996). Self-adaptivity for constraint satisfaction: Learning penalty
functions, Proceedings of the 3rd IEEE Conference on Evolutionary Computation, pp.
258– 261.

www.intechopen.com

 New Achievements in Evolutionary Computation

36

Glover, F. & Kochenberger, G. (1995). Critical event tabu search for multidimensional
knapsack problems, Proceedings of the International Conference on Metaheuristics for
Optimization, pp. 113–133.

Ionita, M., Croitoru, C. & Breaban, M. (2006). Incorporating inference into evolutionary
algorithms for max-csp, Lecture Notes in Computer Science. 3rd International Workshop
on Hybrid Metaheuristics 4030: 139–149.

Kask, K. & Dechter, R. (2000). New search heuristics for max-csp, Lecture Notes In Computer
Science. Proceedings of the 6th International Conference on Principles and Practice of
Constraint Programming 1894: 262–277.

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization, Proceedings of the 1995 IEEE
International Conference on Neural Networks, Vol. 4, pp. 1942–1948.

Kowalczyk, R. (1997). Constraint consistent genetic algorithms, Proceedings of the IEEE
International Conference on Evolutionary Computation, pp. 343–348.

Larossa, J. & Meseguer, P. (1998). Partial lazy forward checking for max-csp, Proceedings of
the 13th European Conference on Artificial Intelligence, pp. 229–233.

Larossa, J., Meseguer, P. & Schiex, T. (1999). Maintaining reversible dac for max-csp,
Artificial Intelligence 107(1): 149–163.

Liepins, G. & Vose, M. (1990). Representational issues in genetic optimization, Journal of
Experimental and Theoretical Artificial Intelligence 2(2): 101–115.

Marchiori, E. & Steenbeek, A. (2000). A genetic local search algorithm for random binary
constraint satisfaction problems, Proceedings of the 14th Annual Symposium on Applied
Computing, pp. 458–462.

Michalewicz, Z. (1995). A survey of constraint handling techniques in evolutionary
computation methods, Proceedings of the 4th Anual Conference on Evolutionary
Programming, pp. 135–155.

Michalewicz, Z. (1996). Genetic Algorithms + Data structures = Evolution programs, Springer
Berlin 3rd edition.

Michalewicz, Z. & Janikow, C. Z. (1991). Handling constraints in genetic algorithms,
Proceedings of the 4th International Conference on Genetic Algorithms, pp. 151–157.

Michalewicz, Z. & Schoenauer, M. (1996). Evolutionary algorithms for constrained
parameter optimization problems, 4(1): 1–32.

Morris, P. (1993). The breakout method for escaping from local minima, Proceedings of the
11th National Conference on Artificial Intelligence, pp. 40–45.

Paredis, J. (1994). Coevolutionary constraint satisfaction, Lecture Notes In Computer Science.
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature 866: 46–55.

Richardson, J., Palmer, M., Liepins, G. & Hilliard, M. (1989). Some guidelines for genetic
algorithms with penalty functions, Proceedings of the 3rd International Conference on
Genetic Algorithms, p. 191197.

Schoofs, L. & Naudts, B. (2002). Swarm intelligence on the binary constraint satisfaction
problem, Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1444–
1449.

Smith, B. (1994). Phase transition and the mushy region in constraint satisfaction, Proceedings
of the 11th ECAI, pp. 100–104.

Wallace, R. (1995). Directed arc consistency preprocessing, Lecture Notes in Computer Science.
Constraint Processing, Selected Papers 923: 121–137.

X. Hu, X., Eberhart, R. & Shi, Y. (2003). Swarm intelligence for permutation optimization: a
case study on n-queens problem, Proceedings of the IEEE Swarm Intelligence
Symposium, pp. 243–246.

www.intechopen.com

New Achievements in Evolutionary Computation

Edited by Peter Korosec

ISBN 978-953-307-053-7

Hard cover, 318 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Evolutionary computation has been widely used in computer science for decades. Even though it started as far

back as the 1960s with simulated evolution, the subject is still evolving. During this time, new metaheuristic

optimization approaches, like evolutionary algorithms, genetic algorithms, swarm intelligence, etc., were being

developed and new fields of usage in artificial intelligence, machine learning, combinatorial and numerical

optimization, etc., were being explored. However, even with so much work done, novel research into new

techniques and new areas of usage is far from over. This book presents some new theoretical as well as

practical aspects of evolutionary computation. This book will be of great value to undergraduates, graduate

students, researchers in computer science, and anyone else with an interest in learning about the latest

developments in evolutionary computation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Madalina Ionita, Mihaela Breaban and Cornelius Croitoru (2010). Evolutionary Computation in Constraint

Satisfaction, New Achievements in Evolutionary Computation, Peter Korosec (Ed.), ISBN: 978-953-307-053-7,

InTech, Available from: http://www.intechopen.com/books/new-achievements-in-evolutionary-

computation/evolutionary-computation-in-constraint-satisfaction

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

