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Real-Time Evolutionary Algorithms for 
Constrained Predictive Control 

 Mario Luca Fravolini, Antonio Ficola and Michele La Cava 
Dipartimento di Ingegneria Elettronica e dell'Informazione,Università di Perugia  

Italy 

1. Introduction  

 In the last years, thanks to the great advancements in computing technology, Evolutionary 
Algorithms (EA) have been proposed with remarkable results as robust optimisation tools 
for the solution of complex real-time optimisation problems. In this chapter we review the 
most important results of our research studies concerning the design of EA-based schemes 
suitable for real-time optimisation problems for Nonlinear Model Based Predictive Control 
(MBPC). In the first part of the chapter it will be discussed some modifications of a standard 
EA in order to address some real-time implementation issues. 
The proposed extension concerns the adoption of a new realtime adaptive mutation range to 
generate smooth commands, and the adoption of an intermittent feedback to face the 
computational delay problem. It will be shown that the main advantage of the improved 
technique is that it allows an effective real-time implementation of the Evolutionary-MBPC 
with a limited computing power. The real-time feasibility of the proposed improved 
Evolutionary-MBPC will be demonstrated by showing the experimental results of the 
proposed method applied to the control of a laboratory flexible mechanical system 
characterized by fast dynamics and a very small structural damping. 
Later, the application of real-time EAs is extended to real-time motion planning problems 
for  robotic systems with constraints either on input and state variables. Basing on a finite 
horizon prediction of the future evolution of the robot dynamics, the proposed EA-based 
device online preshapes the reference trajectory, minimizing a multi-objective cost function. 
The shaped reference is updated at discrete time intervals taking into account the full 
nonlinear robot dynamics, input and state constraints. A specialized Evolutionary 
Algorithm is employed as search tool for the online computation of a sub-optimal reference 
trajectory in the discretized space of the control alternatives. The effectiveness of the 
proposed method and the online computational burden are analyzed numerically in two 
significant robotic control problems. 

2. Improved evolutionary predictive controllers for real-time application 

Part of the following article has been previously published in: M.L. Fravolini, A. Ficola, M. La Cava, 
“Improved Evolutionary Predictive Controllers for real time application”, Control and Intelligent 
Systems, vol. 31, no.1, pp.16-29,2003, Acta Press, Calgary Canada, ISSN: 1480-1752(201) . 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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The employment of a model of a dynamical system to plan in real-time optimal control 
policies is a very attractive approach for the generation of sophisticated and effective control 
laws. The Model Based Predictive Control (MBPC) is based on this idea. In the last years, 
much progress has been made toward the development of the stability theory of nonlinear 
MBPC   (Maine &  Michalaska, 1993; Scokaert et al., 1999; Gyurkvics, 1998) , but the resulting 
algorithms are quite difficult to be implemented in real-time. The difficulty in the 
implementation of nonlinear MBPC lies in the fact that a constrained non-convex nonlinear 
optimization problem has to be solved on-line. Indeed, in the case of nonlinear dynamics, 
the optimization task is highly computationally demanding and, for this reason, the online 
optimization problem is an important issue in the implementation of MBPC (Camacho &  
Bordons, 1995). The undesirable effects caused by the numerical optimization are mainly 
two. The first is due to the time required by the optimization procedure to compute a 
solution; this time is often much longer than the sampling time, thus introducing a 
significant delay in the control loop. The second effect is related to the fact that, in general, a 
numerical algorithm for nonlinear constrained MBPC cannot guarantee the optimality of the 
solution.  
The complexity of the online optimization problem is strictly related to the structure of the 
nonlinear dynamics and also to the number of the decision variables and to the constraints 
involved. Many approaches have been proposed to face the online optimization task in 
nonlinear MBPC; a widely applied approach consists of the successive linearization of the 
dynamics at each time step and of the use of standard linear predictive control tools to 
derive the control policies, as proposed in (Mutha et. Al., 1997; Ronco et Al. 1999). Although 
these methods greatly reduce the computational burden, the effect of the linearization could 
generate poor results when applied to the real nonlinear system. Other methods utilize 
iterative optimization procedures, as Gradient based algorithms or Sequential Quadratic 
Programming techniques ( Song &  Koivo 1999). These methods, although can fully take into 
account the nonlinear dynamics of the system, suffer from the well known problem related 
to local minima. A partial remedy is to use these methods in conjunction with a grid search 
as proposed in (Fischer et al., 1998). Another approach is represented by discrete search 
techniques as Dynamic Programming (Luus, 1990) or Branch and Bound (Roubos et Al. 
1999) methods. In this approach the space of the control inputs is discretized and a smart 
search algorithm is used to find a sub optimum in this space. The main advantages of search 
algorithms are that they can be applied regardless of the structure of the model; 
furthermore, the objective function can be freely specified and it is not restricted to be 
quadratic. A limitation of these methods is the fast increase of the algorithm complexity 
with the number of decision variables and grid points, known as “the curse of the 
dimensionality”.  
In the last years, another class of search techniques, called Evolutionary Algorithms (EAs), 
showed to be quite effective in the solution of difficult optimal control problems (Foegel, 
1994; Goldberg 1989). Although at the beginning the largest part of the EA applications were 
developed for offline optimization problems, recently, thanks to the great advancements in 
computing technology, many authors have applied with remarkable results EAs for online 
performance optimization in the area of nonlinear and optimal control. Porter and Passino 
showed clearly that Genetic Algorithms (GA) can be applied effectively either in adaptive 
and supervisory control (Porter & Passino, 1998; Lennon & Passino 1999) or as nonlinear 
observers (Porter & Passino 1995). Liaw (Liaw & Huang 1998) proposed a GA for online 
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learning for friction compensation in robotic systems. In references (Fravolini et Al. 1999 (a); 
Fravolini et Al. (b)) the authors proposed to apply EAs for the online trajectory shaping for 
the reduction of the vibrations in fast flexible mechanical systems. 
Recently, some authors have pointed out the possibility of applying EAs as performance 
optimizer in MBPC. Onnen in (Onnen et Al., 1999) proposed a specialized GA for the 
optimization of the control sequence in the field of process control. He showed the 
superiority of the evolutionary search method in comparison to a branch-and-bound 
discrete search algorithm. Similar algorithms have been also proposed in (Martinez et Al. 
1998; Shin & Park, 1998).  
Although very interesting from a theoretical point of view, all these studies were carried out 
only by means of simulations and scarce attention was paid to computational and real-time 
implementation issues; furthermore, to the best of our knowledge, no practical application 
of this technique has been reported in literature.  In the first part of this paper, therefore, we 
discuss in details some practical real-time implementation issues of the evolutionary MBPC 
that have not been discussed in (Onnen et Al., 1999; Martinez et Al. 1998; Shin & Park, 1998). 
In fact, we experimented that the application the algorithm [19] could generate practical 
problems. As noticed also in (Roubos et Al. 1999), the suboptimal command signal often 
exhibits excessive chattering that cause unnecessary solicitations of the actuation system. To 
cope with this problem we propose to improve the basic algorithm (Linkens, 1995) by 
applying an online adaptation of the search space by defining a new adaptive mutation 
operator. We will show that smoother solutions can be obtained without significant 
degradation of the performance.  A second aspect that should be faced is the computational 
delay that originates when computational intensive algorithms, as EAs, are applied for real-
time optimization. This aspect is particularly important in the case of a limited 
computational power and fast sampling rates. To overcome this problem we modified the 
basic algorithm by inserting an intermittent feedback strategy. The advantage of this 
strategy is the possibility of decoupling the computing time by the system sampling time; 
this makes the EA based optimization procedure more flexible than the basic one for real-
time implementation.  
Another aspect that has not been discussed in previous works is the analysis of the 
repeatability of the control action of the EA based MBPC; this aspect is strictly related to the 
reliability of the proposed strategy. This issue has been addressed by means of a stochastic 
analysis. The first part of the paper terminates with a comparison of the performance 
provided by the improved EAs and an iterative gradient-based optimization procedure. In 
the second part of the paper we report the experimental results obtained by implementing 
the improved algorithm for the real-time MBPC of a nonlinear flexible fast-dynamic 
mechanical system. 

3. Nonlinear Predictive Control  

 Model Based Predictive Control includes a wide class of control strategies in which the 
control law is derived on the basis of the estimation of the future evolution of the system 
predicted by a model. A nonlinear MBPC is based on the following  three main concepts 
(Garcia et Al. 1989; Levine, 1996): 
A) the use of a model to predict the future evolution of the real system; 
B) the online computation of the optimal control sequence, by minimizing a defined index of 
performance that quantifies the desired behavior; 
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C) the receding horizon: only the first value of the optimal sequence is applied; then the 
horizon is shifted one sample in the future and a new sequence is recalculated.  
One of the main advantages of the MBPC  is the possibility to handle general constraints 
either on the inputs or on state variables. A block diagram of a MBPC is shown in Fig. 1. 

• The Model and the System: In MBPC the model of the system is expressly used to 
compute the control law; for this reason the model should be as accurate as possible. 
There is no restriction on the structure of the model. If complete physical insight on the 
system is available, the model could be analytically expressed in state space form; on 
the other hand, if only a scarce knowledge is available, a black box model can be 
employed. In the last case, the system is often implemented by a neural network or a 
fuzzy system.  
Remark 1: In most of the applications, the system block in Fig. 1 represents the open loop 
dynamics of the nonlinear systems; however in some applications it can comprise either 
a preexistent inner control loop or an expressly designed feedback controller. In the first 
case as in (Shiller & Chang, 1995) the MBPC is employed to improve the performance of 
the existing feedback controller. In the second case as in (Fravolini et Al., 2000) an inner 
feedback controller is designed in order to directly compensate the effects that are 
difficult to be included in system prediction model, as friction and stiction.  

• The Optimal Control Law: In MBPC the optimal command sequence u*(k) is determined 
as the result of an optimization problem at each sampling instant. All the performance 
specifications are quantified by means of a cost index. An index, which is often 
employed, is the following one: 

 ( ) ( ) ( ) 1

1

22
1|ˆ

2

1

JjkuqjkykjkypJ
uN

j

k

N

Nj

dk +−+Δ++−+= ∑∑
==

  (1) 

The first term of J evaluates the square error between the desired future output signal 

yd(k+j) and the predicted future output ˆ( | )+y k j k , estimated on the basis of the 

prediction model and the feedback information available at instant k. This error is 
evaluated over a defined prediction horizon, which is a window of  N2 - N1 samples. The 
second term of J is the control contribution over the control horizon window of Nu 

samples, where ( Δu(k) = u(k)- u(k-1) ). Coefficients kp  and kq  weights the different 

terms of J. The term J1 is a further cost function that can be used to take into account 
other specifications or constraints. MBPC is mainly used in conjunction with constraints 
on the amplitude and the rate of variation of the input and output variables, namely: 

 +−+− Δ<Δ<Δ<< UkuUUkuU )()(   (2) 

 +−+− Δ<Δ<Δ<< YkyYYkyY )()(   (3) 

The fulfillment of the constraints (2) are required to take into account the practical 
limitations of the actuation system, while constraints (3) can prevent the system to work 
in undesirable regions. The minimization of index J is performed with respect to the 
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decision variables, which is the sequence of the control increments: 

)]1(,),1(),([ −+Δ+ΔΔ uNkukuku L . 

• The receding horizon and the feedback filter: In the receding horizon strategy only the first 
sample of the optimal sequence u*(k+j) is applied to the system; subsequently, the 
horizon is shifted one step in the future and a new optimization is repeated on the basis 
of the measured feedback information. In the basic form, the horizons are shifted at 
each sampling instant. Although this strategy introduces feedback information in the 
control loop at the sampling rate, this can require a large computational power in the 
online implementation; on the other hand (see section 6), it is possible to decrease the 
computational burden by applying an intermittent feedback (Ronco et Al., 1999). The 
structure and complexity of the feedback filter depends on the strategy employed to 
insert the feedback information in the optimization process. In the simplest case the 
filter is low-pass and is used only to reduce the measurement noise. This approach is 
often used in conjunction to input-output models where the measured output is mainly 
used to recover steady state errors. In case of state space models, the feedback filter 
could be more complex: it can be either a bank of filters used to estimate derivatives or 
integrals, or a model based nonlinear observer. In the last case the possibility to recover 
the system states allows periodic system/model realignment. The realignment prevents 
excessive drift of the prediction error when a long-range prediction is required. 
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Figure 1.  Nonlinear Model Predictive control 

4. The benchmark laboratory nonlinear system  

The performance of the improved Evolutionary MBPC has been experimentally tested on a 
nonlinear laboratory flexible mechanical system. The system is composed of a flexible beam 
clamped at one end; a controlled pendulum is hinged on the free tip and is used to damp 
out the beam oscillations; the motion occurs in the horizontal plane. A DC motor is 
employed to regulate the angular position of the pendulum in order to damp out the 
vibrations on the flexible beam. Fig. 2 shows the experimental set-up. The system is 
characterized by a very small structural damping and its stabilization in a short time 
represents a significant test because of the fast dynamics and the presence of oscillatory 
modes that require either an accurate model or a short sampling time or a long prediction 
horizon. This situation is known to be critical in the implementation of MBPC algorithms. 
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Figure 2. The laboratory benchmark flexible systems  
Fig. 3a shows the mechanical model of the system, the main parameters of which are 
reported in table 1. The system is equipped with optical encoders that allow the 

measurement of the tip deflection r and the angle φ of the pendulum (since the beam 

deflection is small we exploited the relation r≅L⋅θ). Because of the most of the vibration 
energy is associated to the first vibration mode of the beam, its dynamics can be described 
with a sufficient accuracy by a mass-spring-damper mechanical system (Fig. 3b). The 
equations of motion of a flexible mechanical system moving in a horizontal plane are of the 
form: 

 Q)qC(q,qB(q) =+ &&&   (4) 

θ

φ

Motor

m,l

M,L

a) b) 

r
θ

φ

r

Motor

M,L

m,l

 

Figure 3.  The structure (a), and its model (b) 
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M 0.689 kg Mass of the beam 
m 0.070 kg Mass of the pendulum 

L 1.000 m Length of the beam 

l 0.086 m Length of the pendulum 

1
K 25.3 Nm/rad Elastic coeff. of the beam 

1
C  0.008 Nm/s rad Damping coeff. of the beam 

2
C  0.050 Nm/s rad Damping coeff. of the pendulum 

Table 1. Parameters of the Model 

where B is the inertia matrix, C comprises Coriolis, centrifugal, stiffness and damping terms, 

q=[θ φ]Τ is the vector of Lagrangian coordinates and Q is the generalized vector of the input 
forces. By applying the standard Lagrangian approach the following model matrices were 
obtained: 

⎥
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[0 ]Tτ=Q  

where τ is the control torque and the term Ccou represents the Coulomb friction coefficient 
acting on the motor; this term cannot be modeled accurately. The inaccuracy produced by 
this uncertainty can generate a significant discrepancy between the simulated and the real 
pendulum position. A method of compensating for modeling errors that cause inaccuracies 
in the estimation of the pendulum angle is to redefine the model such that the input is not 

the motor torque τ, but rather the motor position φ(t) and its derivatives (Geniele et Al., 
1997)]. In this case, using an inner position feedback controller (for instance, a PD 

controller), it is possible to track accurately a reference trajectory φd(t). If the desired 
trajectory is smooth, the tracking error can be very small. In this case we can assume 

φ(t)≅φd(t) and the variables ( ), ( ), ( )φ φ φ& &&
d d dt t t  are the new inputs to the model (5). By 

applying this strategy it is possible to recast the model equations (4-5) obtaining a reduced 

order model relating the motor position φd(t) to the beam deflection θ(t). The reduced 
dynamics satisfy the equation: 

 11 12 1 , , , 0φ θ φ φ θ φ θ φ+ + =&& && & &
d d d d db b c( ) ( ) ( )  (6) 

where b11,b12,c1 are the entries of matrix B and vector C. Equation (6) describes the nominal 
model used for the prediction by the MBPC.  
Since a MBPC is discrete time device, it updates the outputs at a defined sampling rate Ts, 

the control  inputs φdes(t) and its derivatives are kept constant during a sampling interval 
[kTs, (k+1)Ts] by a zero-order hold filter. The decision variables for the optimization problem 
(1) are the control increments:  

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

146 

 
[ ]2

2

( 1), ( 2), , ( )
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⎡ ⎤Δ + Δ + Δ +⎣ ⎦

K

&& && &&K
 (7) 

The desired position φd(t) and velocity ( )φ&d t  are computed by numerical integration using 

the 4th order Runge Kutta method. The EA based MBPC procedures was written in C code 
and run in real-time on a dSPACE 1003 DSP board, based on a TMS320C40 DSP. 

5. Evolutionary Algorithms 

Evolutionary Algorithms are multi point search procedures that reflect the principle of 
evolution, natural selection, and genetics of biological systems (Goldberg, 1989; Porter & 
Passino 1998). An EA explores the search space by employing stochastic rules; these are 
designed to quickly direct the search toward the most promising regions. The EAs work 
with a population of solutions rather than a single point; each point is called chromosome. A 
chromosome represents a potential solution to the problem and comprises a string of 
numerical and logical variables, representing the decision variables of the optimization 
problem. An EA maintains a population of chromosomes and uses the genetic operators of 
“selection” (it represents the biological survival of the fittest ones and is quantified by a 
fitness measure that represents the objective function), “crossover ” (which represents 
mating), and “mutation” (which represents the random introduction of new genetic 
material), to generate successive generations of populations. After some generations, due to 
the evolutionary driving force, the EA produces a population of high quality solutions to the 
optimization problem.  
The implementation of an EA can be summarized by the following sequence of standard 
operations: 
1. (Randomly) Initialize a population of N solutions 
2. Calculate the fitness function for each solution 
3. Select the best solutions for reproduction 
4. Apply crossover and mutation to selected solutions 
5. Create the new population 
6. Loop to step 2) until a defined stop criterion is met 
The implementation of the evolutionary operators of selection, crossover and mutation is 
not unique. The first and most known EA is the simple GA (Goldberg 1989), but a large 
number of modifications have been proposed and applied by many authors. In this paper, 
the attention will be focused mainly on the evolutionary operators expressly designed for 
MBPC. These operators were introduced in previous works (Fravolini et Al. 1999 (a); 
Fravolini et Al. (b)) and tested by mean of extensive simulation experiments. Some of these 
operators are similar to the corresponding ones reported by (Onnen, 1997; Martinez, 1998) 
and constitute a solid, tested and accepted base for Evolutionary MBPC. 

5.1 The Standard Evolutionary MBPC operators 

• Fitness function: The natural choice for the cost function to be minimized online is 
represented by the index J in (1). Since in the EA literature it is more common to refer to 
fitness function optimization than to cost function minimization, the following fitness 
function is defined: 
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 Jf /1=   (8) 

• Decision variables: The decision variables are the sequence of the future Nu input 

increments Δu(k+j)  in (7). 

• Chromosome structure and coding: A chromosome is generated by the juxtaposition of the 
coded sequence of input increments (7). Concerning the codification of the decision 
variables, some alternatives are possible. Binary or decimal codifications, although used 
in many simulative studies as in (Onnen, 1997; Martinez, 1998), are not particularly 
suited in the real-time application due to the time consuming coding and decoding 
routines. Real and integer coded variables do not require any codification; but the 
evaluation of evolutionary operators for real numbers is slower than the corresponding 
routines working with integers; therefore, in this work a decimal codification was 
employed. A coded decision variable x can assume an integer value in the range 

Ω: 0,…L0,…Lx where Lx represents the discretization accuracy; this set is uniformly 

mapped in the bounded interval +− Δ≤Δ≤Δ UuU . L0 is the integer corresponding to 

Δu=0; The i-th chromosome in the population at t-th generation is a vector of integer 

numbers ],...,,[ ,2,1,

t

uNi

t

i

t

i

t

i xxxX = , the actual values of the corresponding decision 

variables Δu(k) can be obtained by the following decoding scheme: 

 ujiU NjxUjku ,...1)( , =⋅Δ+Δ=+Δ −
  (9) 

where ΔU=| ΔU+- ΔU-|/Lx is the control increment resolution. The sequence of the 
applied controls is: 

 uNjjkujkujku ,...,1)()1()( =+Δ++−=+   (10) 

• Selection and Reproduction : 
Selection and reproduction mechanisms act at two different levels during the on-line 
optimization: 

• Selection and Reproduction within time interval k. Since a limited computational time 
is available within the time interval k, it is essential to not loose the best solutions 
during the evolution and to use them as “hot starters” for the next generation. For 
this reason a steady state reproduction mechanism is used, namely the best S 
chromosomes in the current generation pass unchanged in the next one. The 
remaining part of the population is originated on the basis of a rank selection 
mechanism: given a population of size N, the parent solutions are selected within 
the mating pool of the best ranked D individuals. This approach is similar to the 
algorithm described in (Yao & Sethares, 1994).  

• Heredity (between time interval k and k+1). At the beginning of the k+1-th time 
interval, since the horizon is shifted one step in the future, the genes of the best S’ 
chromosomes are shifted back of one location within the chromosome; in this way 
the first values are lost and replaced by the second ones and so on. The values on 
the last positions are simply filled by keeping the current value. The shifted S’ 
chromosomes represent the “hot starters” for the optimization in the k+1-th time 
interval; the remaining N-S’ chromosomes are randomly generated. 
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• Crossover: Uniform crossover has been implemented. Given two selected chromosomes 
Xit and Xjt, two corresponding variables are exchanged with a probability pc, namely: 

 t
kj

t
ki xx ,
1

, =+  and t
ki

t
kj xx ,
1

, =+ .  (11) 

• Mutation: Mutation is applied with probability pm to each variable of a selected 
chromosome Xi, according to: 

 )(,

1

, Δ+=+ randxx t

ki

t

ki   (12) 

where )(Δrand  is a random integer in the range [-Δx,+Δx] and Δx is the maximum 

mutation amplitude. 

• Constraints: During the optimization it is possible that a decision variable 
t

jix ,  (due to 

mutation) violates the maximum or minimum allowed value in Ω; this can be easily 
avoided by applying the following threshold operators: 
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The application of (13) automatically guarantees that +− Δ≤Δ≤Δ UuU . Similarly, the 

fulfillment of constraint +− ≤≤ UuU  is guaranteed by applying the thresholds: 
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  (14) 

It is also possible to take into account other constraints as (3) by employing the penalty 
function strategy.  

• Termination criterion: In a real-time application the termination criterion must take into 
account the hard bound given by the real time constraint; this implies that the 
maximum number of generations is limited by the fulfillment of this constraint. When 
the real-time deadline is met, the optimization is stopped, and the first decoded value of 

the best chromosome Δu*(k) is applied to the system.  

 6. Improved Operators for Real-Time Implementation  

The following sections describe the improvements of the standard algorithm reported in 
section 4 that we propose to apply in the real-time implementation. Some of these operators 
are not new in the field of MBPC; however, the novelty consists of the adaptation of these 
concepts within an Evolutionary real-time optimization procedure. 
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6.1 Adaptation of the search space 

The employment of a discrete search technique to minimize the index (1) introduces a 
tradeoff between the number of discrete control alternatives and the computational load 
required for the exploration of the discrete space. The performance of an EA, although it 
does not perform an exhaustive exploration of the search space, is anyway influenced by the 
dimensionality of the grid; this aspect is particularly relevant in real-time applications 
where the computing time is limited. A coarse discretization could generate unsatisfactory 
results as undesired oscillations of the output variable, while a too fine grid could require a 
prohibitive time to locate a satisfactory solution. The problems related to the excessive 
chattering in the control signal or in controller gains have been previously mentioned by 
other authors as in (Roubos et Al., 1999; Lennon & Passino, 1999). By applying a scaling 
factor to the size of the region in which the control alternatives are searched can significantly 
decrease this problem. As proposed in (Sousa & Setnes, 1999), a way to achieve this goal is 
to adapt the dimension of the search space depending on the predicted deviation of the 
output from the desired reference signal. When the prediction error keeps small within the 
prediction horizon, it is probably not convenient to explore the whole allowed region of the 
control alternatives; rather, it is opportune to concentrate the search around the origin. On 
the other hand, when a large error is predicted, the range of the control alternatives should 
be large to enable a fast recover.  
In the context of evolutionary MBPC, the exploration of new regions is mainly carried out 
by the application of the mutation operator (12) that causes a random incremental variation 

in the range ±Δx around the current value. For this reason, we propose to improve the basic 

algorithm by conveniently scaling during the real-time operation the mutation range Δ  by 

means of an adaptive gain ]1,0[)( ∈α k . The adaptive mutation range is therefore defined as: 

 xkk Δ⋅α=Δ )()(   (15) 

Different criteria can be used to adapt the parameter α(k). In (Sousa, 1999) the adaptation of 

the parameter α(k) is carried out by means of a fuzzy filter on the basis of the current 
estimation error and the current change of error. In this work we propose to adapt the 

parameter in function of the predicted mean absolute output error *E  for the best solution: 

 ∑
=

+−+
−

=
2

112

)(ˆ)(
)(

1
)(*

N

Nj

d jkyjky
NN

kE  (16) 

*E  is a meaningful index because it takes into account not only the current value of the 

error but also the predicted behavior of the estimation error. When )(* kE  is small, α(k) 

should be small to allow a fine regulation near the steady state; otherwise, when )(* kE  is 

large, α(k) should be large to allow big corrections. The following law defines a possible 
scaling: 

 )/*exp(1)( 2 σ−−=α Ek   (17) 

where σ> 0 is a parameter that regulates the adaptation speed. The proposed law has only 

one design parameter (σ) that is not really critical and, thus, allows for the use of some 
heuristics to cope with the uncertainty in its definition. By employing the adaptive law (15), 
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the choice of the maximum mutation amplitude Δx is no more critical, because the adaptive 

gain α(k) scales its range accordingly. 

6.1.1 A simulation example 

To show the effect of the adaptation of the search space we report the results of a simulation 
study performed on the model of the mechanical system (6). The decision variables is the 
sequence (7). To find suitable values for the setting of the MBPC parameters some trials 
were performed. The length of prediction horizon was chosen in order to cover a complete 
period of oscillation of the first mode of vibration of the beam; shorter horizons gave 
unsatisfactory responses, that is a very long stabilization transient. In the simulation we 
chose equal values for the prediction and control horizons; the final values were: 
N1=0,N2=Nu=32; the sampling time was Ts=0.04s (this implies a horizons length of Nu ·Ts 
=1.28s). The other parameters of the MBPC are reported in table 2.  
Since the scope of the control system is to damp out the oscillations of the tip position r(k) of 

the beam (r(k) ≅L·θ(k))       (see Fig. 3), we assumed as the desired target position the 

trajectory  yd(k)= θd(k)=0; the resulting objective function is:  

 
u uN N

0 0

J (k )- (k j) (k )-0d

j j

j y jθ θ
= =

= + + = +∑ ∑   (18) 

20=N  6=D  2=S  4=S   

1.0=
m

p  8.0=
c

p  5=K  04.0=
s

T   

4000=xL  1000=Δ
X

 001.0=σ  32uN =   

Table 2. Parameters of the MBPC 

It is worth noting that, although cost function (18) is different from index (1), it does not 
influence the functionality of the EA. In index (18), no cost is added to weight the 
contribution of the control effort, because it was observed in the real implementation that 
the most important constraint on the control signal is imposed by its rate of variation, due to 

the limited bandwidth of the actuator. The constraint -8<Δu(k)<8 allows the generation of 
reference signal that can be accurately tracked by actuator. Fig. 4a shows the response of the 
controlled system in the case of no adaptation of the mutation range; in the same figure it is 
also reported the uncontrolled response (dotted line). Fig. 4b shows the same response in the 
case that the adaptive law of the mutation range is active. While in the two cases a not 
significant difference in the performance variable is observed, on the other hand, a big 
discrepancy is present in the sequence of the control input increments (Fig. 5a-b). In the case 
of fixed mutation range the control increments exhibit an excessive chattering also when the 
system is near the steady state. The presence of persistent spikes in the control signal is due 
to the difficulty of the basic algorithm to select a smooth sequence of small increments in a 
large space of control alternatives in a limited number of generations. In the case of 
adaptation of the mutation range, the control increments are more reasonable.  Fig. 6 a-b 
shows the control signals applied to the system in the two cases. Although an unavoidable 
chattering is present during the transitory, it completely disappears when the system is near 
the steady state. This example shows that the adaptive reduction of the dimensionality of 

www.intechopen.com



Real-Time Evolutionary Algorithms for Constrained Predictive Control 

 

151 

the search alternatives helps the algorithm to select a sufficiently smooth signal able to drive 
the mechanical system to the steady state; furthermore, the adaptive mutation range does 
not degrade the performance of the controlled system. For this reason the adaptive mutation 
ranges represent a valid improvement of the basic algorithm for real-time Evolutionary 

MBPC of the system under inspection. Fig. 7 shows the adaptation of the gain α(k) during 
the transitory. 
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Figure 4.  Tip position (controlled and free) without the adaptation of the search space (a), 
and with the adaptation of the search space (b) 
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Figure 5. Control input increments without the adaptation of the search space (a), and 
control input increments with the adaptation of the search space (b) 
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Figure 6. Control signal without the adaptation of the search space (a), control signal with 
the adaptation of the search space (b) 
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Figure 7. Online adaptation of gain )(kα  

6.2 The computational delay problem  

The implementation of a MBPC procedure implies the online optimization of the cost index 
J at every sampling period Ts. In most of theoretical and simulation studies concerning the 
MBPC, the problems related to the computational delay, that is the CPU time Tc required for 
the numerical optimization of index (1), are seldom taken into account. In the ideal situation 
(Tc=0), the optimal control signal applied in the m-th sampling interval depends directly on 
the current state, x(kTs), at the same instant. Under this hypothesis the optimal control law is 
defined by the following function fs(·): 

 ( ) [ ]* ( ) ( ), ( ), , ( 1)= ∈ +k s s s s su t f x kT u kT t t mT m T   (19) 

Although this hypothesis can be reasonable in some particular cases, the computational 
delay is a major issue when nonlinear systems are considered, because the solution of a 
nonlinear dynamic optimization problem with constraints is often computationally 
intensive. In fact, in many cases the computation time Tc required by the optimization 
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procedure could be much longer than the sampling interval Ts, making this control strategy 
not implementable in real-time. Without loss of generality we assume that the computing 
time is a multiple of the sampling time: 

 c sT H T= ⋅  (20) 

where H is an integer. The repetition of the optimization process in each sampling instant is 
related to the desire of inserting robustness in the MBPC by updating the feedback 
information at the beginning of each sampling interval (Ts) before the new optimization is 
started. Generally, the mismatches between system and model cause the prediction error to 
increase with the prediction length and for this reason the feedback information should be 
exploited to realign the model toward the system to keep the prediction error bounded. The 
simplest strategy to take into account the system/model mismatches is to use a parallel 

model and to add the current output model error )(ˆ)()( kykyke −=  to the current output 

estimation. In this way the improved prediction to be used in index (1) is: 

 1 2
ˆ ˆ( ) ( ) ( ) ,...,y k j y k j e k j N N+ ← + + =  (21) 

This approach works satisfactory to recover steady state errors and for this reason it is 
widely used in process control and in presence of slow and not oscillatory dynamics 
(Linkens & Nyongesa, 1995). In case a white box model of the system is available, a more 
effective approach is to employ the inputs and the measured outputs to reconstruct the 
unmeasured states of the system by means of a nonlinear observer (Chen, 2000); this allows 
a periodic realignment of the model toward the system. 

6.2.1 Intermittent feedback 

In the case the prediction model generates an accurate prediction within a defined horizon, 
it is not really necessary to perform the system/model realignment at the sampling rate Ts. 
As proposed in (Chen et Al., 2000) an intermittent realignment is sufficient to guarantee an 
adequate robustness to system/model mismatches. Following this approach, the effects of 
the computational delay are overcome by applying to the system, during the current 
computation interval [kTc,(k+1)Tc], not only the first value of the optimal control sequence 
yielded in the previous computation interval [(k-1)Tc,kTc], but also the successive H-1 values 
(Tc=H·Ts). When the current optimization process is finished, the optimal control sequence is 
updated and the feedback signals are sampled and exploited to perform a new realignment; 
then a new optimization is started. By applying this strategy the realignment period is 
therefore equal to the computation time Tc. According to this approach the system is open 
loop controlled during two successive computational intervals and the optimal control 
profile during this period is defined by the following function fc(·): 

 
( ) [ ]( )( )

[ ]

*

/ 1
1

( ) , , ( 1) , ;

, ( 1)

−
−

= +

∈ +

k k c c c c
k

c c

u t f x kT u kT k T t

t kT k T

 (22) 

where ( )tu kk

*

1| −
 is the predicted sequence to be applied in the k-th computational interval 

that has been computed in the previous interval. The main advantage of the intermittent 
feedback strategy is that it allows the decoupling between the system sampling time Ts and 
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the computing time Tc; this implies a significant decrease in the computational burden 
required for the real-time optimization. On the other hand, a drawback of the intermittent 
feedback is that it inserts a delay in the control action, because the feedback information has 
an effect only after Tc seconds. The evolutionary MBPC algorithms described in (Onnen et 
Al., 1999; Martinez et Al. 1998) do not take into account the computational delay problem; 
therefore, their practical real-time implementation strictly depends on the computing power 
of the available processor that should guarantee the execution of an adequate number of 
generations within a sampling interval [mTs,(m+1)Ts]. The employment of an intermittent 
feedback strategy allows the enlargement of the computation time available for the 
convergence of the algorithm and makes the algorithm implementable in real-time also with 
no excessively powerful processors. 
The choice of the computing time Tc (realignment period) represents an important design 
issue. This period should be chosen as a compromise between the two concurrent facts: 
1. The enlargement of the computing time Tc allows to refine the degree of optimality of 

the solution by increasing the number of generations within an optimization period. 
2. Long realignment periods cause the prediction error to increase, as a consequence of 

system/model mismatches. 

6.2.2.  Effects of the intermittent feedback 

To evaluate the effects of the intermittent feedback we considered two exemplificative 
simulations. 
Reference is made to the model (4-5) of the flexible mechanical system. We investigated the 
following situations: 
Case A) No system/model mismatches (ideal case) 
Case B) Significant modeling error (realistic case) 
Since the Evolutionary MBPC optimization procedure is based on a pseudo randomized 
search, it is unavoidable that the repetition of the same control task generates slightly 
different sub optimal control sequences. For this reason the investigation of the performance 
should be carried out by means of a stochastic analysis by simulating a significant number 
of realizations (in our analysis 20 experiments of 10 seconds each). We choose as 
performance measure the mean and the standard deviation of the mean absolute tracking 

error e  for the tip position of the beam starting from the deflected position 0.1 radθ = , 

0θ =& , 0=φ , 0φ =& . This variable is defined as: 

 
1

1
( ) ( , ) 0

endT

m

e m
N

ξ θ ξ
=

= −∑  (23) 

where the (stochastic) variable ξ is used to put into evidence the stochastic nature of the 
variable e . 

• Case A, no model uncertainty: The Evolutionary MBPC is set according to the parameters 
of table 2. The scope of the analysis is to show the effect on the performance caused by 
the enlargement of the computing time. As the computing time Tc is expressed as a 
multiple of the sampling time Ts, its enlargement is obtained by increasing the value of 
the integer H in (20). The analysis is performed by varying the number of the 
generations K that are computed during Tc. The computational power (P) required to 
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make the MBPC controller implementable in real-time is proportional to the number of 
generations K that can be evaluated in a computing interval Tc, namely: 

  /P K H∝   (24) 

Table 3 shows the value of the mean value of variable ( )e ξ  for different values of K and 

H. Some general design considerations can be drawn. The computing power P required 
to implement in real-time the algorithm keeps almost constant along the same diagonal 
of table 3. It is not surprising that, in this ideal case, controllers with the same value of P 
give comparable performance. Actually, the increase of the prediction error with the 
increase of the realignment period has no effect; therefore in case of not significant 
modeling error, given a certain computing power, the choice of the realignment period 
is not critical. 

 

                         H     (Tc=H�Ts)  mean value 
on 20 exp. 1 2 4 8 16 

1 0.0191 0.0196 0.0201 0.0229 0.0349

2 0.0187 0.0189 0.0195 0.0203 0.0279

4 0.0167 0.0180 0.0189 0.0196 0.0223

8 0.0159 0.0176 0.0185 0.0189 0.0212

16 0.0148 0.0171 0.0178 0.0180 0.0204

 
 

K 

Gen 

32 0.0147 0.0166 0.0176 0.0177 0.0193

Table 3. Mean absolute traking eror for ( )e ξ , (Case A) 

• Case B, significant model uncertainty: To examine the effect of modeling uncertainty, we 
assumed an inaccuracy in the value of the mass of the pendulum in the prediction 
model; its value was increased of 30% with respect to the nominal one. Fig. 8 shows 
the comparison between the system output (solid line) and the output predicted by 
the model (dashed line) for the Evolutionary MBPC controller characterized by 
parameters K=32 and H=16. The two systems are driven by the same optimal input 
signal calculated online on the basis of the inaccurate prediction model. At the 
realignment instants the modeling error is zeroed, subsequently it increases due to 
the system/model mismatch. The corresponding performance of the evolutionary 
MBPC are reported in table 4. Some general consideration can be drawn. As expected, 
due to the system/model mismatches, a decrease in the controller performance with 
respect to the case (A) is observed. Given a certain computing power P, the 
performance degrades significantly by increasing the realignment period. This is due 
to the fact that the prediction error increases by enlarging the realignment period. For 
these reasons, in case of significant modeling error, given a defined value of P, it is 
preferable to choose the controller characterized by the minimum value of Tc. It is 
worth of mention that by using the basic Evolutionary MBPC (Onnen, 1997) we are 
limited by the constraint Tc=Ts, namely it is possible to implement only the controllers 
of the first column (H=1) of tables 3 and 4. Clearly, the adoption the proposed 
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intermittent feedback strategy allows more flexibility in the choice of the parameters 
of the algorithm to achieve the best performance. In particular, it is not required to 
compute at least one EA generation in one sampling interval, but this can be 
computed in two or more sampling intervals thus decreasing the computational load; 
in fact, as shown by the simulation study, there are many controllers with a K/H  ratio 
less than one that give satisfactory performance. 

 

mean value 
on 20 exp. 

   H      (Tc=H�Ts) 

 1 2 4 8 16 

1 0.0274 0.0311 0.0332 0.0361 0.0498

2 0.0267 0.0294 0.0318 0.0329 0.0441

4 0.0249 0.0268 0.0297 0.0332 0.0394

8 0.0237 0.0258 0.0278 0.0302 0.0366

16 0.0231 0.0255 0.0273 0.0297 0.0368

 

 

K 

Gen 

32 0.0220 0.0253 0.0270 0.0293 0.0340

Table 4. Mean absolute traking eror for ( )e ξ , (Case B) 
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Figure 8. Effect of the system/model realignment in presence of significant modeling error 
(case K=32, L=16) 

6.3 Repeatability of the control action 

The degree of repeatability of the control action of the controllers described in tables 3 and 4 

is investigated in this section . The standard deviation (STD) of the variable 
( )e ξ

 can 
capture this information; in fact a big STD means that the control action in not reliable 
(repeatable) and the corresponding controller should not be selected.  Table 5 reports the 

STD of 
( )e ξ

 in the case of no model uncertainty (case A).  In general, given a defined 
realignment period Tc, the increase of the computational power P reduces the variability in 
the control action. Acceptable performance can be obtained by employing controllers 
characterized by the ratio K/H >0.5. Similar considerations are valid also in the case in 
which the STD is evaluated for a significant model error (case B) and for this reason are not 
reported. 
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L      (Tc=H�Ts)  

1 2 4 8 15 

1 5.857e-4 9.319e-4 0.0021 0.0039 0.0044 

2 4.395e-4 7.736e-4 0.0018 0.0033 0.0042 

4 4.217e-4 5.759e-4 0.0023 0.0023 0.0015 

8 3.802e-4 5.682e-4 9.340e-4 0.0011 0.0017 

16 3.568e-4 3.258e-4 4.326e-4 0.0010 0.0020 

 
 
 
K

32 2.165e-4 2.267e-4 2.896e-4 4288e-4 0.0015 

Table 5. Standard Deviation of  ( )e ξ (Case A)  

6.4 Comparison with conventional optimization methods  

The comparison of the Evolutionary MBPC with respect to conventional methods was first 
carried in (Onnen, 1997), where it was showed the superiority of the EA on the branch-and-
bound discrete search algorithm. In this work the intention is to compare the performance 
provided by the population-based global search provided by an EA with a local gradient-
based iterative algorithm. We implemented a basic gradient steepest descent algorithm and 
used the standard gradient projection method to fulfill the amplitude and rate constraints 
for the control signal (Kirk,1970); the partial derivatives of the index J with respect to the 
decision variables were evaluated numerically.  Table 6 reports the result of the comparison 
of the performance provided by the two methods regarding the simulation time, the mean 

absolute tracking error e  and the number of simulations required by the algorithm, by 

varying the number of algorithm cycles K in the case Tc=Ts. The Evolutionary MBPC gave 
remarkably better performance than the gradient-based MBPC regarding the performance 

e ; furthermore, the Evolutionary MBPC requires a minor number of simulations that imply 

also a minor simulation time. This comparison clearly shows that, in this case, the gradient-
based optimization get tapped in local minima, while the EA provides an effective way to 
prevent the problem. 

K 
GA 

(Ls=32,N=20) 
GRAD 
(Ls=32) 

N° 
cycles

sim 
Time

e  
N° 
sim

sim 
Time

e  
N° 
sim

1 3.79 1.55 20 4.16 1.51 32 

2 5.99 0.33 40 6.81 0.66 64 

4 9.31 0.33 80 12.08 0.78 128 

8 15.99 0.34 160 30.25 0.59 256 

16 41.13 0.32 320 50.32 0.54 512 

32 65.87 0.35 640 92.81 0.52 1024

Table 6. Comparison between GA and Gradient Optimization 
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7. Experimental Results 

Basing on the results of the previous analysis, we were able to derive the guidelines to 
implement the improved Evolutionary MBPC for the real-time control of the experimental 
laboratory system of Fig. 2. The EA was implemented by means of a C procedure and the 4th 
order Runge-Kutta method was used to perform the time domain integration of the 
prediction model (6) of the flexible system. As in section 5, the scope of the control system is 
to damp out the oscillations of the tip of the flexible beam, that starts in the deflected 

position rad1.0=θ , 0=θ& , 0=φ , 
0=φ& . The desired target position is yd(k)=θd(k)=0. Fig. 9 

shows the experimental free response of the tip position that put into evidence the very 
small damping of the uncontrolled structure. In the same figure it is reported the response 
obtained by employing a co-located dissipative PD control law of the form 

 )(
ˆ

5.0)(1.0)( kkk φφτ &−−=  (25) 

where velocity )(
ˆ

kφ&  has been estimated by means of the following discrete time filter 

 )]1()([10)1(
ˆ

78.0)(
ˆ

−−+−= kkkk φφφφ &&   (26) 
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Figure 10.  The MBPC scheme for the experimental validation 
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The conventional PD controller is not able to add a satisfactory damping to the nonlinear 

system. It is expected that a proper MBPC shaping of the controlled angular position φd(k) of 
the pendulum could improve the damping capacity of the control system. Fig. 10 shows the 
block diagram of the implemented MBPC control system. 
In order to perform system/model realignment, it is necessary to realign intermittently all 
the states of the prediction model (6) basing on the measured variables. Because of only 

positions θ (k) and φ(k) can be directly measured by the optical encoders, it was necessary to 
estimate both the beam and pendulum velocities. The velocity were estimated with a 
sufficient accuracy by applying single pole approximate derivative filters to the 

corresponding positions; the discrete time filter for )(
ˆ

kφ&  is eq (26); )(
ˆ

kθ&  is estimated by: 

 )]1()([10)1(
ˆ

78.0)(
ˆ

−−+−= kkkk θθθθ &&   (27) 

Every 
c

T seconds the vector ]
ˆˆ

[ φφθθ &&  is passed to the MBPC procedure to perform the 

realignment. For the reasons explained in section 3, the redefined inputs of the system is the 

pendulum position φ(k); therefore a PD controller has been designed to guarantee an 

accurate tracking of the desired optimal pendulum shaped position  φd(k); the PD regulator 
is: 

 ( ) ⎟
⎠
⎞⎜

⎝
⎛ φ−φ−φ−φ−=τ )()(

ˆ
6.0)()(0.5)( kkkkk desdes

&&   (28) 

The accurate tracking of the desired trajectory φd(k) is essential for the validity of the 
predictions carried out by exploiting the model (6). Fig. 11 shows the comparison of shaped 

reference φd(k) and the measured one φ(k) in a typical experiment. The tracking is 

satisfactory and the maximum error |φ (k)-φd(k)| during the transient is 0.11 rad. This error 
is acceptable for the current experimentation. Note that this PD regulator has a different task 
respect to regulator (25), employed in the test of Fig. 9; in fact regulator (28) is characterized 
by higher gains to achieve trajectory tracking, which cause almost a clamping of the 
pendulum with the beam. 
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7.1 Settings of the experimental evolutionary MBPC  

The settings of the MBPC are the same used for the simulations of section 5 and reported in 
table 2. The decision variables are the sequence of the control input increments 

])()2()1([
2

Nkukuku +Δ+Δ+Δ L . The corresponding input signals ( ), ( ), ( )φ φ φ& &&
d d dk k k  

are obtained by integration of the nominal model equations (6) driven by the sub-optimal 
control input sequence determined in real-time by the MBPC. The choice of the realignment 
period Tc is strongly influenced by the available computational power. In this experiment at 
least two sampling periods Ts are required to compute one generation of the EA when the 
settings of table 2 are employed, therefore it cannot be implemented with a standard 
Evolutionary MBPC. On the other hand, the improved algorithm can be easily implemented 

in real-time by choosing a computing power ratio K/H≤0.5. An idea of the performance 
achievable can be deduced by inspecting tables 2, 3 and 4. 

7.2 Results 

In the experimental phase, it has been evaluated the performance of the MBPC for 4 

values of the realignment period cT  ( [2, 4, 8, 16]c sT HT H= = ) in the case of a 

computing power K/H=0.5. Figs. 12 a-d show the measured tip position and the respective 

value of index e  for different values of Tc. In all the laboratory experiments a significant 

improvement of the performance with respect to the co-located PD controller (25) is 
achieved. In fact, after about 6 seconds the main part of the oscillation energy is almost 
entirely damped out. In all the experiments the performance does not undergo a 
significant degradation with the increase of the realignment period, showing that in this 

case an accurate model of the system has been worked out. The values of the index e  are 

in good agreement with the corresponding predicted in table 3 in the case of small 
modeling error. Anyway, in the case  Tc=2 Ts (Fig. 12a) a superior performance was 
achieved near the steady state;  in this case, the prediction error is minimum and the 

residual oscillations can be entirely compensated. On the other hand, in the case  Tc=16⋅Ts  
(Fig. 12d) some residual oscillations remain, because the prediction error becomes large 
due to the long realignment period. To underline the effects of the realignment, in Fig. 13 

the error θd(k)-θ(k) in the case Tc=16⋅Ts is reported. Every 0.64 seconds, thanks to the 
realignment, the prediction error is zeroed and a fast damping of the oscillations is 
achieved; near the steady state, the occurrence of high frequency small amplitude 
oscillations, cannot be recovered effectively. Fig. 14 reports the sequence of the sub 
optimal control increments applied to the system for the experiment of Fig. 12a. As 
expected, the adoption of the adaptive mutation range drives to zero the sequence of 
control increments near the steady state, allowing a very accurate tracking of the desired 
trajectory. As for the repeatability of the control action no significant difference was 
observed on the performance in comparable experiments. Repeating 10 times the 

experiment of Fig. 12a gave a mean of 0.0205 for the ( )e ξ  index and a standard deviation 

of 1.112e-3; these are in good accordance with the predicted results of table 5.  
The results of the experiments clearly demonstrate that the proposed improved 
Evolutionary MBPC is able to guarantee an easy real-time implementation of the algorithm 
giving either excellent performance and a high degree of repeatability of the control action. 
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8. Conclusion 

This work introduces an improved Evolutionary Algorithm for the real-time Model Based 
Predictive Control of nonlinear dynamical systems. The main issues involved in the 
practical real-time implementation of this control scheme have been pointed out and 
addressed by adapting and extending some known concepts of the conventional 
Evolutionary MBPC. The advantage of the online adaptation of the dimension of the search 
space has been pointed out and a new adaptive mutation range operator in function of the 
actual prediction error has been proposed. The problem related to the computational delay 
has been faced by inserting an intermittent feedback strategy in the basic Evolutionary 
MBPC. This extension allows the computation of one generation of the EA in more than one 
sampling interval, thus decreasing the required computational power for the real-time 
implementation. The application of the improved EA allows the real-time MBPC of fast 
dynamics systems by employing a CPU with a limited computing power. The improved 
algorithm has been experimented with remarkable results for the stabilization of oscillations 
of a laboratory nonlinear flexible mechanical system.  A stochastic analysis showed that 
improved Evolutionary Algorithm is reliable in the sense that a good repeatability of the 
control action can been achieved; furthermore, the EA outperforms a conventional iterative 
gradient-based optimization procedure. Although the potentiality of the improved 
Evolutionary MBPC have been shown only for a single laboratory experiments, the analysis 
and design guidelines are general and for this reason can be easily applied to the design of 
real-time Evolutionary MBPC for a general nonlinear constrained dynamical systems. 

9. Predictive Reference Shaping for Constrained Robotic Systems Using 
Evolutionary Algorithms 

Part of the following article has been previously published in: M.L. Fravolini, A. Ficola, M. La Cava. 
“Predictive Reference Shaping for Constrained Robotic Systems Using Evolutionary Algorithms”, 
Applied Soft Computing, Elsevier Science, in stampa, vol. 3, no. 4, pp.325-341, 2003, ISSN:1568-
4946. 
The manufacturing of products with a complex geometry demands for efficient industrial 
robots able to follow complex trajectories with a high precision. For these reasons, tracking a 
given path in presence of task and physical constraints is a relevant problem that often 
occurs in industrial robotic motion planning. Because of the nonlinear nature of the robot 
dynamics, the robotic optimal motion-planning problem cannot be usually solved in closed 
form; therefore, approximated solutions are computed by means of numerical algorithms. 
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Many approaches have been proposed concerning the constrained robot motion-planning 
problem along a pre specified path, taking into account the full nonlinear dynamics of the 
manipulator. In the well-known technique described in (Bobrow er Al. 1985; Shin, & Mc 
Kay, 1985), the robot dynamics equations are reduced into a set of second order equations in 
a path parameter. The original problem is then transformed into finding the curve in the 
plane of the path parameter and its first time derivative, while the constraints on actuators 
torque are reduced into bounds on the second time derivative of the path parameter. 
Although this approach can be easily extended to closed loop robot dynamics, it essentially 
remains an offline-planning algorithm; indeed, in presence of unmodeled dynamics and 
measurement noise this approach reduces its effectiveness when applied to a real system. 
Later, to overcome these robustness problems, some online feedback path planning schemes 
have been formulated. Dahl in (Dahl & Nielsen, 1990) proposed an online path following 
algorithm, in which the time scale of the desired trajectory is modified in real time according 
to the torque limits. A similar approach has been also proposed by Kumagai (Kumagai et 
Al., 1996).  
Another approach to implement an online constrained robotic motion planning is to employ 
Model Predictive Control (MPC) strategies (Camacho & Bordons, 1996; Garcia et Al., 1989). 
A MPC, on the basis of a nominal model of the system, online evaluates a sequence of future 
input commands minimizing a defined index of performance (tracking error) and taking 
into account either input or state constraints. The last aspect is particularly important 
because MPC allows the generation of sophisticated optimal control laws satisfying general 
multiobjective constrained performance criteria.  
Since only for linear systems (minimizing a quadratic cost function) it is possible to derive 
a closed form solution for MPCs, an important aspect is related to the design of an 
efficient MPC optimization procedure for the online minimization of an arbitrary cost 
function, taking into account system nonlinearities and constraints. Indeed, in a general 
formulation, a constrained non-convex nonlinear optimization problem has to be solved 
on line, and in case of nonlinear dynamics, the task could be highly computationally 
demanding; therefore, the online optimization problem is recognized as a main issue in 
the implementation of MPC (Camacho & Bordons, 1996). Many approaches have been 
proposed to face the online optimization task in nonlinear MPC. A possible strategy, as 
proposed in (Mutha et Al., 1997; Ronco et Al., 1999) consists of the linearization of the 
dynamics at each time step and of the use of standard linear predictive control tools to 
derive the control policies. Other methods utilize iterative optimization procedures, as 
gradient based algorithms (Song & Koivo, 1999) or discrete search techniques as Dynamic 
Programming (Luus, 1990)  and Branch and Bound (Roubos et Al., 1999)  methods. The 
main advantages of a search algorithm is that it can be applied to general nonlinear 
dynamics and that the structure of the objective function is not restricted to be quadratic 
as in most of the other approaches. A limitation of these methods is the fast increase of the 
algorithm complexity with the number of decision variables and grid points. Recently, 
another class of search techniques, called Evolutionary Algorithms (EAs) (Foegel, 1999; 
Goldberg, 1989) showed to be very effective in offline robot path planning problems (Rana, 
1996); in the last years, thanks to the great advancements in computing technology, some 
authors have also proposed the application of EAs for on-line performance optimization 
problems (Lennon & Passino, 1999; Liaw & Huang, 1998; Linkens & Nyongesa, 1995; 
Martinez et Al., 1998; Onnen et Al., 1997 ; Porter & Passino, 1998). 
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Recently the authors, in (Fravolini et Al., 2000) have applied an EA based optimization 
procedure for the online reference shaping of flexible mechanical systems. The practical real-
time applicability of the proposed approach was successively tested with the experimental 
study reported in (Fravolini et Al., 1999). In this work the approach is extended to the case 
of robotic motion with constraints either on input and state variables. Two significant 
simulation examples are reported to show the usefulness of the online reference shaping 
method; some considerations concerning the online computational load are also discussed. 
The paper is organized as follows. Section 10 introduces the constrained predictive control 
problem and its formalization. Section 11 introduces the EA paradigm, while section 12 
describes in details either the online EA based optimization procedure and the specialized 
EA operators required for MPC. In section 13 the proposed method is applied to two 
benchmark systems; in section 14 a comparison with a gradient-based algorithm is 
discussed. Finally, the conclusions are reported in section 15.  

10. The Robotic Constrained Predictive Control Method 

In the general formulation it is assumed that an inner loop feedback controller has already 
been designed to ensure stability and tracking performance to the robotic system, as shown 
is figure 15. In case of fast reference signals r(k), the violation of input and state constraints 
could occur; to overcome this problem the authors, in (Fravolini et Al., 2000) proposed to 
add to the existing feedback control loop an online predictive reference shaper. The 
predictive reference shaper is a nonlinear device, that modifies in real-time the desired 
reference signal r(k) on the basis of a prediction model and of the current feedback measures 
y(k). The scope is that the shaped reference signal rs(k) allows a more accurate track of the 
reference signal without constraints violation. Usually, these requirements are quantified by 
an index of cost J and a numerical procedure is employed to online minimize this function 
with regard to a set of decision variables. Typically, the decision variables are obtained by a 
piecewise constant parameterization of the shaped reference rs(k).  
As for predictive controllers strategies, the reference shaper evolves according to a receding 
horizon strategy: the planned sequence is applied until new feedback measures are 
available; then a new sequence is calculated that replaces the previous one. The receding 
horizon approach provides the desired robustness against both model and measurement 
disturbance.  
Note 1: The trajectory shaper of figure 15 could also be employed without the inner feedback 
control loop. In this case, the shaper acts as the only feedback controller and it directly 

generates the control signals; in this case u(k)≡rs(k). 

P 

q 

+ Reference 
y 

- 

Feedback  

controller 

Constraints  

J 

q 
. 

u 

shaper 
Robot 

s
r   

r   

y  

Figure 15. Online reference shaper 

www.intechopen.com



Real-Time Evolutionary Algorithms for Constrained Predictive Control 

 

165 

10.1 Problem Formulation 

The equation of motion of a constrained robot dynamics can be formally expressed as 
follows:  

 

( ) ( , ) ( )

( , , , ) [ ]

( , , , )

(0) (0) (0)

T T T

s

s

o o o

M q q C q q G q Qu

u u q q r y F q q

h h q q r

q q q q

ξ

ξ

ξ ξ

+ + =⎧
⎪

= = ⋅⎪
⎨

=⎪
⎪ = = =⎩

&& &

& &

&

& &

 (1) 

where 
mq R∈ is the vector of robot positions, q& is the vector of robot velocities, ξ collects 

the states either of the controller or of the actuation system, M is the inertia matrix, C is the 

Coriolis vector, G the gravity vector, Q is the input selection matrix, 
mu R∈ is the control 

vector, 
ny R∈  is the output performance vector, F is the output selection matrix, 

n

sr R∈  is 

the shaped reference to be tracked by q. The vector [ , , ]o o oq q ξ&  represents the initial 

condition of the feedback-controlled system; ph R∈ is the vector of the p constraints that 

must satisfy the relation: 

 ( , , , , ) 0sh q q r t H tξ ∈ >&  (2) 

where H is the set where all the constraints (2) are fulfilled.  
The aim of the reference shaper is to online compute the shaped reference rs(k) in order to 
fulfill all the constraints (2) while minimizing a defined performance measure J that is 
function of tracking error of the performance variables y. Since the online optimization 
procedure requires a finite computing time Tc (optimization time) to compute a solution, the 
proposed device is discrete time with sampling instants kc·Tc. The inner feedback controller 

is allowed to work at a faster rate kTs (where Tc = a⋅Ts and a>1 is an integer, therefore kc=a⋅k). 
The optimal sequence rs*(kc) is determined as the result of an optimization problem during 
each computing interval Tc. The cost index J , which was employed, is: 

  1

1 1 1 1

ˆJ( ) ( | ) - ( ) ( -1) +J ( )
Yi UiN Nn m

c i i c c i c i i c c

i j i j

k y k j k r k j u k j kα β
= = = =

= + + + Δ +∑ ∑ ∑ ∑   (3) 

The first term of (3) quantifies the absolute predicted tracking error between the desired 

output signal ri(kc+j) and the predicted future output ˆ ( | )i c cy k j k+ , estimated on the basis 

of the robot model and the feedback measures available at instant kc; this error is evaluated 
over a defined prediction horizon of NYi samples. The second term of (4) is used to weight 

the control effort that is quantified by the sequence of the input increments Δui(k)= ui(k)-ui(k-

1) (evaluated over the control horizon windows of NUi samples). The coefficients αi and βi 
are free weighting parameters. The term J1(kc) in (5) is a further cost function, which can be 
used to take into account either task or physical constraints. In this work the following 
constraints on control and state variables have been considered:  

 ( ) ( )i i i i i iU u k U U u k U− + − +< < Δ < Δ < Δ  1,i n= L  (6) 
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 ( ) ( )i i i i i iX x k X X x k X− + − +< < Δ < Δ < Δ  1,i n= L  (7) 

Constraints (6) take into account possible saturations in the amplitude and rate of the 
actuation system, while constraints (7) prevent the robot to work in undesirable regions of 
the state space. The optimization problem to be solved during each sampling interval Tc  is 
formalized as follows: 

 
( )

J( )
si c

c
R k
mim k  (8) 

taking into account the fulfillment constraints (6) and (7). The optimization variables of the 
problem are the elements of the sequences Rsi(kc)  evaluated within the control horizon:  

 ( ) [ ( ), ( 1), , ( 1)]si c si c si c si c UiR k r k r k r k N= Δ Δ + Δ + −L  1,i n= L  (9) 

11. Evolutionary Algorithms 

The Evolutionary Algorithms are multi point search procedures that reflect the principle of 
evolution, natural selection and genetics of biological systems (Foegel; 1994; Goldberg, 
1989). An EA explores the search space by employing stochastic rules; these are designed to 
quickly direct the search toward the most promising regions. It has been shown that the EAs 
provide a powerful tool that can be used in optimization and classification applications. The 
EAs work with a population of points called chromosomes; a chromosome represents a 
potential solution to the problem and comprises a string of numerical and logical variables, 
representing the decision variables of the optimization problem. The EA paradigm does not 
require auxiliary information, such as the gradient of the cost function, and can easily 
handle constraints; for these reasons EAs have been applied to a wide class of problems, 
especially those difficult for hill-climbing methods. 
An EA maintains a population of chromosomes and uses the genetic operators of “selection” 
(it represents the biological survival of the fittest ones and is quantified by a fitness measure 
that represents the objective function), “crossover ” (which represents mating), and 
“mutation” (which represents the random introduction of new genetic material), with the 
aim of emulating the evolution of the species. After some generations, due to the 
evolutionary driving force, the EA produces a population of high quality solutions for the 
optimization problem.  
The implementation of a basic EA can be summarized by the following sequence of 
standard operations: 
a. (Random) Initialization of a population of N solutions 
b. Calculation of the fitness function for each solution 
c. Selection of the best solutions for reproduction 
d. Application of crossover and mutation to the selected solutions 
e. Creation of the new population 
f. Loop to point b) until a defined stop criterion is met 

12. The Online Optimization Procedure for MPC 

In order to implement the predictive shaper described in the previous section, it is necessary 
to define a suitable online optimization procedure. In this section it is described the MPC 
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algorithms based on an EA; the resulting control scheme is reported in figure 16. The flow 
diagram of the online optimization procedure implemented by the Evolutionary reference 
shaper is reported in figure 17. 
Note 2: In this work, to keep notation simple, the prediction (NYi) and control (NUi) horizons 
are constrained to have the same length for each output and each input variable (NY = NU).  
Note 3: Because the feedback controller sampling interval Ts is often different from the 

optimization time Tc (Tc = a⋅Ts, often Tc >> Ts), during a period Tc it is required to perform 

predictions with a prediction horizon NY longer al least 2Tc (2a samples, Tc=2a⋅Ts). More 
precisely, during the current computation interval [kc, kc+1] the first a values of the optimal 
sequences Rsi*(kc) that will be applied to the real plant are fixed and coincide with the 
optimal values computed in the previous computational interval [kc-1, kc]; the successive NU-
a values are the actual optimization variables that will be applied in the successive 
computation interval [kc+1,kc+2]. 
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Figure 16. The proposed evolutionary reference shaper 

12.1 Specialized Evolutionary Operators for MPC 

The application of EA within a MPC requires the definition of evolutionary operators 
expressly designed for real time control. These operators were introduced in previous works 
(Fravolini et Al, 1999; Fravolini et Al. 2000) and tested by mean of extensive simulation 
experiments. Some of these operators are similar to those reported in (Goggos; 1996; Grosman 

& Lewin, 2002; Martinez et Al., 1998; Onnen et Al., 1997) and constitute a solid, tested, and 
accepted base for evolutionary MBPC. 
In this paragraph the main EA operators expressly specialized for online MPC are defined. 

• Fitness function: The objective function to be online minimized (with rate Tc) is the index 
J(kc) in (3). The fitness function is defined as: 

 Jf /1=  (10) 

• Decision variables: The decision variables are the elements of the sequences Rsi (kc) (9). 

• Chromosome structure and coding: A chromosome is generated by the juxtaposition of the 
coded sequence of the increments of the shaped reference Rsi(kc). With regard to the 
codification of the decision variables, some alternatives are possible. Binary or decimal 
codification are not particularly suited in online applications, since they require time 
consuming coding and decoding routines. Real coded variables, although do not 
require any codification, have the drawback that the implementation of evolutionary 
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operators for real numbers is significantly slower than in the case of integers variables. 
Therefore, the best choice is an integer codification of the decision variables, which can 
guarantee a good accuracy of the discretization while operating on integer numbers. A 

coded decision variable xij can assume an integer value in the range 00,..., ,..., iL L , 

where Li represents the quantization accuracy. This set is uniformly mapped in the 

bounded interval i si iR r R− +Δ ≤ Δ ≤ Δ . L0 represents the integer corresponding to 

0sirΔ = . The l-th chromosome in the population at t-th generation during the 

computing interval [kc, kc+1] is a string of integer numbers: 

 
1 211 12 1, 21 22 2, 1 2 ,[ , ,..., | , ,..., |,..., , ,..., ]

U U Um

t

l N N m m m NX x x x x x x x x x=  (11) 

the actual value of the decision variables Δrsi(kc+j) are obtained by applying the 
following decoding rule: 

 ,( ) 1,...si i Ri i j Uir k j R x j N−Δ + = Δ + Δ ⋅ = 1,i n= L  (12) 

where /Ri i i iR R L+ −Δ = Δ − Δ  is the control increment resolution for the i-th input. The 

sequences of shaped references applied in the prediction window result: 

 ( ) ( 1 ) ( ) 1,...,si c si c si c Uir k j r k j r k j j N+ = − + + Δ + = 1,i n= L   (13) 

• Selection and Reproduction mechanisms (during a computing interval Tc) Selection and 
reproduction mechanisms act at two different levels during the on-line optimization. 
The lower level action concerns the optimization of the fitness function f during Tc. 
Because a limited computation time is available, it is essential that the good solutions 
founded in the previous generations are not lost, but are used as “hot starters” for the 
next generation. For this reason a steady state reproduction mechanism is employed, 
namely the best S chromosomes in the current generation are passed unchanged in the 
next one; this ensures a not decreasing fitness function for the best population 
individual. The remaining part of the population is originated on the basis of a rank 
selection mechanism; given a population of size N, the best ranked D individuals 
constitute a mating pool. Within the mating pool two random parents are selected and 
two child solutions are created applying crossover and mutation operators; this 
operation lasts until the new population is entirely replaced. This approach is similar to 
the algorithm described in(Yao & Sethares, 1994).  

• Receding Horizon Heredity (between two successive computational intervals): The second 
level of selection mechanism implements the receding horizon strategy. The best 
chromosomes computed during the current Tc are used as starting solutions for the next 
optimization. At the beginning of the next computational interval, because the 
prediction and control horizons are shifted in the future, the values of the best S’ 

chromosomes are shifted back of a locations (Tc = a⋅Ts). In this way the first a values are 
lost and their positions are replaced by the successive a. The values in the last positions 
(from a+1 to NU) are simply filled by keeping constant the value of the a-th variable. The 
shifted S’ chromosomes represent the “hot starters” for the optimization in the next 
computational interval; the remaining N-S’ chromosomes are randomly generated. The 
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application of hereditary information is of great relevance, because a significant 
improvement in the convergence speed of the algorithm has been observed. 

• Crossover: during an optimization interval Tc uniform crossover has been implemented. 

Given two selected chromosomes 
t

aX and 
t

bX  in the current generation t, two 

corresponding variables are exchanged with a probability cp , namely the crossed 

elements in the successive generation result: 

 
1

,( , ) ,( , )

t t

a i j b i jx x+ =  and 
1

( , ) ( , )

t t

b i j a i jx x
+ =  (14) 

• Mutation: random mutation are applied with probability mp  to each variable of a 

selected chromosome 
t

aX , in the current generation according to the formula: 

 
1

( , ) ( , ) ( )t t

a i j a i jx x rand+ = + Δ  (15) 

where ( )rand Δ  is a random integer in the range: [ ,...,0,..., ]xi xi−Δ Δ  and 
xi

Δ is the 

maximum mutation amplitude. 

• Constraints: One of the main advantages of MPC is the possibility of taking into account 
of constraints during the online optimization. Different kinds of constraints have been 
considered: 

i) Constraints on the shaped reference: In order to generate references that could be accurately 
tracked by means of the available actuation system, it can be required to constrain either the 
maximum/minimum value of the shaped signals or and their rate of variation. For this 
reason, if, during the optimization a decision variable xi,j violates its maximum or minimum 

allowed value in the range 0,... iL , the following threshold is applied:  

 
, ,

, ,0 0

t t

i j i i j i

t t

i j i j

if x L then x L

if x then x

⎧ > =⎪
⎨

< =⎪⎩
 1,i n= L  (16) 

The application of (16) automatically guarantees that ( )i si iR r k R− +Δ ≤ Δ ≤ Δ . In a similar 

fashion it is possible to take into account of the constraint on the amplitudes 

( )i si iR r k R− +≤ <  by applying the thresholds: 

 

, 0

, 0

( )
( ) ( ) int

( )
( ) ( ) int

t i si
si si i i k

Ri

t i si
si si i i k

Ri

R r k
if r k r k R then x L

R r k
if r k r k R then x L

+
+

−
−

⎧ ⎛ ⎞−
+ Δ > = +⎪ ⎜ ⎟

Δ⎪ ⎝ ⎠
⎨

⎛ ⎞−⎪ + Δ < = + ⎜ ⎟⎪ Δ⎝ ⎠⎩

 1,i n= L  (17) 

Thresholds (16) and (17) ensure the desired behavior of rsi(k). 
ii) Constraints on control signals: In the case the inner control loop is not present, then  

u(k)≡rs(k) (see Note1) therefore the constraints  are automatically guaranteed by thresholds 
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(16)-(17). In the case the inner loop is present, constraints (18) are implicitly taken into 
account in the optimization procedure by inserting in the prediction model an amplitude 
and a rate saturation on the command signals generated by the inner controller. These 
thresholds are implemented by: 

  
( ) ( )

( ) ( )

i i i i

i i i i

if u k U then u k U

if u k U then u k U

+ +

− −

⎧ > =⎪
⎨

< =⎪⎩
 (19) 

and: 

 
( ) ( )

( ) ( )

i i i i

i i i i

if u k U then u k U

if u k U then u k U

+ +

− −

⎧ Δ > Δ Δ = Δ⎪
⎨

Δ < Δ Δ = Δ⎪⎩
 (20) 

Generally, in the design phase of the inner feedback controllers, it is difficult to take into 
account the effects of the possible amplitude and rate limit on the inputs; on the other hand 
constraints (19) and (20) are easily introduced in the MPC approach. The resulting shaped 
references are thus determined by taking explicitly into account the physical limitations of 
the actuation systems.  
iii) Constraints on state variables: These constraints are taken into account by exploiting the 
penalty function strategy; namely a positive penalty term J1, proportional to the constraint 
violation, is added to the cost function J(kc) in (21). Let the set H defining the p constraints in 
(2) be defined as: 

 { }: ( , , , ) 0, 1,...,p

i i sH h R h q q x r i p= ∈ ≤ =&  (22) 

then, the penalty function taking into account the violation of constraints along the whole 
prediction horizon has been defined as: 

 ( )1

1 1

J ( ) max ( ), 0) 0
YNp

i i

i j

k h k jγ
= =

= + ≥∑ ∑  (23) 

When all the constraints are fulfilled, J1 is equal to zero, otherwise it is proportional to the 

integral of the violations. By increasing the values of the weights γi, it is possible to enforce 
the algorithm toward solutions that fulfill all the constraints. 

• Choice of Computing time Tc: It should be chosen as a compromise between the two 
concurrent factors: 

1) The enlargement of the computing time Tc allows to refine the degree of optimality of the 
best solutions by increasing the EA generation number, gen, that can be evaluated within an 
optimization period. 
2) A large Tc causes the increase of the delay in the system. Excessive delays cannot be 
acceptable for fast dynamics systems. 
Obviously, the computational time is also influenced by the computing power of the 
processor employed. 
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Figure 17. Flow diagram of the evolutionary reference shaper 

13 Applications 

In this section the proposed evolutionary shaper is applied to two significant robotic control 
problems. 

13.1 Coupled Flexible Beam/Pendulum (Ex. 1 ) 

In this example the performance of the trajectory shaper has been tested on a nonlinear 
flexible mechanical system. The system is composed of a flexible beam clamped at one side, 
with a controlled pendulum hinged on the other; the motion occurs in the horizontal plane 
(figure 18a). The stabilization of this system represents an excellent benchmark because of 
the fast dynamics and the presence of oscillatory and scarcely damped modes. The scope of 
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the control law is to add damping to the system by properly driving the pendulum, when 
the beam starts in a deflected position. The beam is modeled as a first order mass-spring-
damper element (figure 18b). The matrices of the system according to model (1) are: 

2 2 2

2 2

( ) 2 cos cos

cos

M m L ml mlL ml mlL
M

ml mlL ml

φ φ

φ

⎡ ⎤+ + − −
= ⎢ ⎥

−⎣ ⎦
 

 

2

1 1

2

2

2 sin sin

sin

mlL mlL K C
C

mlL C

φθ φ φ φ θ θ

θ φ φ

⎡ ⎤+ + +
= ⎢ ⎥

− +⎣ ⎦

& & & &

& &
 (24) 

[0 ]TQ u=    [ ]T
q θ φ=  

The parameters of the model (25) are reported in table 7. The inner loop is controlled by a 
PD law; this controller was expressly tuned to increase the damping effect induced by the 
controlled pendulum on the beam oscillations. In figure 19a it is reported the deflection of 
the tip position of the beam in the case of free and of PD-controlled response, while in figure 
19b it is reported the corresponding PD control signal u(k). Although a significant reduction 
of the oscillations is observed, the PD controller is not able to add a large damping to the 
system.  
To improve the performance of the PD controlled system a reference MPC shaper is added 
to the inner loop according to general scheme of figure 15. The decision variables are the 

elements of the sequence [Δrs(kc+1), Δrs(kc+2),…, Δrs(kc+NU-1)] of the shaped rs(k) reference 
for the feedback PD controller. The horizon length was set to NU=NY=32; this implies a 

control horizon of NU⋅Ts =1.28 s (Ts=0.04s); the employment of shorter horizons has 
generated unsatisfactory responses. The other parameters of the evolutionary shaper are 
reported in table 8. Since the scope is to damp out the oscillation of the tip of the beam, the 
objective function (25) was particularized as follows: 

 c c c c

0 0

J(k ) ( ) ( ) ( ) - 0
U UN N

d

j j

k j y k j k jθ θ
= =

= + − + = +∑ ∑  (26) 

where the angle θ(k) is chosen as performance variable (θ(k)=y(k) ) (it was assumed that for 

small deflections the tip position is ( )kLθ&&  ). Furthermore, a saturation block (-20<u(k)<20) 

was added at the output of the PD controller either in the “real” system and in the 
prediction model to take into account the saturation of the actuation system. Some 
simulations were performed with the aim of comparing the performance of the reference 
shaper by varying the computational power required for real-time computation. This aspect 
has been emulated by fixing the number of generations (gen=10) evaluated during the 
interval Tc and by varying its duration; indeed, the longer is Tc, the less is the computing 

power required. The computing times Tc=[1, 2, 4, 8, 16] ⋅Ts have been evaluated; the test 
results are summarized by the performance indexes reported in table 9. The reported 
indexes were evaluated over a period of 15 s. In column 2 the percent performance increase 
(evaluated by means of the mean absolute tracking error) with regard to the PD controller 

case is reported; the shaper produced a significant reduction of about 30 %  in the case of 
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Tc=[1, 2, 4]⋅Ts. Conversely, for Tc=16⋅Ts the shaper has an evident negative effect (-56%), 
because in this case, the number of generations evaluated in a sampling time Ts 
(gen/Ts=0.625, see column 7) is too small to reach a satisfactory solution. In the successive 
columns of table 9 the mean, maximum and minimum value of the control signal are 
reported. In column 6 it is reported the ratio (ts/tr) between the simulation time ts employed 
to run the simulation and the real-time tr. All the described simulations were carried out by 
employing a PentiumII 200 MHz processor; the code was written in C, and the dynamics 

were simulated with a fourth order Runge-Kutta algorithm. In more details, for Tc≥2⋅Ts, the 
normalized simulation time is less than one; this implies that the proposed procedure could 
be employed on the physical system with the current processor as real-time controller. In 

figure 20a it is shown the tip position when the reference shaper is applied when Tc=2⋅Ts. A 
significant increase in the oscillation damping is observed with respect to the PD law. In 
figure 20b the corresponding control signal is shown; it should be noted that, although the 
active constraint on the command amplitude, the performance are not degraded. In figure 
21a the online shaped reference rs(k) is shown, while in figure 21b it is reported the motor 

position φ(k). Overall, the results clearly show that the evolutionary shaper was able to give 
a substantial improvement to the performance of the existing PD feedback controller.   
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Figure 18. The structure (a), and the model (b) 
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Figure 19. Free and PD controlled response (a), PD control effort (b) 
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Figure 20.  The response with the reference shaper PD+MPC  (Tc =2⋅Ts) 
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Figure 21. Shaped reference rs (a) and motor position (b) 

M 0.689 kg Mass of the beam 
m 0.070 kg Mass of the pendulum 
L 1.000 m Length of the beam 
l 0.086 m Length of the pendulum 

K1 25.3 Nm/rad Elastic coeff. of the beam 
C1 0.008 Nm/s rad Damping coeff. of the beam 
C2 0.050 Nm/s rad Damping coeff. of the pendulum 

Table 7.  Parameters of the model (Example 1) 

20N =  6D =  2S =  ' 4S =  

0.1mp =  0.8cp =  0.04sT =  4000L =  

32UN =  32YN =  1000XΔ =  0.4R+ =  

0.4R− = −  0.01R+Δ =  0.01R−Δ = −  10gen =  

Table 8. Parameters of the evolutionary shaper (example 1) 
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 cT  

(1) 

( )
mean

e k  

(2) 

( )
mean

u k

(3) 
max

U

(4) 
min

U

(5) 

/s rt t

(6) 

Gen/Ts 
(7) 

Free - 0.0569 - - - - - 
PD Ts 0.0243 +0% 5.87 21.8 -20.1 - - 

PD+MPC Ts  0.0164 +32% 4.05 20 -20 1.19 10 
PD+MPC 2 Ts 0.0167 +31% 4.11 20 -20 0.73 5 
PD+MPC 4 Ts 0.0193 +20% 5.37 20 -20 0.33 2.5 
PD+MPC 8 Ts 0.0231 +5% 6.02 20 -20 0.18 1.25 
PD+MPC 16 Ts 0.0380 –56% 9.27 20 -20 0.11 0.625 

Table 9. Performance of PD and PD+MPC (example 1). Col.1 Computing time, Col.2 Mean 
tracking error, Col.3 mean control effort, Col.4 Maximum control, Col.5 Minumum control, 
Col.6 Normalized simulation time, Col.7 Generation evaluated in a sampling interval 

13.2 Two Links Planar Robot (Ex. 2)  

In this study a well-known benchmark system in robotic optimal control was considered 
(Bobrow et Al., 1985): the two-links planar robot shown in figure 22. The matrices of the 
model according to (1) are: 

5 6 7 6 7

6 7 7

2 os os

os

c c
M

c

β β φ β β φ β

β φ β β

+ + +⎡ ⎤
= ⎢ ⎥+⎣ ⎦

 

6

2

6

(2 ) ( )

( )

sen
C

sen

β ψ θ φ φ

β φθ φ

⎡ ⎤− +
= ⎢ ⎥

−⎣ ⎦

& &&
& &

 

 
1

2

u
Q

u

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (27) 

where:
2

4 2 3 2I m lβ = + , 
2

5 1 2 2 3( )I l m mβ = + + , 6 1 2 2 2 3( )l a m l mβ = + , 7 3 4Iβ β= +  

l

1l

2
cg2

u1

b2

m1

2m

m3

φ 

θ u2

 

Figure 22. The model of the two-links planar robot 
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The model parameters are reported in table 10. In this example it has been assumed that the 
reference shaper directly generates the control torques and for this reason no inner control 
loop was employed. The desired trajectory to be tracked by the end effector (tip position) is 
the rectangular trajectory defined (in Cartesian coordinates) by: 

  

0.21 (2 ) 0 0 4

0.42 10.5 ( 4) 4 8

0.21 (10 ) 0.42 8 12

0.42 10.5 ( 16) 12 16

d d

d d

d d

d d

x t y t

x y t t

x t y t

x y t t

= + ⋅ − = ≤ <⎧
⎪ = − = − ⋅ − ≤ <⎪
⎨

= − ⋅ − = ≤ <⎪
⎪ = + = ⋅ − ≤ <⎩

 (28) 

 

Length of the first link (l1) 0.4 m 

Length of the second link (l2) 0.25 m 

Length  b2 0.125 m 

Inertia of the 1th. link about its C.G. ( I1) 1.6 m2⋅kg 

Inertia of the 2th. link about its C.G. (I2) 0.43 m2⋅kg 

Inertia of the hand w.r. the  hand (I3) 0.01 m2⋅kg 

Mass of the second link (m2) 15 kg 

Mass of the load (ml) 6 kg 

Table 10.  Parameters of the model (Example 2) 

In the simulation study, the first joint was fixed at the origin of the reference frame. In figure 
23 the desired trajectory (28) and the corresponding velocities are shown. It has to be noted 
that, due to the discontinuity of the velocities, it is not possible to track the reference 
trajectory accurately near the discontinuity; anyway, thanks to the predictive action this 
effect can be reduced also in presence of constraints. The purpose of the MPC shaper is to 
achieve a small tracking error while fulfilling the following constraints on inputs:  

 110 ( ) 10u k− ≤ ≤  13 ( ) 3u k− ≤ Δ ≤  (29) 

 22 ( ) 2u k− ≤ ≤  20.3 ( ) 0.3u k− ≤ Δ ≤  (30) 

and the constraints on joint velocities:  

 0.9 ( ) 0.9kθ− ≤ ≤&  0.9 ( ) 0.9kφ− ≤ ≤&  (31) 
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Figure 23. The cartesian trajectory and velocity 

All the values are expressed in MKS. The decision variables of the trajectory shaper are the 
elements of the sequences of the torques that have to be applied at joints, namely: 

 
1 1 1 1

2 2 2 2

( 1), ( 2),..., ( )
( )

( 1), ( 2),..., ( )

c c c u

s c

c c c u

u k u k u k N
R k

u k u k u k N

Δ + Δ + Δ +⎡ ⎤
= ⎢ ⎥

Δ + Δ + Δ +⎣ ⎦
 (32) 

The following objective function have been employed:  

 1

1

J( ) ( ) - ( ) ( ) - ( ) ( )
UN

c c d c c d c c

j

k x k j x k j y k j y k j J k
=

= + + + + + +∑  (33) 

where the first term represents the absolute tip position tracking error, while the penalty 
term J1 is employed to take into account the constraints on joint velocities and it is defined, 
according to the penalty approach (34),  as: 

 ( ) ( )1

1 1

J ( ) 5 max ( ) 0.9, 0) max ( ) 0.9, 0)
U UN N

j j

k k j k jθ φ
= =

⎡ ⎤
= + − + + −⎢ ⎥

⎣ ⎦
∑ ∑& &  (35) 

Note that in this example, since the trajectory shaper directly generates the command 

signals ( ( ( ) ( ))sr k u k≡ , it is not required to explicitly insert the thresholds (36) and (37) in 

the prediction model, because thresholds (38) and (39) directly act on the control signals [u1, 
u2]. Some simulations were performed, in the case Tc=2Ts, to determine the appropriate 
values for the shaper parameters, that are reported in table 11.  The performance of the 
shaper has been detailing tested in three different contexts.  

20=N  6=D  2=S  4S =  

1.0=
m

p  8.0=
c

p  10gen =  0.02sT =  

4000L =  1000=Δ
X

 1 12uN =  2 12uN =  

1 3U −Δ = −  1 3U +Δ =  1 10U − = −  1 10U + =  

1 0.3U −Δ = −  2 0.3U +Δ =  2 2U − = −  1 2U + =  

Table 11.  Parameters of the evolutionary shaper (example  2) 
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Experiment 1: In this experiment no constraints were imposed either on inputs or on states; 
the scope was just to obtain a very accurate tracking and therefore the constraints (40)(41) 
where disabled. In figure 24a it is reported the trajectory of the tip position, while in figure 
24b the corresponding absolute tracking error is shown. Although a very good tracking 
have been achieved, the constraints on inputs, joint velocities and the corresponding rates 
are violated. In figure 25 the corresponding shaped input torques and the joint velocities are 
shown. A resume of the performance is reported in table 12. In this and in the following 
experiments the computational load was not demanding (ts/tr=0.86) and could be 
implemented in real time with the available computing power. 
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Figure 24. Tracking performance for example 2, experiment 1. Constraints on inputs and 
angular rates are disabled 
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Figure 25. Shaped torques and joints velocities example 2, experiment 1 
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Case 

mean
ke )(

(1) 
max

( )e k

(2) 

1 max
( )u k

(3) 

2 max
( )u k

(4) 

1 max
( )u kΔ

(5) 

2 max
( )u kΔ

(6) 
max

( )kθ&

(7) 

max
( )kψ&  

(8) 

/s rt t  

(9) 

/ sgen t  

(10) 

Exp.1 0.0033 0.0093 22,01 2,93 6 2 1.05 1.76 086 5 
Exp.2 0.0056 0.041 10 2 3 0.3 1.383 1.66 0.86 5 
Exp.3 0.0087 0.0463 9,84 1.77 3 0.3 0.881 0.900 0.86 5 

Table 12. Performance of  MPC for Tc=2Ts : example 2. Col.1-2 Computing time, Col.3-4 
Maximum control effort, Col.5-6 Maximum control increnent, Col.7-8 Maximum angular 
rate, Col.9  Normalized simulation time, Col.10 Generation evaluated in a sampling interval 

Experiment 2: In this experiment the constraints (29) and (30) on inputs were activated while 
the constraint (31) on the velocities remain still inactive (J1=0). Due to torque saturations, an 
increase in the tracking error is observed particularly in the corners of the trajectory; anyway 
a good tracking is still achieved. It should be noted that also in this case the constraints on 
joint velocities are violated. In figure 26a and 26b the trajectory of the tip position and the 
corresponding absolute tracking error are reported respectively. In figure 27 the shaped 
input torques and the velocities of joints are shown. A resume of the performance is 
reported in table 12. 
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Figure 26.  Tracking performance for example 2, experiment 2. Only the constraints on 
inputs are active 
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Figure 27. Shaped torques and joints velocities example2, experiment 2 
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Experiment 3: In the last experiment also the constraints (31) on the velocities have been 

activated ( ).01 ≠J  Due to the presence of these additional constraints, it was not possible to 

maintain a good tracking in some parts along the trajectory. In figure 28a and 28b the 
trajectory of the tip position and the corresponding absolute tracking errors are reported. In 
figure 29 the shaped input torques and the joints velocities are shown. It should be observed 
that in this case all the constraints were fulfilled; in particular the most decisive constraint 
was that on the second joint velocity. Indeed, in the periods when this signal is saturated the 
biggest tracking error was observed. The control torques never reached the saturation. In all 
the three experiments the trajectory shaper has given an appropriate solution to the 
constrained robot motion planning problem. 
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Figure 28. Tracking performance for example 2, experiment 3. Constraints on inputs and 
angular rates are active 
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Figure 29. Shaped torques and joints velocities example 2, experiment 3 
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14. Comparison with conventional optimization methods  

The comparison of the Evolutionary optimization for nonlinear MPC with respect to 
conventional methods was first carried out in (Onnen et Al., 1997); in this study it was 
showed the superiority of the EA on the branch-and-bound discrete search algorithm. In this 
study, our intention was to compare the performance provided by the proposed EA with a 
local gradient-based iterative algorithm. It was implemented a basic gradient steepest 
descent algorithm and used the standard gradient projection method to fulfill the amplitude 
and rate constraints for the control commands (Kirk, 1970); the partial derivatives of the 
index J with respect to the decision variables were evaluated numerically. The performance 
comparison was performed on the more challenging two-links planar robot system in the 
case of the experiment 2. Table 13 reports the performance provided by the two methods in 
terms of the normalized simulation time, the mean absolute tracking error and the number 
of prediction required by increasing the number of algorithm cycles per sampling interval 
Ts. The Evolutionary optimization gave remarkably better performance in terms of the mean 
tracking error. This fact clearly puts into evidence that, in this case, the gradient-based 
optimization gets tapped in local minima, while the EA provides an effective way to prevent 
the problem. As for the computational power (N_ sim/ Ts) required by the two methods to 
converge to a sub optimal solution within 5% of the stationary value, the EA required 160 
simulations while the gradient-based 196; the corresponding normalized simulation times 
were comparable. The possibility of achieving remarkable performance improvement with a 
comparable computational cost clearly demonstrates that the EA-based predictive shaper 
offers a valid alternative to iterative local optimization methods especially in the case of 
multi modal objective functions. 

 
EA 

(NU=12,N=20) 
 

GRAD 
(NU=12) 

n°-cicles/Ts ts/tr mean
ke )( N_ sim/ Ts ts/tr mean

ke )( N_ sim/ Ts  

1 0.28 0.0228 20 0.17 0.0311 12 

2 0.45 0.0069 40 0.25 0.0135 24 

4 0.71 0.0057 80 0.40 0.0122 48 

8 1.21 0.0055 160 0.70 0.0115 96 

16 3.10 0.0054 320 1.26 0.0104 192 

32 4.97 0.0054 640 2.39 0.0103 384 

Table 13. MPC performance comparison of EA and gradient-based optimization 

15. Conclusions 

In this work an online predictive reference shaper has been proposed as a method to 
improve the tracking performance of robotic systems subjected to constraints on input and 
state variables. The method allows the choice of an arbitrary multi-objective cost function 
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that quantifies all the objectives of the desired constrained motion. The global nonlinear 
optimization is performed in discrete time employing an online specialized Evolutionary 
Algorithm. The trajectory shaper has been applied in two examples of constrained robotic 
motion. Both the simulation tests have clearly pointed out the benefits on the performance 
given by the proposed Predictive Evolutionary Trajectory Shaper; furthermore, the EA 
algorithm outperformed a conventional iterative gradient-based optimization procedure. It 
has also been shown that real time implementation can be easily achieved using a not 
excessively powerful CPU. Finally, it is worth mentioning that the proposed method is 
sufficiently general and for this reason could be easily extended to other kinds of nonlinear 
dynamic systems with arbitrary references and constraints. 
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