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1. Introduction 

Autonomous vehicles have potential applications in many fields, such as replacing humans 
in hazardous environments, conducting military missions, and performing routine tasks for 
industry. Driving ground vehicles is an area where human performance has proven to be 
reliable. Drivers typically respond quickly to sudden changes in their environment. While 
other control techniques may be used to control a vehicle, fuzzy logic has certain advantages 
in this area; one of them is its ability to incorporate human knowledge and experience, via 
language, into relationships among the given quantities. Fuzzy logic controllers for 
autonomous vehicles have been successfully applied to address various (and sometimes 
simultaneous) navigational issues,including: 

• reaching a static target (Baturone, et al., 2004, Boada, et al., 2005, El Hajjaji & 
Bentalba, 2003, Maeda et al., 1991, Chen & Ozguner, 2005),  

• tracking moving targets (Ollero, et al., 2001),  
• maintaining stable vehicular velocity (Holzmann et al., 1998, Nobe & Wang, 2001),  
• following a lane or a wall (Rosa & Garcia-Alegre, 1990, Hessburg & Tomizuka, 1994, 

Peng & Tomizuka, 1993) and,  
• avoiding collision with static and dynamic obstacles (Baturone, et al., 2004, Murphy, 

2001, Godjevac, et al., 2001, Seraji, 2005, Lee & Wang, 1994, Wheeler & Shoureshi, 
1994, Ye & Wang, 2001).  

Several researchers combined fuzzy logic controllers with various learning techniques, such 
as: 

• supervised learning method (Godjevac, 2001),  

• evolutionary method (Hoffman, 2001, Kim, et al., 2001),  

• neural network (Pasquier, et al., 2001, Cang, et al., 2003),  

• reinforcement learning (Dai, et al., 2005) and,  

• optimization methods (Hong, 1997, Sanchez, et al., 1999). 

Source: Mobile Robots, Moving Intelligence, ISBN: 3-86611-284-X, Edited by Jonas Buchli,  pp. 576, ARS/plV, Germany, December 2006
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176 Mobile Robots, moving intelligence 

To accomplish most tasks of a mobile robot, the controller must be able to adjust the 
steering angle and the velocity of the vehicle simultaneously. Most of the presented work 
below considers one or two aspects of the problem. For example, (Rosa & Garcia-Alegre, 
1990) proposed a fuzzy logic controller that can modify the speed and the steering of a 
mobile robot to steer it at a fixed distance along a wall. Using a kinematic model and a 
variety of wall shapes, including cubic splines and line segments with ninety-degree 
intersections, they designed a fuzzy logic controller with a minimum number of rules to 
accomplish the task. (Maeda, et al., 1991) implemented fuzzy logic for the steering and the 
speed control of a two-wheel drive robot. The environment in which the control scheme 
was tested was limited to straight-line paths with a minimum number of ninety-degree 
turns. Fuzzy logic was incorporated in lateral vehicle control to solve the lane following 
problem (Hessburg & Tomizuka, 1994). They tested their design on a dynamic model first, 
and then implemented it in an actual vehicle to evaluate it. The experiment was to drive 
the vehicle on a road with multiple smooth curves interspersed by straight segments. 
(Peng & Tomizuka, 1993) described an engine throttle fuzzy logic controller for 
accelerating and decelerating the vehicle during typical driving conditions. The proposed 
controller had no provisions for obstacle avoidance. (Lee & Wang, 1994) proposed the use 
of fuzzy logic to assist in obstacle avoidance. Their simulation included both static and 
moving obstacles. (Wheeler & Shoureshi, 1994) controlled a vehicle on handling track 
using fuzzy logic. Their model included the vehicle’s dynamic behavior. The handling 
track consisted of a set of pylons (known static obstacles) that the vehicle must navigate at 
high speeds (i.e., around 50 miles per hour). (Holzmann et al., 1998) combined a 
conventional vehicle acceleration controller with a fuzzy logic controller for vehicle 
velocity and inter-vehicle distance. (Sanchez et al., 1999) presented an off-line two-level 
fuzzy logic controller to track a path previously recorded or computed by means of a path 
planning program. The number of fuzzy rules was optimized to improve performance. 
(Ye & Wang, 2001) presented a novel navigation method for an autonomous vehicle in 
unknown environments. Their navigator consisted of an Obstacle Avoider (OA), a Goal 
Seeker (GS), a Navigation Supervisor (NS) and an Environment Evaluator (EE). The fuzzy 
actions inferred by the OA and the GS were weighted by the NS using the local and global 
environmental information and fused through fuzzy set operation to produce a command 
action. (Nobe and Wang, 2001) reviewed recent developments in advanced vehicle control 
systems (AVCS) including lateral steering, longitudinal throttle control, and integration of 
these controls for vehicles. Autonomous intelligent cruise control (AICC) and cooperative 
intelligent cruise control (CICC) were considered for a platoon of two or more closely 
spaced vehicles travelling with same velocity in a same lane. Look-down and look-ahead 
systems for automated steering were presented for the lateral vehicle control. (Kodagoda 
et al., 2002) developed and implemented fuzzy proportional derivative-proportional 
integral (PD-PI) controllers for the steering and the speed control of an autonomous 
guided vehicle. (Ohara & Murakami, 2004) proposed a model for a compact tractor-trailer 
using an electrical vehicle that estimated the cornering force and friction and changed 
speed and steering angle based on the inputs. The proposed PD controller can avoid the 
jackknife phenomenon of the vehicle. (Chen and Ozguner, 2005) presented a real-time 
fuzzy navigation algorithm for off-road autonomous ground vehicles. The controller’s 
goal was to direct the vehicle safely, continuously and smoothly across natural terrain to 
reach a goal. The proposed navigator consisted of two fuzzy controllers, the steering 
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controller and the speed controller. These two collaborative controllers were designed 
separately by mimicking human performance. 
The objective of this chapter is to describe a fuzzy logic controller for the steering and the 
velocity of an automobile. Observation indicates that drivers tend to separate the various 
driving tasks. For example, most drivers conceptualize velocity and direction separately. 
This separation of objectives is the basis of the proposed distributed fuzzy logic controller 
for the vehicle. A controller for the steering of an autonomous vehicle needs to achieve these 
objectives: 

• steering the vehicle toward the target, 

• steering the vehicle around any obstacle to avoid a collision, 

• avoid being trapped in maze or cluttered environment, 

• steering the vehicle to stop at a desired orientation. 
The velocity controller should emulate the following human behaviors: 

• starting the vehicle from a complete stop, and stopping it when it reaches the 
target, 

• slowing down the vehicle when it approaches an obstacle and speeding it up as it 
moves beyond the obstacle, 

• slowing down the vehicle when its turning radius decreases (i.e., the tighter the 
turn, the lower the velocity). 

A fuzzy logic controller module, of the Mamdani-type, is created for each of these 
objectives. 
The following is a brief summary for the remainder of this chapter. The second section 
briefly describes the nonlinear model of the vehicle dynamics. The third section details the 
first two modules of the steering controller, which meet the fundamental driving 
requirements: the Target Steering Fuzzy module, and the Collision Avoidance Steering 
Fuzzy module. The fourth section describes the third and the forth modules of the steering 
controller, which deal with some special driving configurations and requirements: the 
Modified Bug Steering Fuzzy module, and the Final Orientation module. The fifth section 
introduces the three modules of the velocity controller: the Target Throttle Fuzzy module, 
the Cornering Throttle Fuzzy module, and the Collision Avoidance Throttle Fuzzy module. 
The sixth section proposes a tuning of the Target Throttle Fuzzy module to maintain a 
smooth velocity profile when the vehicle reaches its target position. The seventh section 
depicts two examples to show the operation of the two proposed fuzzy controllers, and 
comparison with the results of (Lee and Wang, 1994) are also included. The final section 
presents conclusions and recommendations for further work. 

2. Vehicle Model 

Since an automobile is a complex dynamic system, the details of its model are crucial to the 
accuracy of the simulation. The principal work in this field is (Wong, 1993) who developed the 
equations of motion for various types of vehicles. The model that is used in this paper depicts 
a two-axle, four-wheel vehicle, which is commonly known as the “bicycle” model since it uses 
only two wheels to represent a four-wheel vehicle; it neglects the lateral variations in the tire-
road interface forces. It is further modified according to the suggestions of (Wheeler & 
Shoureshi, 1994) whose vehicle model was made more realistic by limiting the total tire force 
vector. They also derived expressions for calculating the longitudinal braking and accelerating 
forces. Figure 1 shows free body diagram of the vehicle. The equations of motion are 
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Fig. 1. Free Body Diagram of Vehicle Model. 

The tires, which are modeled as nonlinear springs, are described as 
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The above forces can be resolved into x and y components to describe the motion. The 

lateral tire forces, Fyf and Fyr, are functions of each tire slip angle α and the cornering 

stiffness Cα. The lateral tire forces can be calculated using the following expressions: 
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The axial tire forces, Fxf and Fxr, are dependent on the angle of the gas pedal, δgb. This model 
uses the convention that a positive gas pedal angle represents the driver pushing on the gas 
pedal, and a negative gas pedal angle represents the driver pressing on the brake pedal. As 

such, there are two sets of axial tire force equations. For δgb<0, 

 
gbbxf KF δ7.0

~
= , (6) 
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gbbxr KF δ3.0

~ = . (7) 

The power train is assumed to correspond to a rear wheel drive. Thus, for δgb>0, 

 0
~ =xfF , (8) 

 
xrgbgxrg FKF

~~ −= δτ &  (9) 

Many of these parameters, which are particular to each vehicle, are usually determined 
experimentally. For this model, the parameters for a typical sports utility vehicle are used. 
Some of these parameters were found in (Byrne & Abdallah, 1995). The parameters Kg, Kb, 

and τg, are determined by varying their values and comparing the performance of the 
model during starting from rest, various peak velocities, and braking with experimental 
data. 
It is assumed that the target has a beacon to guide the vehicle. It is also assumed that 
the vehicle is equipped with a proximity sensing system to determine the distance and 
direction of obstacles. This sensing system may be a single sensor mounted on a 
rotating platform on the front of the vehicle or a battery of sensors arrayed around the 
front of the vehicle and pointed along regular intervals. The configuration of the buffer 
zone created by the sensors is shown in Figure 2. To simplify obstacle detection, the 
sensor outputs the minimum measured distance to the nearest obstacle do and the 

direction of do, ∆φo. While do is not guaranteed to be the minimum distance to obstacle, 
sampling many points at a high frequency will increase the accuracy of the proposed 
technique. 

obstacle

buffer zone

r
b

sensor

∆φ o

d
o

 
Fig. 2. Sensing Field Configuration. 
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3. Basic Steering Fuzzy Controller 

In an effort to incorporate human knowledge and experience most efficiently in the design 
of the controller, the driving is divided into several tasks and a fuzzy controller was 
designed for each task. The basic driving tasks are to drive the vehicle toward the target and 
to avoid collision with obstacles. Two fuzzy modules, Target Steering Fuzzy module and 
Collision Avoidance Steering Fuzzy module, are designed to fulfill those two tasks. Two 
additional modules are discussed in the next section that meet special configurations or 
requirements. 
Figure 3 shows a schematic of the inputs and outputs of Target Steering Fuzzy module and 
Collision Avoidance Steering Fuzzy module. The total steering angle is a summation of the 
outputs of two fuzzy modules. When the vehicle is near an obstacle, the output of Collision 
Avoidance Steering Fuzzy module is given a higher weight than that of Target Steering 
Fuzzy module, so that Collision Avoidance Steering Fuzzy module will be able to 
significantly affect the behavior of the vehicle in a short period of time.  

Target Steering

Collision

Avoidance

Steering

Σ

steering angle

(α)

angle to target

(∆φ)

distance to nearest obstacle

(d
o
)

direction of d
o

(∆φο)

total steering

angle

correction (∆α)

∆α1

∆α2

 

Fig. 3. Target Steering Fuzzy and Collision Avoidance Steering Fuzzy modules. 

The membership functions in all of the fuzzy modules in this paper are either sigmoid or 
product of sigmoid types. The sigmoid membership function is defined as  

 ( )
)(1

1
cxae

xf −−+
= . (10) 

The product of sigmoid membership function is the result of multiplying two sigmoid 
membership functions together, 

 ( )
)()(

1

1

1

1
RRLL cxacxa ee

x −−− ++
=µ  (11) 

Membership functions and the rules of the controller’s modules that are used throughout 
the paper are based on common sense and observation of drivers’ behavior and description 
of the variables used. These functions and rules are the result of tuning by running the 
simulation through various environments and by altering the initial vehicle position and 
orientation, the target vehicle position and orientation, the number and configuration of 
static obstacles, and the path and speed of dynamic obstacles. 
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3.1 Target Steering Fuzzy Module 
The objective of this module is to steer the vehicle toward a target from its current location. 

The inputs to this module are the steering angle α and the angle to the target ∆φ, Figure 4. 

The output of this module is the change of steering angle ∆α1. This module has the 
following goals: 

i. If the target is on the right side of the vehicle, it should turn to this direction. The 
bigger the angle to the target, the sharper the change of steering angle should be. 

ii. The change of steering angle depends on the current value of the steering angle. 

Start

Target

Vehicle

∆φ

α

Potential vehicle path

 

Fig. 4. Input Variables of the Target Steering Module. 

Five membership functions: Negative Big (NB), Negative Medium (NM), Zero (Z), Positive 
Medium (PM) and Positive Big (PB), as shown in Figures 5 and 6, are used to describe the 

inputs and output of this fuzzy module. The same membership functions were used for α 

and ∆φ for simplicity. The inner bounds of the PM and NM are all at zero due to the gradual 
tuning that was performed on them. This tuning also accounts for the lack of a “small” 
membership set, which was eliminated during the fine tuning phase. 
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Fig. 5. Membership Functions for α and ∆ φ. Fig. 6. Membership Functions for ∆α1. 

www.intechopen.com



182 Mobile Robots, moving intelligence 

The rationale behind several of the rules of this module is presented here. Larger correction 
is usually not used to allow for the time delay in the system. 

• If (α is Z) and (∆φ is NB) then (∆α1 is NM): If the vehicle is moving along a straight 
path and the target is to the right of the vehicle, then the correction to the steering 
angle should be of medium magnitude and to the right.  

• If (α is PB) and (∆φ is Z) then (∆α1 is NM): If the vehicle is turning to the left and the 
target is straight ahead, then the correction to the steering angle should be of 
medium magnitude and to the right. 

• If (α is Z) and (∆φ is Z) then (∆α1 is Z): If the current steering angle is zero and the 
target is straight in front of vehicle, then no correction to the steering angle is 
necessary. 

The full rule base of this module is given in Table 1. 

α⇒ 
∆φ ⇓  

NB NM Z PM PB 

NB Z Z NM NB NB 

NM Z Z NM NM NM 

Z PM Z Z Z NM 

PM PB PB PM Z Z 

PB PB PB PM Z Z 

Table 1. Rules for Target Steering Fuzzy Module 

3.2 Collision Avoidance Steering Fuzzy Module 
The objective of this module is to steer the vehicle away from obstacles, both static and 
dynamic. It is assumed that the vehicle is equipped with a sensing system that can 
determine the distance and direction of obstacles. The sensing system may be a single sensor 
mounted on a rotating platform on the front of the vehicle or may be a battery of sensors 
arrayed around the vehicle’s front section along regular intervals. The buffer zone radius 
will be denoted by rb, and is assigned a value of twenty meters. The configuration of the 
buffer zone is shown in Figure 2. Sensors input only two bits of information to the controller 
to simplify the analysis. The inputs are the distance and angle to the nearest obstacle, do and 

∆φο, respectively. As Figure 2 illustrates, the sensor may not return information about the 
closest point and the corresponding angle since the proposed sensing system used is not 
continuous. The sensor takes ns samples over its 180-degree sweep. The output of the 

module is the steering correction ∆α2. Since the locations of the obstacles are not known 
before the vehicle starts traversing the environment, the module uses a right-hand turning 
rule whenever it confronts an obstacle. The two basic goals of this module are as follows: 

i. The closer the vehicle is to the obstacle, the more extreme the evasive maneuver is, 
i.e., the larger the steering correction. 

ii. The direction of the obstacle with respect to the front of the vehicle determines the 
magnitude and direction of the steering correction. 

Three membership functions, Big (B), Small (S) and Zero (Z) are used to describe the first 
input variable, d0 as shown in Figure 7. Five membership functions, Negative Medium 
(NM), Negative Small (NS), Zero (Z), Positive Small (PS) and Positive Medium (PM) are 

used to describe the second input variable, ∆φ0 and the output variable, ∆α2 as shown in 

Figure 8. The membership functions of ∆α2 in this module have the same shape and relative 
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size as those of ∆α1 in the previous module, Figure 9. The only difference is that all of the 
membership functions have been scaled down. 
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Fig. 7. Membership Functions for do. Fig. 8. Membership Functions for ∆φ0. 
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Fig. 9. Membership Functions for Output Variable ∆α2. 

At this point, it would be useful to look at a few of the rules to observe the relation between 
the rules and the goals of this fuzzy module: 

• If (do is S) and (∆φ0 is PS), then (∆α2 is NM): If the obstacle is between ten and twenty 
meters away, and is between zero to sixty degrees off to the left of the longitudinal 
axis of the vehicle, a sharp steering correction to the right will be needed. 

• If (do is B) then (∆α2 is Z): If the obstacle is more than twenty meters away from the 
vehicle, then no steering correction is made, regardless of its direction. 

The rules of this module are shown in Table 2.  

d0 ⇒ 

∆φ0 ⇓ 

Z S B 

NM PM PM Z 

NS PM PS Z 

Z NM NM Z 

PS NM NM Z 

PM NM NM Z 

Table 2. Rules for Collision Avoidance Steering Fuzzy Module. 
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4. Extended Steering Fuzzy Controller 

The basic steering fuzzy controller described in the previous section works well in most driving 
conditions. However, it may get stuck in a loop and never reach the target under certain special 
configurations. It may also fail to determine that the target is unreachable. In some applications, 
the vehicle is required to park at the target position with a specific orientation. Thus, two 
modules are added in the steering fuzzy controller: Modified Bug Steering Fuzzy module and 
Final Orientation module. The first module steers the vehicle within a maze and the other helps 
steer the vehicle toward its target position at a desired orientation.  

4.1 Modified Bug Steering Fuzzy Module 
As a backup to the primary steering fuzzy controller, which usually regulates obstacle 
avoidance steering, the Bug module is implemented. This module is not designed to emulate 
human behavior, but rather to reach the target when the steering fuzzy module is not able to.  
The Bug module is based on the Bug2 algorithm proposed by (Lumelsky & Stepanov ,1987, 
Lumelsky & Skewis, 1988, Lumelsky, 1991) whose research focused on the application of maze 
theory to the path planning of a “point automaton”. His research concluded that Bug2 had 
“unbounded worst-case performance”, i.e. in very rare cases, Bug2 can still drive the vehicle in an 
unending loop. (Sauerberger & Trabia, 1996) proposed a modified form of this algorithm for 
autonomous omnidirectional vehicles. Their algorithm, which produces shorter paths in many cases, 
triggered the Bug algorithm when the orientation of the vehicle was more than 360 degrees away, in 
either direction, from the angle of the ST line, Figure 10. This can be expressed as the following: 

 
πθθ 2>− STv  (12) 

For example, if the ST line was at 45 degrees, the vehicle would have to traverse a closed 
loop, and have an orientation of 405 degrees, before the Bug2 algorithm was activated.  
The controller presented here presents another modification of the Bug2 algorithm. The 
modified algorithm is activated once the trigger condition is met. At this stage, the 
algorithm performs the following tasks: 
1) Initially, the algorithm guides the vehicle straight toward the target. If the finishing 

criteria (discussed below) are satisfied, the vehicle turns off the Bug2 algorithm and goes 
straight to the target. If the vehicle gets to within ro meters of an obstacle, the vehicle will 
turn to the right, putting the obstacle on the left of the vehicle. 

2) The vehicle proceeds to follow the boundary of the obstacle, always keeping the obstacle 
on its left until one of the following conditions is met: 
a) If the finishing criteria are satisfied, the vehicle goes straight to the target. 
b) When the vehicle approaches the ST line, it treats it as an obstacle, turning to the 

right and keeping the line on its left if it moves closer to the target. Therefore, the 
algorithm causes the vehicle to stay on one side of the ST line, which will aid the 
vehicle in reaching the target quickly.  

c) If the vehicle approaches the ST line and following it will drive the vehicle away 
from the target, it behaves as if the line is not an obstacle and crosses it.  

The following finishing criteria must be simultaneously satisfied for the controller to allow 
the vehicle to go to the target: 

• The vehicle must be within a distance rb to the target. Larger distances may indicate 
that an obstacle lies between the vehicle and the target and may be undetected by 
the vehicle’s sensors. 
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• The vehicle must have a clear “line of sight” to the target. This condition is 
implemented by comparing the magnitude of the angle to the target to the 
magnitude of the angle to the nearest obstacle. 

Schematics of the paths generated by the Bug module are shown in the two examples of 
Figure 10 and Figure 11.  

T

S

:Activation of Modified Bug
: Termination of Modified Bug

 

T

S
:Activation of Modified Bug
: Termination of Modified Bug

 
Fig. 10. Path 1 by Bug Steering Module. Fig. 11. Path 2 by Bug Steering Module. 

The Bug Steering fuzzy module is designed to accommodate four-wheel vehicles, which 
cannot make the zero-radius turns that omnidirectional vehicles can. Thus, the module 
begins the appropriate steering adjustments ahead of time to allow the vehicle to make the 
necessary turns without colliding with obstacles or crossing the ST line. The inputs to the 

Bug module are the distance to the obstacle do, and the angle to the obstacle ∆φ0. The output 

of this module is the correction in the steering angle ∆α3. 
Four membership functions, Big (B), Medium (M), Small (S) and Zero (Z) are used to 
describe the first input variable, d0 as shown in Figure 12. Seven membership 
functions, Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (Z), 
Positive Small (PS), Positive Medium (PM) and Positive Big (PB) are used to describe 

the second input variable, ∆φ0, as shown in Figure 13. Five membership functions, 
Negative Medium (NM), Negative Small (NS), Zero (Z), Positive Small (PS) and 

Positive Medium (PM) are used to describe the output variable, ∆α3, as shown in 
Figure 14. Note that the membership functions in this module are different from those 
of Figure 7 through Figure 9. This modification was necessary to improve the module 
response. 
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Fig. 12. Membership Functions for do. Fig. 13. Membership Functions for ∆φo. 
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Fig. 14. Membership Functions for Output Variable ∆α3. 

As the rules in this module allow the vehicle to track obstacles, they are not very different 
from those of the Collision Avoidance Steering Fuzzy module. The rules of this module are 
shown in Table 3.  

d0 ⇒ 

∆φ0 ⇓ 

Z S M B 

NB PM PM PM Z 

NM PM PM PM Z 

NS PM PM PM Z 

Z NM NM NS Z 

PS NM NS NS Z 

PM NS Z PS Z 

PB PS PS PS Z 

Table 3. Rules for Modified Bug Steering Fuzzy Module. 

4.2 Final Orientation Module 
Orienting the vehicle in a particular direction at the target point (similar to parking a 
car in a parking lot) presents a challenging problem. This paper presents a simple 
solution for it by adding the fourth module in the steering controller. The final 
orientation consists of setting up “virtual” targets that are based on the desired final 
orientation. The controller guides the vehicle to the correct orientation by passing the 
vehicle through the virtual targets, which gradually orients the vehicle in the right 
direction. The coordinates of these target points are shown in Table 4. Xt and Yt are the 

actual target coordinates and θt is the desired final orientation. The final orientation 
module is independent of the other three fuzzy steering modules. The steering fuzzy 
modules continue to control the vehicle as they otherwise would while the final 
orientation algorithm is operational. 

Target X coordinate (m) Y coordinate (m) 

Tv1 Xt +20cos(θt -π) Yt +20sin(θt -π) 

Tv2 Xt +10cos(θt -π) Yt +10sin(θt -π) 

T Xt Yt 

Table 4. Target Coordinates and Tracking Order. 
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Figure 15 shows a vehicle approaching the target. The final orientation algorithm first 
creates Tv1 and drives the vehicle toward it. The algorithm then creates Tv2, and again drives 
the vehicle toward it. Finally, the algorithm allows the vehicle to detect the actual target, and 
the vehicle goes toward it.  

x

y T

Tv2

Tv1

 
Fig. 15. Vehicle Approaching Target from a Specified Direction. 

5. Velocity Fuzzy Control 

To use human knowledge and experience efficiently in controlling the velocity of the 
vehicle, the problem is separated into several tasks. A fuzzy controller module is designed 
for each task. These tasks are target throttle, cornering throttle, and collision avoidance 
throttle. Figure 16 shows a schematic of the inputs and outputs of the three fuzzy modules 
to achieve these tasks. The total throttle/brake angle is the summation of the outputs of 
these modules.  
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Fig. 16. Schematic Diagram of the Velocity Fuzzy Controller Modules. 

5.1 Target Throttle Fuzzy Module 
The objective of this module is to speed up the vehicle to reach the target, to slow it down 
when approaching the target and to stop it at the target position. The inputs to this module 
are the velocity of the vehicle v, distance to target d, and the change of velocity from the 

previously measured value ∆v. The module has one output, which is the change in the gas 

pedal/brake angle ∆δgb1. 
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Four membership functions, Big (B), Medium (M), Small (S) and Zero (Z) are used to 
describe the first and the second input variables, v and d as shown in Figure 17 and 18 
respectively. Note that the upper bound on the B membership set in Figure 17 is twenty-five 
meters per second, which indicates that the maximum velocity of the vehicle can be up to 
ninety kilometers per hour. Since the controller is designed for a totally autonomous vehicle, 
it is conservative; thus, the reduction of velocity due to the distance to the target, d, begins 
early to avoid the potential for collision. Three membership functions, Negative (N), Zero 

(Z), Positive (P) are used to describe the third input variable, ∆v, as shown in Figure 19. 
These membership functions are selected to only indicate whether the velocity is decreasing, 
constant, or increasing. Finally, six membership functions, Negative Big (NB), Negative 
Medium (NM), Negative Small (NS), Zero (Z), Positive Small (PS), and Positive Big (PB) are 

used to describe the output variable, ∆δgb1, as shown in Figure 20. Note that the membership 

functions for ∆δgb1 are not symmetric around zero since the vehicle should stop in less time 
than that it takes to accelerate the vehicle. The figure also shows that there are more 
negative functions than positive ones, which allows finer control over braking. The 
following is a sample of the rules of this module, 

• If (v is B), (d is Z) and (∆v is P), then (∆δgb1 is NB): The rule states that if the velocity 
is big, the distance to target is zero, and the change of velocity is positive, the 
controller should supply a big brake angle. 

• If (v is Z), (d is B) and (∆v is N), then (∆δgb1 is PB): This rule states that if the velocity 
is zero, the distance to target is big, and the change of velocity is negative, the 
controller should supply a big gas pedal angle. 

The rules of this module are listed in Table 5. 
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Fig. 17. Membership Functions for v. Fig. 18. Membership Functions for d. 
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Fig. 19. Membership Functions for ∆v. Fig. 20. Membership Functions for ∆δgb1. 
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v ⇓ 
d ⇒ 

∆v ⇓ 
Z S M B 

N PS PS PB PB 

Z PS PS PB PB 
Z 
 

P NS Z PB PB 

N NS Z PS PB 

Z NS NS Z PB S 

P NS NM NS PB 

N NB NS PS PS 

Z NB NM Z PS M 

P NB NB NM Z 

N NS NS Z PS 

Z NB NS NS Z B 

P NB NB NS NB 

Table 5. Rules for Target Throttle Fuzzy Module. 

5.2. Cornering Throttle Fuzzy Module 
The objective of this module is to slow down the vehicle when it is turning to ensure its 
stability. The inputs to this module are the velocity of the vehicle v, the radius of curvature of 

the vehicle’s path ρ (Figure 21), and the change of velocity from the previous measured value 

∆v. The module has one output, which is the change in the gas pedal/brake angle ∆δgb2. 

The membership functions of v, ∆v, and ∆δgb2 are the same as those used in the target throttle 

module. However, ∆δgb2 uses only NS and Z membership functions since cornering module 
primarily reduces the velocity of the vehicle at sharp corners. Three membership functions, 

Z, S, B are used to describe the radius of curvature ρ, as shown in Figure 22. Note that these 
membership functions are selected to activate this module at sharp corners only. 

Vehicle

Instanteneous Center of
Rotation

ρ

 

0
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1

0 25 50 75 100
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µ

BSZ

 
Fig. 21. Instantaneous Radius of Curvature. Fig. 22. Membership Functions for ρ. 

The following is a sample of the rules of this module, 

• ( ) ( ) ( ) ( )NSisthenPisvandZisBisv gb2,,, δρ ∆∆If : The first rule states that if the 

velocity is big, the radius of curvature is zero, and the change of velocity is positive, the 
controller should supply a small brake angle. 

• ( ) ( ) ( ) ( )ZisthenZisvandBisSisv gb2,,, δρ ∆∆If : This rule states that if the velocity is 

small, the radius of curvature is big and the change of velocity is zero, the controller 
should do nothing. 
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The rules of this module are shown in Table 6.  

v ⇓ 
ρ ⇒ 
∆v ⇓ 

Z S B 

N Z Z Z 

Z Z Z Z 
Z 
 

P Z Z Z 

N Z Z Z 

Z Z Z Z S 

P NS Z Z 

N Z Z Z 

Z NS Z Z M 

P NS Z Z 

N NS Z Z 

Z NS Z Z B 

P NS NS Z 

Table 6. Rules for Cornering Throttle Fuzzy Module. 

5.3. Collision Avoidance Throttle Fuzzy Module 

The goal of this module is to slow down the vehicle as it moves near obstacles. The inputs to 
this module are the velocity of the vehicle v, minimum measured distance to the nearest 

obstacle do, and the change of velocity from the previous measured value ∆v. The output of 

the module is the change in the gas pedal/brake angle ∆δgb3.  

The membership functions of v and ∆v are the same as those used in the target throttle 

module. Figure 23 and Figure 24 show membership functions of do and ∆δgb3 respectively. 
Figure 23 shows that this modules is activated when the distance from the vehicle to the 
obstacle becomes less than twenty meters.  

The membership functions for v and ∆v in the previous module are used in this module. 
Three membership functions, Z, S, B (Figure 23) are used to describe do. This module uses 

five membership functions, NB, NS, Z, PS, PB (Figure 24) to describe ∆δgb.3 The minimum 

value of range of ∆δgb3 is significantly less than the minimum value of range of ∆δgb1 to 
indicate the need to brake the vehicle faster near obstacles. 
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Fig. 23. Membership Functions for Input 
Variable, do. 

Fig. 24. Membership Functions for Output 

Variable, ∆δgb3. 
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The following is a sample of the rules of this module, 

• )(),(),(),( 30 NBisthenPisvandZisdBisv gbδ∆∆If : The rule states that if the velocity 

is big, the minimum measured distance to the nearest obstacle is zero, and the change of 
velocity is positive, the controller should supply a big brake angle. 

• )(),(),(),( 30 ZisthenNisvandSisdSisv gbδ∆∆If : This rule states that if the velocity 

is small, the minimum measured distance to the nearest obstacle is small, and the change 
of velocity is negative, the controller should do nothing. 

The full rule set of this module is shown in Table 7. 

v ⇓ 
do ⇒ 

∆v ⇓ 
Z S B 

N PS PS Z 

Z PS PS Z Z 

P NS Z Z 

N PS Z Z 

Z PS Z Z S 

P NS NS Z 

N NS Z Z 

Z NB NS Z M 

P NB NB Z 

N NS NS Z 

Z NB NS Z B 

P NB NB Z 

Table 7. Rules for Cornering Throttle Fuzzy Module. 

6. Tuning Target Throttle Fuzzy Module 

Tests show that cornering throttle and obstacle avoidance modules performed adequately 
after little manual tuning. However, the Target Throttle Fuzzy module consistently 
produces an oscillatory vehicle velocity profile as the vehicle approaches the target. Manual 
tuning of the membership functions and rules fails to improve the performance of this 
module. While the rules of this module generally fit within the driving patterns of most 
drivers, this oscillatory behavior can be easily explained by considering that two objectives 
of this module compete with each other near the target: 

i. Slowing down the vehicle as the vehicle approaches the target. 
ii. Maintaining a non-zero velocity to ensure that the vehicle does not stop before 

reaching the target.  
Usually drivers solve this problem by pressing the gas or brake pedals lightly when they 
approach their final target. Narrowing the ranges of the membership functions of the output 
variable of a fuzzy controller may simulate this behavior. 
The design presented here proposes an adaptive tuning method to smooth the velocity of 
the vehicle as it approaches the target. Since the tuning is to be performed in real time, it is 
important to avoid intensive computations. Tuning the controller is based on the following 
decisions: 
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i. The previous fuzzy rules of Section 5.1 are left unchanged.  
ii. The membership functions of the input variables are considered reasonable. 

iii. The membership functions of the output variable ∆δgb1, Figure 20, are used as an 
initial guess.  

iv. The Target Throttle Fuzzy module remains unchanged if the vehicle is far away 
from the target. This controller will be from now on labeled the cruising throttle 
module. Tuning becomes active only when the vehicle approaches the target. The 
tuned controller will be labeled the slowing-down throttle module. 

The philosophy of tuning the membership functions can be still described using linguistic 
terms. The algorithm takes one of these actions: 

Case 1: If ∆v is positive (accelerating), and ∆δgb at the previous sample is also positive, attempt 
to decrease the velocity by moving the membership function of positive small (PS) of 

∆δgb1 closer to zero. 

Case 2: If ∆v is negative (decelerating), and ∆δgb at the previous sample is also negative, 
attempt to increase the velocity by moving the membership function of negative 

small (NS) of ∆δgb1 closer to zero. 

Case 3: If ∆v and ∆δgb at the previous sample have different signs, it indicates that the 
controller is trying to stabilize the velocity. In this case, all the membership 

functions of ∆δgb1 should remain unchanged. 
The product of sigmoid membership functions, given by Equation (11), offers the advantage 
of changing only one side of the membership function while keeping the other unchanged.  
To maintain smooth output of the controller, moving the right side of PS membership 
function requires a corresponding movement of the left side of PB membership function. 
Similarly, moving the left side of NS membership function requires a corresponding 
movement of the right side of NM membership function. That is, boundaries of membership 
functions must be moved such that there are no gaps created between membership 
functions. As such, the proposed scheme maintains the initial amount of overlap (or gap) 
between any adjacent membership functions. The controller incorporates the tuning system, 
Figure 25, which has these components: 

• Trigger: If the distance is small, the tuning scheme is triggered. In this paper, a crisp 
trigger of comparing the distance to the target with Dsmall is used. 

• Cruising throttle module: The module is the controller of Section 6.1. 

• Tuner: The trainer tunes the membership functions of the output of target throttle 
module if the trigger is fired. Its decision is based on the three cases discussed 
above. The new membership functions are 
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When |∆v| is significantly close to zero, the original membership functions should be used. 

Therefore, the value of the scaling factor φ(i) is equal to one. As the value of |∆v| increases, 

the original membership functions are modified by reducing the value of φ(i). φ(i) is 
described using the following equation: 

 
( ) ( )( ) ( )
( ) ( ) 0.0025i∆vif0.25iφ

0.0025i∆vif0.0025i∆v3000.25iφ
≥=
<−−=

 (17) 

Product of sigmoid membership functions require that the center of the right side be of 
higher value than that of the left side. To maintain this characteristic, the minimum value of 

φ(i) is limited to 0.25. The Slowing-down module is similar to the Cruising throttle module. The 
only exception is that it uses the tuned membership functions produced by the Tuner for the 
output variable. 
The parameter PI (i.e., the Performance Index) is used to assess the performance of the 
controller with and without the tuning scheme: 

 ( ) ( )∑
=

==
ki

mallDtktivPI s
2∆ )(  (18) 
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Fig. 25. Schematic of Target Throttle Tuning System. 

7. Examples 

The seven modules of the two proposed controllers are used to guide the vehicle around 
obstacles and reach the target in several examples to check the validity of the ideas proposed 
in this paper. In each example, the vehicle and the obstacle configurations are chosen to 
display certain characteristics of the controller or to contrast various modules of it. 
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7.1 Velocity Fuzzy Control Example 
The following example, shown in Figure 26, demonstrates the abilities of the velocity fuzzy 
controller. The starting position and orientation are (0.0, 0.0) meters and zero degree 
respectively. The target position and orientation are (100.0, 60.0) meters and ninety degrees 
respectively. The buffer zone radius will be denoted by rb, and is generally assigned a value of 
20 meters. The sensors are sampled every 0.1 seconds while the time step for the simulation is 
0.01 second. The example has both static obstacles and a dynamic obstacle that moves at a 
constant velocity. Dsmall is equal to 40 meters. The markers of Figure 26 correspond to t0 = 0 
seconds, t1 = 10 seconds, t2 = 15 seconds, t3 = 20 seconds, and t4 = 45 seconds. t5 is equal to 99.5 
seconds using the original target throttle module and 91.9 seconds using the target throttle 
tuning system. Figure 27 shows the velocity versus time of the vehicle at both cases. If no 
tuning is used, the velocity of the vehicle experiences an oscillatory pattern until it reaches the 
target. If the proposed tuning scheme is used, the velocity profile becomes smooth. The total 
path traversal time is also reduced. PI is equal to 0.0068 when the tuned controller is used, 
while PI is equal to 0.0566 when using the original cruising controller. 

Figures 28 through 30 show the output of the modules, ∆δgb1 (with tuning), ∆δgb2, and ∆δgb3, 
respectively, when tuning is used. The target throttle controller (cruising controller) initially 
accelerates the vehicle. This controller later reduces its input to keep the velocity of the 
vehicle bounded. In the meantime, the cornering throttle controller attempts to slow the 
vehicle as it turns around the static obstacle. The obstacle avoidance controller has similar 
output at this stage. The effect of these controllers at t1 becomes apparent as the vehicle 
starts to slow down. This trend continues until t4 as the vehicle turns and tries to avoid both 

obstacles. The contribution of ∆δgb1 diminishes at this stage as this module slows the vehicle 

down while it moves closer to the target. The value of ∆δgb2 also approaches zero at this 
stage since the turning radii of the vehicle are reasonably larger. However, the obstacle 
avoidance controller is also active at this stage. This phase continues until the vehicle leaves 
the obstacles behind. The tuning trigger is activated directly after that point at around 46 

seconds. The effect is clear in Figure 28. The reduction of ∆δgb1 is counteracted by the 

increase in ∆δgb3, which increases as the effects of the obstacles diminish. Eventually, the 
slowing-down module, which is the only active one at the end of the motion, moves the 
vehicle toward the target.  
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Fig. 26. Trajectory of Velocity Fuzzy Controller. Fig. 27. Velocity Profiles. 
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Fig. 28. Output of ∆δgb1. Fig. 29. Output of ∆δgb2. 
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Fig. 30. Output of the Collision Avoidance Throttle Module, ∆δgb3 . 

7.2. Bug Steering Module Example 
The conditions for the simulation are an initial position of (0.0, 0.0) meters, an initial 
orientation of zero degrees, a final position of (100.0, 100.0) meters and a final orientation of 
zero degrees. The results for this example are shown in Figure 31. The times depicted in the 
figures are t0 = 0 seconds, t1 = 15 seconds, t2 = 25 seconds, t3 = 75 seconds, t4 = 140 seconds, 
and t5 = 145 seconds, t6 = 170 seconds, t7 = 198 seconds, and t8 = 217.8 seconds. 
Initially, when there are no obstacles in its vicinity, the vehicle attempts to go straight to the 
target. Once the vehicle gets closer to the obstacle, it goes to the right, attempting to avoid it. 
When the vehicle senses an opening in the obstacle, it attempts to enter; however, as the 
opening is only 10 meters wide; thus, the controller will not allow the vehicle to enter since 
rb is set to twenty meters. The vehicle then continues moving around the obstacles, 
attempting to find a clear path to the target. Once its orientation has deviated from the ST 
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angle by mire that 360 degrees, the Modified Bug Fuzzy module is triggered. This occurs 
between times t4 and t5. At that point, the vehicle attempts again to go straight to the target. 
Once it senses the obstacle, it turns right, keeping the obstacle at a distance of about three 
meters to the left of the vehicle. It follows the wall of the maze until about t7. At this point, 
the vehicle is within twenty meters of the target and the vehicle has an unobstructed line of 
sight to the target. The final orientation controller is switched on here. Thus, the vehicle goes 
straight to the target while maintaining a course that results in a final orientation of zero 
degrees. The controller of (Lee and Wang, 1994)starts in the same direction as the proposed 
controller but fails to enter the maze as it is does not have a module for such a task, as 
shown in Figure 32.  

Fig. 31. Results of Using the Proposed 
Controller in Maze Tracking. 

Fig. 32. Results of Using the Controller of (Lee 
and Wang, 1994) in the Maze of Figure 31 . 

8. Conclusions 

This chapter presents a fuzzy logic control system for steering a two-axle vehicle. Two 
controllers are presented individually: the steering controller and the velocity controller. 
Each fuzzy controller is divided into several modules to represent the distributed way in 
which humans deal with different driving tasks. All of these modules are of the Mamdani-
type and use sigmoid or product of sigmoid membership functions. The outputs of the 
various modules are added together to control the steering angle and the speed of the 
vehicle, respectively. 
Two fuzzy modules in the steering controller are designed to meet the basic driving 
requirement: Target Steering Fuzzy module and Collision Avoidance Steering Fuzzy 
module. The first module steers the vehicle toward the target by monitoring the steering 
angle and the angle to the target. The objective of the second module is to avoid collisions 
with static and dynamic obstacles. Its inputs are the distance and angle to the nearest 
obstacle. When the vehicle is near an obstacle, the output of this module is given a higher 
weight than that of the first module, so that it will be able to significantly affect the behavior 
of the vehicle.  
The Modified Bug Steering Fuzzy module is proposed as a backup for the Target Steering 
Fuzzy module in the event that it cannot guide the vehicle to the target. The criterion used 
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to turn it on consists of monitoring the vehicles global orientation and making sure that the 
vehicle’s orientation does not change by more than 360 degrees. This module includes a start 
to target line as a fictitious obstacle. The vehicle follows this line if it encounters it, unless it 
drives away from the target, which reduces path length in many cases. The criteria used to 
turn this module off consist of making sure that i) the vehicle is within 20 meters of the 
target, and ii) the vehicle has an unobstructed line of sight to the target. Finally, the rules 
and membership functions of the Modified Bug Fuzzy module account for the physical 
properties of a two-axle vehicle by allowing it enough time and space to make the necessary 
turns. 
A separate module in the steering controller adjusts the vehicle to the desired final 
orientation by introducing two intermediate target points. The module drives the vehicle 
through these two points and adjusts the vehicle’s orientation accordingly.  
The velocity controller is divided into several modules, each dealing with a separate 
objective, to mimic human behavior. These modules are:  

i. Target Throttle Fuzzy module: The objectives of the module are to start the 

vehicle moving from a complete stop, to speed it up, and to stop it when it gets 

sufficiently close to the target. The inputs to this module are the velocity of the 

vehicle, distance to target, and the change of velocity from the previously 

measured value. The module has one output, which is the change in the gas 

pedal/brake angle (∆δgb1). 

ii. Cornering Throttle Fuzzy module: The objective of this module is to reduce the 

speed of the vehicle when its turning radius decreases (i.e., the tighter the turn, the 

lower the velocity). The inputs to this module are the velocity of the vehicle, the 

radius of curvature of the vehicle’s path, and the change of velocity from the 

previous measured value. The module has one output, which is the change in the 

gas pedal/brake angle (∆δgb2). 

iii. Collision Avoidance Throttle Fuzzy module: The objective of this module is the 

reduce the speed of the vehicle as it approaches an obstacle and increase the speed 

as the vehicle continues past the obstacle. The inputs to this module are the vehicle 

velocity, the minimum measured distance to the nearest obstacle, and the change of 

velocity from the previous measured value. The output of the module is the change 

in the gas pedal/brake angle (∆δgb3). 
The Cornering Throttle and Collision Avoidance Throttle Fuzzy modules performed 
satisfactorily after some manual tuning. The initial Target Throttle Fuzzy module, which 
produces an oscillatory velocity pattern when the vehicle approaches the target, may be 
explained by the fact that two objectives of this controller are in conflict at this stage: 

• Decelerating the vehicle to stop at the target point. 

• Accelerating the vehicle if the velocity approaches zero before the vehicle reaches 
the target point.  

The Target Throttle Fuzzy module is tuned to eliminate these velocity oscillations near the 
target. This tuned controller is composed of two fuzzy logic controllers: cruising module and 
slowing-down module. The cruising module is similar to the Target Throttle Fuzzy module. It 
drives the vehicle while it is away from the target. The slowing-down module is triggered if 
the distance to the target is small. This controller is similar to the cruising controller. 
However, the ranges of the membership functions of its output are continuously varied 
based on two inputs: the current change in velocity and the change in the gas/brake angle at 

www.intechopen.com



198 Mobile Robots, moving intelligence 

the previous sample. This arrangement succeeds in driving the vehicle to its target without 
exciting oscillations in the velocity response. 
Simulation examples show that the fuzzy controllers successfully guide the vehicle toward 
the target, while avoiding all obstacles placed in its path. Future work will focus on 
extending the proposed fuzzy logic controllers to other types of autonomous vehicles, such 
as autonomous underwater or unmanned aerial vehicles. An intelligent algorithm that is 
able to generate fuzzy rules and tune the parameters of the fuzzy logic controllers of a 
vehicle can reduce the implementing time in different systems. Real-time calculation of the 
throttle angle during cornering could be modeled, but that would require a four wheel 
model, with calculations of the force at each tire. Criteria to indicate loss of traction on the 
tires toward the inside of a turn could also be used as inputs for the Cornering Throttle 
Fuzzy Module. 
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