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1. Introduction     

Metamaterials (Marques et al., 2008; Eleftheriades & Balmain, 2005; Herraiz-Martinez et al. 
2009) are one of the many new technologies being adopted to improve the performance of 
radio frequency identification (RFID) systems (Finkenzeller, 2003; Stupf et al., 2007). In 
particular, metamaterial-based antenna designs are being used more frequently to improve 
the read range and reduce the size of passive UHF RFID tags.  This chapter will introduce 
the concept of RFID systems and the relevant parameters for proper antenna design. Then, 
expressions for the phase constants, propagation constants and the characteristic (or Bloch) 
impedance of a wave propagating down an infinite transmission line (TL) will be derived.  
These expressions will then be used to introduce the concept of LH-propagation. 
Subsequently, the design of several metamaterial-based antennas for passive UHF RFID tags 
will be summarized followed by a section on the conclusion and future applications of 
metamaterial-based antennas to RFID systems.   

2. An introduction to passive UHF RFID systems using the Friis transmission 
equation 

The RFID system in Fig. 1 consists of a reader and several RFID tags in the space around the 
reader.  A transmit and receive antenna is connected to the reader and each tag has a single 
antenna used for both transmitting and receiving.  Digital circuitry that communicates with 
the reader is attached to the antenna on the RFID tag. This digital circuitry is often denoted 
as the passive IC on the RFID tag. To communicate with the tags, the reader sends out an 
electromagnetic field using the transmitting antenna. This electromagnetic field has power 
and timing information that will be used by the tag. If a tag is close enough to the reader, the 
tag will harvest some of the incoming energy from the electromagnetic field to power the 
digital circuitry in the passive IC. If it is appropriate, the passive IC will communicate with 
the reader using backscattered waves.  By changing the input impedance of the passive IC 
connected to the tag antenna, the tag is able to create two different backscattered waves in 
the direction of the reader. One backscattered wave corresponds to a logic 0 and the other 
backscattered wave corresponds to a logic 1. By using timing information with the two 

Source: Radio Frequency Identification Fundamentals and Applications, Design Methods and Solutions, Book edited by: Cristina Turcu,  
 ISBN 978-953-7619-72-5, pp. 324, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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backscattered waves, the tag is able to transmit a digital signal back to the reader.  This 
backscattered wave with the digital information is then received by the receive antenna 
connected to the reader and processed.  
 

 

Fig. 1. Overview of a passive RFID system. 

There are several different methods to describe the characteristics of a passive UHF RFID 

system (Braaten et al., 2006; Finkenzeller, 2003). The Friis transmission equation (Stutzman 

& Thiele, 1998) will be used here to show the relevant properties of an antenna on a RFID 

tag for achieving a maximum read range.  

In general, the gain of the antennas, transmit power, frequency and sensitivity of the 

receiver determine the distance and rate at which a communication system can transfer 

digital information wirelessly.  A convenient expression for describing the characteristics of 

such wireless systems is the Friis transmission equation (Stutzman & Thiele, 1998): 

   ௥ܲ ൌ ௧ܲ ீೝீ೟ఒమሺସగோሻమ  (1)  ݍ

where ௧ܲ is the transmitted power, ௥ܲ is the receive power, ܩ௧ is the gain of the transmitting 

antenna, ܩ௥ is the gain of the receiving antenna, ߣ is the free-space wavelength of the 

transmitting frequency, ܴ is the distance between the antenna on the transmitter and the 

antenna on the receiver and ݍ is the impedance mismatch factor ሺͲ ൑ ݍ ൑ ͳሻ between the 

receiver and the receiving antenna.  Equation (1) assumes a polarization match between the 

transmitting antenna and receiving antenna and that the receiving antenna is in the far-field 

of the transmitting antenna.   

Equation (1) can be adopted to describe the performance of the RFID system on Fig. 1. In a 

RFID system, the transmitter is the reader and the receiver is the tag. The reader is 

connected to a transmitting antenna with a fixed gain and the tag has a receiving antenna 

with a fix gain.  Rewriting (1) with a few substitutions results in the following expression: 
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 ௧ܲ௚ ൌ ௥ܲௗ ீೝ೏ீ೟೒ఒమሺସగோሻమ  (2)    ݍ

where ௥ܲௗ is the power transmitted by the reader, ௧ܲ௚ is the power received by the passive 

tag, ܩ௥ௗ is the gain of the transmitting antenna on the reader, ܩ௧௚ is the gain of the space-

filling antenna on the tag, ߣ is the free-space wavelength of the transmitting frequency by 
the reader, ܴ is the distance between the antenna on the reader and the antenna on the tag 
and ݍ is the impedance mismatch factor ሺͲ ൑ ݍ ൑ ͳሻ between the passive IC and the antenna 
on the tag.  Next, solving for ܴ in (2) results in the following expression (Braaten et al., 2008; 
Rao et al., 2005): 

 ܴ ൌ ఒସగ  ට௤ீೝ೏ீ೟೒௉ೝ೏௉೟೒  .  (3) 

Equation (3) represents the distance needed to observe a particular value of ௧ܲ௚ for some 

fixed transmit power by the reader, fixed transmit gain and a fixed gain for the antenna on 
the RFID tag. Therefore, if the threshold power required to activate the passive IC and 
communicate with the reader is denoted as ௧ܲ௛, then a maximum read range ݎ௠௔௫ can be 
derived from (3) with a simple substitution: 

୫ୟ୶ݎ  ൌ ఒସగ  ට௤ீೝ೏ீ೟೒௉ೝ೏௉೟೓  .  (4) 

Equation (4) is a very useful expression and often common method for predicting the max 
read range of a passive RFID tag (Vaselaar, 2008; Rao et al, 2007). Typically, in a passive 
UHF RFID system it is very desirable to achieve the longest possible read range. Usually, ௧ܲ௛ 
is fixed by the manufacture of the passive IC, while ௥ܲௗ, ܩ௥ௗ and ߣ are fixed by the laws of 
the country the RFID system may be operating in. This leaves ܩ௧௚ and ݍ available for the 

design of the antenna on the passive RFID tag to maximize the read range.   

3. Introduction to Left-handed propagation 

Many different methods exist for improving the read range and reducing the size of a 
passive RFID tag. One such method is to incorporate metamaterial concepts into the design 
of the antenna on the RFID tag (Braaten et al., 2009a). In the next section, the concept of 
metamaterials is introduced by deriving expressions for the propagation constant, phase 
velocity and Bloch impedance of a LH-wave propagating down an infinite transmission line 
(Gil et al., 2007; Ryu et al., 2008). But first, a few comments on the terminology of LH-
propagation are in order.   
The terms RH- and LH-propagation refers to the direction of the wave vector ݇. In a 
traditional RH-TL, the electric field is curled into the magnetic field using the right hand.  
The field components for the RH-case are shown in Fig. 2 (a).  After the curl, the thumb is 

pointing in the direction of the Poynting vector ܵ and ݇ . In a LH-TL, ݇ is pointing in the 

opposite direction as ܵ. This case is shown in Fig. 2 (b). This then requires curling the electric 
field into the magnetic field using the left hand.  Then the direction of the thumb is pointing 
in the direction of ݇ but in the opposite direction as ܵ.  Notice in both cases that  ܵ is always 
pointing in the same direction which indicates that the power is always flowing in the same 
direction (i.e., power is flowing to the load). This is the case regardless if the TL supports 
RH- or LH-propagation.   
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Fig. 2. (a) RH-propagation terminology; (b) LH-propagation terminology. 

3.1 Deriving the Bloch impedance from an infinite periodic structure with loads that 
are in parallel. 

First consider the equivalent circuit of the infinite TL in Fig. 3. Fig. 3 shows a periodically 
loaded TL with admittances ݆ܾ.  Using ABCD matrices (Pozar, 2005), the voltage and current 

at either side of the ݊௧௛ unit cell is 

 ൤ ௡ܸܫ௡൨ ൌ ቂܣ ܥܤ ቃܦ ൤ ௡ܸାଵܫ௡ାଵ ൨.  (5) 

Then using Table 4.1 in Pozar (2005), the normalized form of the ABCD matrix can be 
written as: 

  ቂܣ ܥܤ ቃܦ ൌ ቎ ݏ݋ܿ ఏଶ ݊݅ݏ݆ ఏଶ݆݊݅ݏ ఏଶ ݏ݋ܿ ఏଶ ቏ ൤ ͳ Ͳ݆ܾ ͳ൨ ቎ ݏ݋ܿ ఏଶ ݊݅ݏ݆ ఏଶ݆݊݅ݏ ఏଶ ݏ݋ܿ ఏଶ ቏  

 ൌ ቎ ߠݏ݋ܿ െ ௕ଶ ߠ݊݅ݏ ݆ ቀߠ݊݅ݏ ൅ ௕ଶ ߠݏ݋ܿ െ ௕ଶቁ݆ ቀߠ݊݅ݏ ൅ ௕ଶ ߠݏ݋ܿ ൅ ௕ଶቁ ߠݏ݋ܿ െ ௕ଶ ߠ݊݅ݏ ቏ (6) 

where ߠ ൌ ݇݀ and ݇ is the propagation constant of the unloaded line. Next, the voltage and 
current for a wave propagating in the +z-direction can be written as: 

 ܸሺݖሻ ൌ ܸሺͲሻ݁ିఊ௭  (7) 

 

Fig. 3. Infinite periodic transmission line with parallel loads. 
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and  

ሻݖሺܫ  ൌ  ሺͲሻ݁ିఊ௭.  (8)ܫ

 

Since the structure in Fig. 3 is ininitely long, ܸ and ܫ at the ሺ݊ ൅ ͳሻ௧௛ terminal differ from the ݊௧௛ terminal by a factor of ݁ିఊௗ, where ݀ is the length of each unit cell along the TL. This 
then gives 

 ௡ܸାଵ ൌ ௡ܸ݁ିఊௗ  (9) 

and 

௡ାଵܫ      ൌ  ௡݁ିఊௗ.  (10)ܫ

Solving for the voltage and current at the ݊௧௛ terminal gives: 

  ௡ܸ ൌ ௡ܸାଵ݁ఊௗ  (11) 

and 

௡ܫ   ൌ  ௡ାଵ݁ఊௗ.  (12)ܫ

Thus, 

 ൤ ௡ܸܫ௡൨ ൌ ቂܣ ܥܤ ቃܦ ൤ ௡ܸାଵܫ௡ାଵ ൨ ൌ ቈ ௡ܸାଵ݁ఊௗܫ௡ାଵ݁ఊௗ ቉.    (13) 

 

Subtracting the matrix on the right of (13) from the middle matrices in (13) gives: 

 ൤ܣ െ ݁ఊௗ ܥܤ ܦ െ ݁ఊௗ൨ ൤ ௡ܸାଵܫ௡ାଵ ൨ ൌ Ͳ.  (14) 

 

Next, the determinant of (14) must vanish for a nontrivial solution (Pozar, 2005), or 

ܣ)  െ ݁ఊௗሻሺܦ െ ݁ఊௗሻ െ ܥܤ ൌ ܦܣ െ ఊௗ݁ܦ െ ఊௗ݁ܣ ൅ ݁ଶఊௗ െ ܥܤ ൌ Ͳ.     (15) 

Factoring (15) gives 

 ݁ଶఊௗ െ ݁ఊௗሺܣ ൅ ሻܦ ൅ ͳ ൌ Ͳ.    (16) 

Since (6) is a normalized matrix, ܦܣ െ ܥܤ ൌ ͳ. This reduces (16) to 

ܣ  ൅ ܦ ൌ ݁ିఊௗ ൅ ݁ఊௗ . (17) 

Then using cosh(݀ߛሻ ൌ ௘షം೏ା௘ം೏ଶ  results in  

 cosh(݀ߛሻ ൌ ஺ା஽ଶ   (18) 

where ܣ and ܦ are taken from the matrix in (6). Since ߛ ൌ ߙ ൅  the following expression ,ߚ݆
can also be written 

 coshሺ݀ߛሻ ൌ ߠݏ݋ܿ െ ௕ଶ  (19)   .ߠ݊݅ݏ
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Notice that (19) is written in terms of the propagation constants and the length of the TL.  
Next, an expression for the characteristic impedance for the wave along the TL is derived.  
This impedance is sometimes called the Bloch impedance ܼ஻. To derive ܼ஻, first start with 

 ܼ஻ ൌ ܼ଴ ௏೙శభூ೙శభ   (20) 

which is the characteristic impedance of the ݊௧௛ unit cell in Fig. 3.  Next, solving for ௡ܸାଵ in 
(13) gives: 

 ௡ܸାଵ ൌ ି஻ூ೙శభ஺ି௘ം೏ .  (21) 

Substituing (21) into (20) results in  

 ܼ஻ ൌ ି஻௓బ஺ି௘ം೏.   (22) 

Next, solving for the root in (16) results in the following expresssion for ݁ఊௗ: 

 ݁ఊௗ ൌ ሺ஺ା஽ሻേඥሺ஺ା஽ሻమିସଶ   (23) 

Next, substituing (23) into (22) gives 

 ܼ஻േ ൌ ିଶ஻௓బଶ஺ି஺ି஽טඥሺ஺ା஽ሻమିସ.    (24) 

For reciprocal networks, ܣ ൌ  Thus, (24) reduces to .ܦ

 ܼ஻േ ൌ േ஻௓బ஺మିଵ.    (25) 

Equation (25) is the characteristic impedance, or Bloch impedance, of the infinite periodic TL 
in Fig. 3. Therefore, once the admittance ݆ܾ is known, ܣ and B can be taken from (6) to 
evaluate the Bloch impedance along the TL. In the the next section, derivations for  a similar 
expression to (25) are presented for a general infinite periodic TL.   

3.2 Deriving the Bloch impedance from an infinite periodic structure with loads that 
are in series and parallel. 
Again, the first step in the derivation of the Bloch impedance for the the infinite TL in Fig. 4 
is to write the ABCD matrix. Using Table 4.1 in Pozar (2005), the following expressions can 
be written for ܥ ,ܤ ,ܣ and ܦ: 

ܣ  ൌ ͳ ൅ ௓ೞ௓೛  (26) 

ܤ  ൌ ܼ௦ ൬ʹ ൅ ௓ೞ௓೛൰  (27) 

ܥ  ൌ ଵ௓೛ (28) 

ܦ  ൌ ͳ ൅ ௓ೞ௓೛ ൌ  (29) .ܣ

Also, note again that ܦܣ െ ܥܤ ൌ ͳ and that the voltage and current for a wave propagating 
in the +z-direction can be written as: 
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 ܸሺݖሻ ൌ ܸሺͲሻ݁ିఊ௭  (30) 

and 

ሻݖሺܫ  ൌ  ሺͲሻ݁ିఊ௭.  (31)ܫ

 

Fig. 4. Generalized infinite periodic transmission line with series and parallel loads. 

Since the structure in Fig. 4 is ininitely long, ܸ and ܫ at the ሺ݊ ൅ ͳሻ௧௛ terminal differ from the ݊௧௛ terminal by a factor of ݁ିఊௗ where ݀ is the length of each unit cell along the TL. This then 
gives 

 ௡ܸାଵ ൌ ௡ܸ݁ିఊௗ  (32)  

and 

௡ାଵܫ  ൌ  ௡݁ିఊௗ.  (33)ܫ

Solving for the voltage and current at the ݊௧௛ terminal gives: 

 ௡ܸ ൌ ௡ܸାଵ݁ఊௗ  (34) 

and 

௡ܫ  ൌ  ௡ାଵ݁ఊௗ.  (35)ܫ

Thus, 

 ൤ ௡ܸܫ௡൨ ൌ ቂܣ ܥܤ ቃܦ ൤ ௡ܸାଵܫ௡ାଵ ൨ ൌ ቈ ௡ܸାଵ݁ఊௗܫ௡ାଵ݁ఊௗ ቉.  (36) 

Subtracting the matrix on the right of (36) from the middle matrices in (36) gives: 

 ൤ܣ െ ݁ఊௗ ܥܤ ܦ െ ݁ఊௗ൨ ൤ ௡ܸାଵܫ௡ାଵ ൨ ൌ Ͳ.  (37) 

Next, the determinant of (37) must vanish for a nontrivial solution (Pozar, 2005), or 

ܣ)  െ ݁ఊௗሻሺܦ െ ݁ఊௗሻ െ ܥܤ ൌ ܦܣ െ ఊௗ݁ܦ െ ఊௗ݁ܣ ൅ ݁ଶఊௗ െ ܥܤ ൌ Ͳ.     (38) 

Factoring (38) gives 

 ݁ଶఊௗ െ ݁ఊௗሺܣ ൅ ሻܦ ൅ ͳ ൌ Ͳ.    (39) 

Since ܦܣ െ ܥܤ ൌ ͳ,  (39) reduces to 

ܣ  ൅ ܦ ൌ ݁ିఊௗ ൅ ݁ఊௗ .  (40) 
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Then using cosh(݀ߛሻ ൌ ௘షം೏ା௘ം೏ଶ  results in  

 cosh(݀ߛሻ ൌ ஺ା஽ଶ ൌ coshሺ݀ߙሻ cosሺȾdሻ ൅ jsinhሺȽdሻ sinሺȾdሻ ൌ ଵାZ౩Z౦ାଵାZ౩Z౦ଶ   (41) 

where ܣ and ܦ are taken from (26) and (29), respectively, and the trigonometric expresssion 
are from the normalized matrix (6). This implies 

 coshሺ݀ߙሻ cosሺ݀ߚሻ  ൅ jsinhሺȽdሻ sinሺ݀ߚሻ ൌ ͳ ൅ ௓ೞ௓೛.   (42) 

Now, for the propagation mode we have ߙ ൌ Ͳ and ߚ ് Ͳ. Substituting ߙ and ߚ into (42) 
gives 

 coshሺ݀ߚሻ ൌ ͳ ൅ ௓ೞ௓೛.   (43) 

Now for the Bloch impedance, 

 ܼ஻ ൌ ܼ଴ ௏೙శభூ೙శభ .  (44) 

Substituing (37) into (44) and solving for ܼ஻ gives 

 ܼ஻ ൌ ି஻௓బ஺ି௘ം೏.   (45) 

Next, solving for the root in (39) results in the following expresssion for ݁ఊௗ: 

 ݁ఊௗ ൌ ሺ஺ା஽ሻേඥሺ஺ା஽ሻమିସଶ   (46) 

Substituting (46) into (45), using ܦ = ܣ and factoring results in the following expresssion for ܼ஻ (Marques et al., 2008): 

 ܼ஻ ൌ ඥܼ௦ሺܼ௦ ൅  ʹܼ௣ሻ  (47) 

which is an expression for the Bloch impedance in terms of the series and parallel loads 
along the TL. Next, ܼ௦ and ܼ௣ will defined in a manner to support both RH- and LH-

propagation.  Expressions will also be derived for ܼ஻ in both instances. 
First consider the RH-TL. In a RH-TL the series impedance is ܼ௦ ൌ  and the parallel (or ʹ/ܮ݆߱
shunt) impedance is ܼ௣ ൌ  െ݆/߱ܥ in Fig. 4 (Marques et al., 2008; Eleftheriades & Balmain, 

2005). This then reduces (43) to 

 coshሺߚோ݀ሻ ൌ ͳ ൅ ఠమ௅஼ଶ .   (48) 

Note that the subscript ܴ will be added to the variables to denote the RH-propagation.  
Similarly, a subscript ܮ will be added to the variables to denote LH-propagation. Also, for 
the Bloch impedance, 

 ܼ஻ோ ൌ ඥܼ௦ሺܼ௦ ൅  ʹܼ௣ሻ ൌ ට௅஼ ቀͳ െ ఠమఠ಴ೃమ ቁ (49) 

where ߱஼ோଶ ൌ ቀ ଶ√௅஼ቁଶ
.   
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Next, in a LH-TL the series impedance is ܼ௦ ൌ െ݆/ʹ߱ܥ and the parallel (or shunt) 
impedance is ܼ௣ ൌ  in Fig. 4 (Marques et al., 2008; Eleftheriades & Balmain, 2005).  This ܮ݆߱ 

then reduces (43) to 

 coshሺߚ௅݀ሻ ൌ ͳ ൅ ଵଶ௅஼ఠమ.   (50) 

Similarly for the Bloch impedance, 

 ܼ஻௅ ൌ ට௅஼ ቀͳ െ ఠ಴ಽమఠమ ቁ  (51) 

where ߱஼௅ଶ ൌ ቀ ଶ√௅஼ቁଶ
.   

For the previous analysis it was assumed that ߣௗ ب ݀ where ߣௗ is the internal wavelength 
and ݀ is the segment length in Fig. 4.  To ensure this inequality, the segment length ݀ must 
be reduced. This translates to smaller values of ܮ and ܥ. Doing so increases the cutoff 
frequency ߱஼ோ, thus the following expressions are only valid for frequencies that satisfy the 

inequality ߱ ا  ߱஼ோ. This implies that 
ఠఠ಴ೃ ا ͳ.  This inequality simplifies (49) to 

 ܼ஻ோ ൎ ට௅஼ ሺͳ െ Ͳሻ ൌ ට௅஼.  (52) 

Also, for the LH-TL, (51) reduces to 

 ܼ஻௅ ൌ ට௅஼ ሺͳ െ Ͳሻ ൌ ܼ஻ோ  (53) 

because ߱ ب ఠಽ಴మఠమ ൎ Ͳ.   
The previous steps illustrate the process of deriving the Bloch impedance values for a RH- 
and LH-TL. In the next section, the derivation of the expressions for the propagation 
constants and phase velocities along a RH- and LH-TL will be presented. 

3.3 Deriving the propagation constants and phase velocity expressions from an 
infinite periodic structure with loads that are in series and parallel. 

First, taking the Taylor series expansion of (48)  and truncating after the second term gives 

 cosሺߚோ݀ሻ ൎ ͳ െ ሺఉೃௗሻమଶ! ൌ ͳ െ ఠమ௅஼ଶ .  (54) 

Solving for the phase constant in (54) gives 

ோ݀ߚ  ൌ  (55)  .ܥܮ√߱

Then for the phase థܸோ and group ௚ܸோ velocity, 

 థܸோ ൌ ఠఉೃ ൌ ௗ√௅஼ ൐ Ͳ   (56) 

and 

 ௚ܸோ ൌ  ቀడఉೃడఠ ቁିଵ ൌ థܸோ ൐ Ͳ.  (57) 

Next, using the Taylor series expansion of (50) and truncating after the second term gives 
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 cosሺߚ௅݀ሻ ൎ ͳ െ ሺఉಽௗሻమଶ! ൌ ͳ െ ଵଶఠమ௅஼.  (58) 

Then solving for the phase constant in (58) and choosing the negative sign gives 

௅݀ߚ  ൌ െ ଵఠ√௅஼.  (59) 

Then for the phase థܸ௅ and group ௚ܸ௅ velocity, 

 థܸ௅ ൌ ఠఉಽ ൌ െ߱ଶ݀ √ܥܮ ൏ Ͳ   (60) 

and 

 ௚ܸ௅ ൌ  ቀడఉಽ డఠ ቁିଵ ൌ െ థܸ௅ ൐ Ͳ.  (61) 

Note the inequalities in (60) and (61). In particular, notice the sign change in the phase 
velocity, but the group velocities remain positive. Looking at the summary in Table 1, it is 
clear which expressions in the LH-TL change sign for the LH-propagation. The RH-wave 
has a positive phase constant and phase velocity while a LH-wave have a negative phase 
constant and phase velocity. Both LH- and RH-waves have the same Bloch impedance (i.e., 
characterstic impedance) and positive group velocity. The sign of the group velocities were 
chosen to be both positive, which was done to agree with the definition of power flow (it is 
assumed that power flows from the source on the left to the load on the right of the TL in 
Fig. 4). Then in both instances, the group velocity is delivering power in the correct 
direction. 
 

RH-TL LH-TL ܼ஻ோ ൌ ඨܥܮ 

 ܼ஻௅ ൌ ܼ஻ோ 
 

ோ݀ߚ  ൌ ܥܮ√߱ ൐ Ͳ 
 

௅݀ߚ  ൌ െ ͳ߱√ܥܮ ൏ Ͳ 

 థܸோ ൌ ܥܮ√݀ ൐ Ͳ 

 థܸ௅ ൌ െ߱ଶ݀ ܥܮ√ ൏ Ͳ 

 

 ௚ܸோ ൌ థܸோ ൐ Ͳ. 
 

 ௚ܸ௅ ൌ െ థܸ௅ ൐ Ͳ. 
Table 1. Summary of the derived RH- and LH-TL properties. 

3.4 Dispersion diagrams for an infinite periodic structure with loads that are in series 
and parallel. 

In this section the dispersion diagrams for the RH- and LH-TL are plotted. From Table 1, the 
propagation constants along a RH- and LH-TL are 

ோ݀ߚ  ൌ ܥܮ√߱ ൐ Ͳ  (62) 
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and 

௅݀ߚ  ൌ െ ଵఠ√௅஼ ൏ Ͳ.  (63) 

Solving for ߱ in (62) and (63) gives 

 ߱ ൌ ఉೃௗ√௅஼  (64) 

and 

 ߱ ൌ  െ ଵఉಽௗ √௅஼.  (65) 

Plotting (64) and (65) results in the dispersion diagrams shown in Fig. 5 (normalized).   

 
Fig. 5. RH- and LH-TL dispersion diagrams. 

4. Metamaterial-based antennas for passive UHF RFID tags 

As mentioned in the previous sections, one of the main advantages of using metamaterial-
based elements in the design of antennas is that the resulting antenna is much smaller than 
traditional printed antennas (Lee et al, 2005; Lee et al., 2006; Abdalla et al., 2009; Iizuka & 
Hall, 2007).  In this section, several of these ideas have been adopted for use on passive RFID 
tags.  Particularly, metamaterial-based elements (Ali & Hu, 2008; Ghadarghadr et al., 2008)  
have been incorporated into the design of printed antennas on a single ungrounded 
dielectric. The first design shown in the next section uses deformed-omega elements (Mishra 
et al., 2008) to introduce a series inductance to the port of the antenna that causes the 
antenna to resonate at a much lower frequency (Braaten et at., 2009a).  The second design 
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involves using coplanar waveguide elements (CPW) to reduce the overall size of a meander-
line antenna.  In particular, series connected CPW inductors and capacitors found in CPW 
filters (Mao et al., 2007) are used to periodically load a meander-line antenna. The result is a 
much smaller meander-line antenna with a lower resonant frequency (Braaten et al., 2009b).  
Finally, the third design uses two split-ring resonators (Marques et al., 2008; Eleftheriades & 
Balmain, 2005) instead of a meander-line antenna to form a dipole.  This type of dipole is 
useful for RFID tags because the input impedance is inductive above the resonant 
frequency.   

4.1 The Meander-line antenna  

The printed meander-line antenna shown in Fig. 6 (a) is very useful for achieving resonance 
in a very small area. This makes the meander-line antenna very popular for integration on 
passive UHF RFID tags (Marrocco, 2003; Rao et al., 2005). It is often desirable to describe an 
antenna using an equivalent circuit. To do this, first consider the meander-line section in Fig. 
6 (b). Each meander-line section can be modeled as a parallel connected equivalent 
capacitance ܥ௠ and equivalent inductance ܮ௠ (Bancroft, 2006). The equivalent capacitance 
exists between the vertical segments of each meander-line section and the self-inductance is 
created by the horizontal segments of each meander-line section. Thus, each pole of the 
meander-line dipole is made up of several series connected parallel ܮ௠ܥ௠  sections. In order 
for the meander-line antenna to resonate, it is important to maximize the section inductance ܮ௠.  
 

 
 

Fig. 6. (a) Meander-line antenna with N-elements on each arm;  (b) the mth meander-line 
section. 

4.2 Meander-line antenna using deformed-omega elements 

One way to improve the inductance of each section is to substitute the deformed-omega 

element shown in Fig. 7 (a) in for several of the meander-line sections (Braaten et al., 2009a).  

This added inductance will cause the meander-line antenna to resonate at a much lower 

frequency. This allows a designer to reduce the overall size of the meander-line antenna. 

The inductance of each deformed-omega element can be approximated as (Braaten et al., 

2009a): 

 ܼ௔ ൎ ଵଶ ଴ܽ ቂ݈݊ߤ݆߱ ቀ଼௔௣ ቁ െ ʹ  ቃ     Ω  (66) 
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Fig. 7. (a) Deformed-omega element; (b) meander-line antenna with series connected 
deformed-omega elements. 

where ܽ is the width of the individual deformed-omega element and ݌ is the trace width.  

Braaten et al. (2009a) has shown that the overall size of a meander-line antenna can be 

significantly reduced by introducing deformed-omega elements into the design. The 

prototype tag presented by Braaten et al. (2009a) is printed on FR-4 with a thickness of .787 

mm. The overall size of the tag is 42.2 mm wide and 18.8 mm high and has a read range of 

4.5 m. An image of the RFID tag is shown in Fig. 8. The size of the passive tag is being 

compared to a previous meander-line design by the same authors (Braaten et al., 2008). 

 
 

 
 

Fig. 8. A passive RFID tag with deformed-omega elements used in the antenna design being 
compared to the size of a previous meander-line design.   

4.3 Meander-line antenna periodically loaded with right/left-handed CPW-LC loads 

There are other methods to introduce inductance or capacitance to the equivalent circuit of 
each meander-line section. One method is to periodically load each meander-line section 
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with a series connected inductance (ܮ) and capacitance (ܥ) (Braaten et al., 2009b).  It is often 
desirable to have the tag antenna on a single conducting layer. Thus, a CPW structure is 
needed to introduce the series ܮ and ܥ (Mao et al., 2007). An image of the series connected 
CPW-LC is shown in Fig. 9 (a).  The load consists of an interdigitated capacitor connected to 
a conducting loop that introduces inductance. One method of periodically loading the 
meander-line antenna is shown in Fig. 9 (b). Periodic CPW-LC loads could also be 
introduced to the bottom of the meander-line antenna (Fig. 10). 
Prototype designs using this method to load a meander-line antenna (Braaten et al. 2009b) 
have shown that the introduction of the periodic CPW LC-loads along the meander-line 
antenna reduces the overall size of the meander-line antenna by 18%. The prototype tag by 
Braaten et al. (2009b) was printed on 1.36 mm of FR-4 and had a max read range of 4.87 m.  
The overall size of the prototype tag was 14.81 mm high by 47.13 mm wide.   
 

 

 
 

Fig. 9. (a) Series connected CPW-LC loads; (b) meander-line antenna periodically loaded 
with series connected LC loads 

                               
                                            (a)                                             (b) 

Fig. 10. (a) A meander-line antenna periodically loaded on the top and bottom with CPW-
LC elements; (b) closer image of the CPW-LC loads.   
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4.4 Dipole antenna designed with split-ring resonators 

The design of an antenna on a RFID tag does not always have to involve a meander-line 

antenna.  As long as the antenna can be designed with an input impedance that is inductive, 

is compact in size and has a usable gain, then other elements may work. One element that 

can be used is the split-ring resonator (SRR) (Eleftheriates & Balmain, 2005) shown in Fig. 11.  

The equivalent circuit of a SRR is the same as each meander-line section shown in Fig. 6 (b).  

The particularly useful characteristic of a SRR is that this element is inductive above 

resonance (Dacuna & Pous, 2007). Therefore, a dipole could be made using two SRR as long 

as the dipole is driven above the resonance frequency.   

Prototype RFID tags have been manufactured using a single SRR (Dacuna & Pous, 2007) and 

two SRRs (Braaten et al., 2009a) as a dipole. In both cases, the SRR were driven above 

resonance to achieve an inductive input impedance. Max read ranges of 6.5 m have been 

reported (Dacuna & Pous, 2007).       
  
 

 
 

Fig. 11. Split-ring resonator element. 

5. Conclusion 

The first topic in this chapter was an introduction to RFID systems. This was followed 

immediately with a discussion on metamaterials and LH-propagation. Expressions for the 

propagation constants, phase velocity and Bloch impedance were derived and discussed.  

Next, several metamaterial-based antenna designs for passive RFID tags were presented.  

The designs offered showed that by incorporating elements found in metamaterials in the 

design of the antenna on a RFID tag, the antenna could be made to resonate at a much 

smaller dimension. The result is a compact passive RFID tag with very useful max read 

range values.   

6. Future work 

One common characteristic is shared among every antenna design in this chapter. Every 

design is based around an antenna with RH-propagation. An area that could be investigated 
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would be to achieve LH-propagation along a RFID antenna on a passive RFID tag. An 

antenna that achieves LH-propagation may have the added advantage of being much 

smaller than traditional meander-line antennas but many questions on the far-field 

characteristics (i.e., backscattering properties) of the antenna still need to answered. 
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