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1. Introduction  

In this chapter, we summarize and synthesize our investigations of the use of evolutionary 
algorithms to automatically program robots, particularly for application to space 
exploration.  In the Space Robotics Group at the University of Toronto Institute for 
Aerospace Studies, we were motivated to begin work in this area a decade ago when the 
concept of network science became popular in the space exploration community.  Network 
science commonly refers to science that requires a distribution of possibly simultaneous 
measurement devices or a distribution of platforms on a planetary body.  Consider, for 
example, seismology studies of an alien body that will require sending a signal from one 
point on the surface to be read at several other points in order to analyze the material 
characteristics of the body.  Or, consider the development of a very-low frequency array 
(VLFA) on the Moon to allow for heretofore unattainable astrophysical observations using 
radio astronomy.  Such an observatory will require a number of dipole units deployed over 
a region of a few hundred square kilometres.   
Our original thoughts were that these and other network science experiments could be 
implemented using a network of small mobile robots, similar to a colony of ants.  It is 
possible for millions of ants to act as a superorganism through local pheromone 
communication.  Thomas (1974) perhaps describes this phenomenon best: 
 

A solitary ant, afield, cannot be considered to have much of anything on his mind.  Four 
ants together, or ten, encircling a dead moth on a path, begin to look more like an idea.  
But it is only when you watch the dense mass of thousands of ants, blackening the 
ground that you begin to see the whole beast, and now you observe it thinking, planning, 
calculating.  It is an intelligence, a kind of live computer, with crawling bits for its wits. 

 
We set out to reproduce this type of behaviour in a multirobot system (i.e., a network of 
mobile robots) for application to space exploration. 
As we began investigating how to devise control schemes for the network science tasks, 
additional applications came to mind including deployment of solar cell arrays on a 
planetary surface, site preparation for a lunar base, and gathering objects of interest for 
analysis or in-situ resource utilization.   Although these additional tasks did not necessitate 

Source: Frontiers in  Evolutionary Robotics, Book edited by: Hitoshi Iba, ISBN 978-3-902613-19-6, pp. 596, April 2008, I-Tech Education 
and Publishing, Vienna, Austria
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the use of a group of robots, there are certain advantages offered by this choice.  
Redundancy and fault tolerance are fundamental attributes of any reliable space system.  By 
using a group of robots, we might afford to lose a small number of individuals and yet still 
accomplish our desired task.  The flip side to redundancy is taking risks.  By making the 
system modular and thus redundant, we could be willing to accept more risk in the design 
of a single robot because it no longer has the potential to produce a single point failure. 
In many of our early experiments, we tried designing controllers for our groups of robots by 
hand (Earon et al., 2001).  This was possible for some simple tasks, such as having the robots 
position themselves in a particular geometric formation.  As we became interested in the 
resource collection and array deployment tasks, the burden of manual programming 
became higher and we turned to the use of evolutionary algorithms.   
Moreover, we wondered if it would be possible to specify the required task at the group 
level and have the evolutionary algorithm find the best way to coordinate the robots to 
accomplish the overall goal.   This notion of top-down performance specification is very 
much in keeping with the formal approach to space engineering, in which mission-level 
goals are provided and then broken down to manageable pieces by a designer.  
Accordingly, this notion of task decomposition is at the heart of our discussion throughout this 
chapter.  We will advocate for an approach that does not explicitly break a task down into 
subtasks for individual robots, but rather facilities this through careful selection of the 
evaluation criteria used to gauge group behaviour on a particular task (i.e., the fitness 
function).  By using an evolutionary algorithm with this judiciously chosen fitness function, 
task decomposition occurs through emergence (self-organization). 
The remainder of this chapter is organized as follows.  First, we review the literature on the 
use of evolutionary algorithms for task decomposition and development of multirobot 
controllers.  Next we report on a number of approaches we have investigated to control and 
coordinate groups of robots.  Our discussion is framed in the context of four tasks motivated 
by space exploration:  heap formation (Barfoot & D’Eleuterio, 2005), tiling pattern formation 
(Thangavelautham & D’Eleuterio, 2004), a walking robot (Barfoot et al., 2006) (wherein each 
leg can be thought of a single robot), and resource gathering (Thangavelautham et al., 2007).  
This is followed by a discussion of the common findings across these experiments and 
finally we make some concluding remarks. 

2. Background 

Task decomposition involves partitioning/segmenting of a complex task into subtasks.  The 
partitioning is expected to facilitate solving the simpler subtasks which in turn are combined 
to yield a solution to the overall task.  One approach to role assignment and execution of the 
subtasks is through use of multirobot systems.  Multirobot systems offer the security of 
redundancy, fault tolerance and, depending on the task, scalability.  They furthermore allow 
for the parallelization of operations.  With the use of multiple agents or robots, their control 
and coordination are critical. 
In nature, multiagent systems such as social insects use a number of mechanisms for control 
and coordination. These include the use of templates, stigmergy, and self-organization.  
Templates are environmental features perceptible to the individuals within the collective 
(Bonabeau et al., 1999).   Stigmergy is a form of indirect communication mediated through 
the environment (Grassé, 1959).  In insect colonies, templates may be a natural phenomenon 
or they may be created by the colonies themselves. They may include temperature, 
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humidity, chemical, or light gradients.  In the natural world, one way in which ants and 
termites exploit stigmergy is through the use of pheromone trails.   Self-organization 
describes how local or microscopic behaviours give rise to a macroscopic structure in 
systems (Bonabeau et al., 1997).  However, many existing approaches suffer from another 
emergent feature called antagonism (Chantemargue et al., 1996).  This describes the effect 
that arises when multiple agents that are trying to perform the same task interfere and 
reduce the overall efficiency of the group. 
Within the field of robotics, many have sought to develop multirobot control and 
coordination behaviours based on one or more of the prescribed mechanisms used in nature.  
These solutions have been developed using user-defined deterministic ‘if-then’ or 
preprogrammed stochastic behaviours.  Such techniques in robotics include template-based 
approaches that exploit light fields to direct the creation of circular walls (Stewart and 
Russell, 2003), linear walls (Wawerla et al., 2002) and planar annulus structures (Wilson et 
al., 2004).  Stigmergy has been used extensively in collective-robotic construction tasks, 
including blind bull dozing (Parker et al., 2003), box pushing (Matarić et al., 1995) and heap 
formation (Beckers et al., 1994).  
Inspired by insect societies the robot controllers are often designed to be reactive and have 
access only to local information. They are nevertheless able to self-organize, through 
cooperation to achieve an overall objective. This is difficult to do by hand, since the global 
effect of these local interactions is often hard to predict.  The simplest hand-coded 
techniques have involved designing a controller for a single robot and scaling to multiple 
units by treating other units as obstacles to be avoided (Parker et al., 2003) (Stewart & 
Russell, 2003), (Beckers et al., 1994). Other more sophisticated techniques involve use of 
explicit communication or designing an extra set of coordination rules to handle graceful 
agent-to-agent interactions (Wawerla et al., 2002).  These approaches are largely heuristic 
and rely on ad hoc assumptions that often require knowledge of the task domain.   
In contrast, machine learning techniques (particularly artificial evolution) exploit self-
organization and relieve the designer of the need to determine a suitable control strategy. 
The controllers in turn are designed from the start with cooperation and interaction, as a 
product of emergent interactions with the environment.  It is more difficult to design 
controllers by hand with cooperation in mind because it is difficult to predict or control the 
global behaviours that will result from local interactions.  Designing successful controllers 
by hand can devolve into a process of trial and error.   
A means of reducing the effort required in designing controllers by hand is to encode 
controllers as Cellular Automata (CA) look-up tables and allow a genetic algorithm to 
evolve the table entries (Das et al., 1995).   The assumption is that each combination of 
discretized sensory inputs will result in an independent choice of discretized output 
behaviours.  This approach is an instance of a ‘tabula rasa’ technique, whereby a control 
system starts off with a blank slate with limited assumptions regarding control architecture 
and is guided through training by a fitness function (system goal function).     
As we show in this chapter, this approach is used successfully to solve a multiagent heap 
formation task (Barfoot & D’Eleuterio, 1999) and a 2 × 2 tiling formation task 
(Thangavelautham et al., 2003).   Robust decentralized controllers that exploit stigmergy and 
self-organization are found to be scalable to ‘world size’ and to agent density.  Look-up table 
approaches are also beneficial for hardware experiments where there is minimal 
computational overhead incurred as a result of sensory processing.   
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We also wish to analyze the scalability of evolutionary techniques to bigger problem spaces.  
One of the limitations with a look-up table approach is that the table size grows 
exponentially to the number of inputs. For the 3 × 3 tiling formation task, a monolithic look-
up table architecture is found to be intractable due to premature search stagnation.  To 
address this limitation, the controller is modularized into ‘subsystems’ that have the ability 
to explicitly communicate and coordinate actions with other agents (Thangavelautham et al., 
2003).  This act of dividing the agent functionality into subsystems is a form of user-assisted 
task decomposition through modularization.  Although the technique uses a global fitness 
function, such design intervention requires domain knowledge of the task and ad hoc 
design choices to facilitate searching for a solution.   
Alternatively, CA lookup tables could be networked to exploit inherent modularity in a 
physical system during evolution, such as series of locally coupled leg controllers for a 
hexapod robot (Earon et al., 2000).  This is in contrast to some predefined recurrent neural 
network solutions such as by (Beer & Gallagher, 1992), (Parker & Li, 2003) that are used to 
evolve ‘leg cycles’ and gait coordination in two separate stages.  This act of performing 
staged evolution involves a human supervisor decomposing a walking gait task between 
local cyclic leg activity and global, gait coordination.  In addition, use of recurrent neural 
networks for walking gaits requires fairly heavy online computations to be performed in 
real time, in contrast to the much simpler network of CA lookup tables. 
Use of neural networks is also another form of modularization, where each neuron can 
communicate, perform some form of sensory information processing and can acquire 
specialized functionality through training.  The added advantage of neural network 
architectures is that the neurons can also generalize unlike a CA lookup table architecture, 
by exploiting correlations between a combination of sensory inputs thus effectively 
shrinking the search space.  Fixed topology neural networks architectures have been 
extensively used for multirobot tasks, including building walls, corridors and briar patches 
(Crabbe & Dyer, 1999) and cooperative transport (Groß & Dorigo, 2003). 
However, fixed topology monolithic neural network architectures are also faced with 
scalability issues.  With increased numbers of hidden neurons, one is faced with the effects 
of spatial crosstalk where noisy neurons interfere and drown out signals from feature- 
detecting neurons (Jacob et al., 1991).   Crosstalk in combination with limited supervision 
(through use of a global fitness function) can lead to the ‘bootstrap problem’ (Nolfi & 
Floreano, 2000), where evolutionary algorithms are unable to pick out incrementally better 
solutions for crossover and mutation resulting in premature stagnation of the evolutionary 
run. Thus, choosing the wrong network topology may lead to a situation that is either 
unable to solve the problem or difficult to train (Thangavelautham & D’Eleuterio, 2005).   
A critical element of applying neural networks to robotic tasks is how best to design and 
organize the neural network architecture to facilitate self-organized task decomposition and 
overcome the ‘bootstrap problem’.  For these tasks, we may use a global fitness function that 
doesn’t explicitly bias towards a particular task decomposition strategy.  
For example, the tiling formation task could be arbitrarily divided into a number of 
subtasks, including foraging for objects, redistributing object piles, arranging objects in the 
desired tiling structure locally, merging local lattice structures, reaching a collective 
consensus and finding/correcting mistakes in the lattice structure.  Instead, with less 
supervision, we rely on the robot controller themselves to determine how best to decompose 
and solve the task through an artificial Darwinian process.    
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This is in contrast to other task decomposition techniques that require more supervision 
including shaping (Dorigo & Colombetti, 1998) and layered learning (Stone & Veloso, 2000).  
Shaping involves controllers learning on a simplified task with the task difficulty being 
progressively increased through modification of learning function until a desired set of 
behaviours emerge.  Layered learning involves a supervisor partitioning a task into a set of 
simpler goal functions (corresponding to subtasks).  These subtasks are learned 
sequentially until the controller can solve the corresponding task.  Both of these 
traditional task decomposition strategies rely on supervisor intervention and domain 
knowledge of a task at hand.  For multirobot applications, the necessary local and global 
behaviours need to be known a priori to make decomposition steps meaningful.   We 
believe that for a multirobotic system, it is often easier to identify and quantify the system 
goal, but determining the necessary cooperative behaviours is often counterintuitive.  
Limiting the need for supervision also provides numerous advantages including the 
ability to discover novel solutions that would otherwise be overlooked by a human 
supervisor. 
Fixed-topology ensemble network architectures such as the Mixture of Experts (Jacob et 
al., 1991), Emergent Modular architecture (Nolfi, 1997) and  Binary Relative Lookup 
(Thangavelautham & D’Eleuterio, 2004) in evolutionary robotics use a gating mechanism 
to preprocess sensor input and assign modular ‘expert’ networks to handle specific 
subtasks.   Assigning expert networks to handle aspects of a task is a form of task 
decomposition.   Ensemble networks consist of a hierarchical modularization scheme 
where networks of neurons are modularized into experts and the gating mechanism used 
to arbitrate and perform selection amongst the experts.  Mixture of Experts uses pre-
assigned gating functions that facilitate cooperation amongst the ‘expert networks’ while 
Nolfi’s emergent modular architecture uses gating neurons to select between two output 
neurons.  The BRL architecture is less constrained, as both the gating mechanism and 
expert networks are evolved simultaneously and it is scalable to a large number of expert 
networks.   
The limitation with fixed-topology ensemble architectures is the need for supervisor 
intervention in determining the required topology and number of expert networks.  In 
contrast, with variable length topologies, the intention is to evolve both network 
architecture and neuronal weights simultaneously.  Variable length topologies such as 
such as Neuro-Evolution of Augmenting Topologies (NEAT) (Stanley & Miikkulainen, 
2002) use a one-to-one mapping from genotype to the phenotype. Other techniques use 
recursive rewriting of the genotype contents to a produce a phenotype such as Cellular 
Encoding (Gruau, 1994), L-systems (Sims, 1994), Matrix Rewriting (Kitano, 1990), or 
exploit artificial ontogeny (Dellaert & Beer, 1994).  Ontogeny (morphogenesis) models 
developmental biology and includes a growth program in the genome that starts from a 
single egg and subdivides into specialized daughter cells.  Other morphogenetic systems 
include (Bongard & Pfeifer, 2001) and Developmental Embryonal Stages (DES) (Federici & 
Downing, 2006). 
The growth program within many of these morphogenetic systems is controlled through 
artificial gene regulation. Artificial gene regulation is a process in which gene 
activation/inhibition regulate (and is regulated by) the expression of other genes.  Once the 
growth program has been completed, there is no further use for gene regulation within the 
artificial system, which is in stark contrast to biological systems where gene regulation is 
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always present. In addition, these architectures lack any explicit mechanism to facilitate 
network modularization evident with the ensemble approaches and are merely variable 
representations of standard neural network architectures.  These variable-length topologies 
also have to be grown incrementally starting from a single cell in order to minimize the 
dimensional search space since the size of the network architecture may inadvertently make 
training difficult (Stanley & Miikkulainen, 2001). With recursive rewriting of the phenotype, 
limited mutations can result in substantial changes to the growth program. Such techniques 
also introduce a deceptive fitness landscape where limited fitness sampling of a phenotype 
may not correspond well to the genotype resulting in premature search stagnation (Roggen 
& Federici, 2004).   
Artificial Neural Tissues (Thangavelautham and D’Eleuterio, 2005) address limitations 
evident with existing variable length topologies through modelling of a number of 
biologically-plausible mechanisms.  Artificial Neural Tissues (ANT) includes a coarse-
coding-based neural regulatory system that is similar to the network modularity evident in 
fixed-topology ensemble approaches.  ANT also uses a nonrecursive genotype-to-phenotype 
mapping avoiding deceptive fitness landscapes, and includes gene duplication similar to 
DES.  Gene duplication involves making redundant copies of a master gene and facilitates 
neutral complexification, where the copied gene undergoes mutational drift and results in 
expression of incremental innovations (Federici & Downing, 2006).  In addition, both gene 
and neural-regulatory functionality limits the need to grow the architecture incrementally, 
as there exist mechanisms to selectively activate and inhibit parts of a tissue even after 
completion of the growth program. 
A review of past work highlights the possibility of training multirobot controllers with 
limited supervision using only a global fitness function to perform self-organized task 
decomposition.  These techniques also show that by exploiting hierarchical modularity and 
regulatory functionality, controllers can overcome tractability concerns.  In the following 
sections, we explore a number of techniques we have used in greater detail. 

3. Tasks 

3.1 Heap-Formation 

The heap-formation task or object-clustering has been extensively studied and is analogous 
to the behaviour in some social insects (Deneubourg et al., 1991).  In the space exploration 
context, this is relevant to gathering rocks or other materials of interest.  It is believed that 
this task requires global coordination for a group of decentralized agents, existing in a two-
dimensional space, to move some randomly distributed objects into a single large cluster 
(Fig. 1).  Owing to the distributed nature of the agents, there is no central controlling agent 
to determine where to put the cluster and the agents must come to a common decision 
among themselves without any external supervision (analogous to the global partitioning 
task in cellular automata work (Mitchell et al., 1996)).  The use of distributed, homogenous 
sets of agents exploits both redundancy and parallelism.  Each agent within the collective 
has limited sensory range and lacks a global blueprint of the task at hand but cooperative 
coordination amongst agents can, as we show here, make up for these limitations  (Barfoot 
& D’Eleuterio, 1999); (Barfoot & D’Eleuterio, 2005). 
To make use of Evolutionary Algorithms (EAs), a fitness function needs to be defined for the 
task.  Herein we define a fitness function that can facilitate selection of controllers for the 
task at hand without explicitly biasing for a particular task decomposition strategy or set of 
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behaviours.   In contrast to this idea, the task could be manually decomposed into a number 
of potential subtasks, including foraging for objects, piling objects found into small 
transitionary piles, merging small piles into larger ones and reaching a collective consensus 
in site selection for merging all the piles.  Traditional fitness functions such as (Dorigo & 
Colombetti, 1998) involve summing separate behaviour shaping functions that explicitly 
tune the controllers towards predetermined set of desired behaviours.  With multiagent 
systems, it is not always evident how best to systematically determine these behaviours.  It 
is often easier to identify the global goals within the system but not the coordination 
behaviours necessary to accomplish the global goals.  Thus, the fitness functions we present 
here perform an overall global fitness measure of the system and lack explicit shaping for a 
particular set of behaviours.  The intention is for the multiagent system to self-organize into 
cooperatively solving the task. 

 

Figure 1. Typical snapshots of system at various time steps (0; 1010; 6778; 14924; 20153; 

58006).  The world size is 91 × 90; there are 270 agents and 540 objects. Only the objects (dark 
circles) are shown for clarity 

For the heap formation task, the two dimensional grid world in which the agents exist is 
broken into J bins, Aj, of size l × l. We use a fitness function based on Shannon’s entropy as 
defined below: 

  (1) 

where qj is defined as follows: 

  (2) 

n(Aj) is the number of objects in bin Aj so that 0 ≤ fi ≤ 1. To summarize, fitness is assigned to 
a controller by equipping each agent in a collective with the same controller.  The collective 
is allowed to roam around in a two-dimensional space that has a random initial distribution 
of objects.  At the end of T time-steps, fi is calculated, which indicates how well the objects 
are clustered. This is all repeated I times (varying initial conditions) to determine the 
average fitness. 
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3.1.1 Cellular Automata 

To perform the task, each robot-like agent is equipped with a number of sensors and 
actuators.  To relate this to real robots, it will be assumed that some transformation may be 
performed on raw sensor data so as to achieve a set of orthogonal (Kube & Zhang, 1996) 
virtual sensors that output a discrete value.   This transformation is essentially a 
preprocessing step that reduces the raw sensor data to more readily usable discretized 
inputs.  Let us further assume that the output of our control system may be discrete.  This 
may be done by way of a set of basis behaviours (Matarić, 1997).  Rather than specify the 
actuator positions (or velocities), we assume that we may select a simple behaviour from a 
finite predefined palette.  This may be considered a post-processing step that takes a 
discretized output and converts it to the actual actuator control.  The actual construction of 
these transformations requires careful consideration but is also somewhat arbitrary. 

 

Figure 2. (Left) Typical view of a simulated robot.  Circles (with the line indicating 
orientation) are robots.  Dark circles are objects.  (Right) Partition of grid world into bins for 
fitness calculation 

Once the pre/post-processing has been set up, the challenge remains to find an appropriate 
arbitration scheme that takes in a discrete input sequence (size N) and outputs the 
appropriate discrete output (one of M basis behaviours).   The simulated robot’s sensor 
input layout is shown in Fig. 2 (left).  The number of possible views for the robot is 

35×2=486.  Each of 5 cells can be free, occupied by an object or by another robot.  The robot 
itself can either be holding an object or not.  For an arbitration scheme, we use a lookup-
table similar to Cellular Automata, in which the axes are the sensory inputs and the contents 
of the table, the output behaviours.   It could be argued that CAs are the simplest example of 
a multiagent system for the heap formation task.   With 2 basis behaviours and a CA lookup-
table of size 486, there are 2486 possible CA lookup-tables.  This number is quite large but, as 
we will see, good solutions can still be found.  It should be pointed out that our agents will 
be functioning in a completely deterministic manner. From a particular initial condition, the 
system will always unfold in the same particular way. 

3.1.2 Experiments 

Fig. 3 (left) shows a typical evolutionary run using CA lookup table controllers.   Analysis of 
the population best taken after 150 generations shows that controllers learn to form small 
piles of objects, which are over time merged into a single large pile.  Even with a very simple 
controller, we can obtain coordinated behaviour amongst the agents.  The agents 
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communicate indirectly among themselves through stigmergy (by manipulating the 
environment).  This is primarily used to seed piles that are in turn merged into clusters.  The 
benefits of using a decentralized multiagent controller is that the system may also be 
rescaled to a larger world size.   

  

Figure 3. (Left) Convergence history of a typical EA run with a population size of 50. (Right) 
Max system fitness with number of robots rescaled.  Solution was evolved with 30 simulated 
robots 

The controllers were evolved with one particular set of parameters (30 robots, 31 × 30 world 
size, 60 objects) but the densities of agents and resources can be rescaled, without rendering 
the controllers obsolete.  This particular trait gives us a better understanding of the 
robustness of these systems and some of their limitations.  Altering the agent density, while 
keeping all other parameters constant, shows the system performs best under densities 
slighter higher than during training as shown in Fig. 3 (right), accounting for a few agents 
getting stuck.   With too few agents, the system is under-populated and hence takes longer 
for coordination while too many agents result in disrupting the progress of the system due 
to antagonism.  Thus maintaining a constant density scaling with respect to the training 
parameters, the overall performance of the system compares well when scaled to larger 
worlds.  What we witness from these experiments is that with very simple evolved 
multiagent controllers, it is feasible to rescale the system to larger world sizes.   

3.2 Tiling Pattern Formation 

The tiling pattern formation task (Thangavelautham et al., 2003), in contrast to the heap-
formation task, involves redistributing objects (blocks) piled up in a two-dimensional world 
into a desired tiling structure (Fig. 4).  In a decentralized setup, the agents need to come to a 
consensus and form one ‘perfect’ tiling pattern.  This task also draws inspiration from 
biology, namely a termite-nest construction task that involves redistributing pheromone-
filled pellets on the nest floor (Deneubourg, 1977).  Once the pheromone pellets are 
uniformly distributed, termites use the pellets as markers for constructing pillars to support 
the nest roof. 
In contrast to our emergent task decomposition approach, the tiling pattern formation task 
could be arbitrarily decomposed into a number of potential subtasks.  These may include 
foraging for objects (blocks), redistributing block piles, arranging blocks in the desired tiling 
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structure locally, merging local lattice structures, reaching a collective consensus and 
finding/correcting mistakes in the lattice structure.  Instead, we are interested in evolving 
homogenous decentralized controllers (similar to a nest of termites) for the task without 
need for human assisted task decomposition.  

 

Figure 4. Typical simulation snapshots at various timesteps (0; 100; 400; 410) taken for the 2 

× 2 tiling formation task.   Solutions were evolved on an 11 × 11 world (11 robots, 36 blocks) 

 

Figure 5. Typical view of a simulated robot for the 2 × 2 (left) and 3 × 3 (right) tiling 
formation tasks.  Each robot can sense objects, other agents and empty space in the 5 (left) 
and 7 (right) shaded squares surrounding the robot 

As shown earlier with the heap formation task, decentralized control offers some inherent 
advantages including the ability to scale up to a larger problem size.  Furthermore, task 
complexity is dependent on the intended tile spacing, because more sensors would be 
required to construct a ‘wider’ tiling pattern.  In addition, we use Shannon's entropy to be a 

suitable fitness function for the tiling formation task.  For the m × m tiling pattern formation 
task, we use Eq. 3 as the fitness function, with qj used from Eq. 2.  

   (3) 

The sensor input layouts for the simulated robots used for the 2 × 2 and 3 × 3 tiling 
formation task are shown in Fig. 5.   

3.2.1 Emergent Task-Decomposition Architectures 

It turns out that the 3 × 3 tiling pattern formation task is computationally intractable for EAs 
to find a viable monolithic CA lookup table.  To overcome this hurdle, we also considered 
the use of neural networks as multiagent controllers.  Here we discuss a modular neural 
network architecture called Emergent Task-Decomposition Networks (ETDNs).  ETDNs 
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(Thangavelautham et al., 2004) consist of a set of decision networks that mediate 
competition and a modular set of expert network that compete for behaviour control.  The 
role of decision networks is to preprocess the sensory input and explicitly ‘select’ for a 
specialist expert network to perform an output behaviour.  A simple example of an ETDN 
architecture includes a single decision neuron arbitrating between two expert networks as 
shown in Fig. 6.  This approach is a form of task decomposition, whereby separate expert 
modules are assigned handling of subtasks, based on an evolved sensory input-based 
decision scheme. 

 

Figure 6. (Left) An example of the non-emergent network used in our experiments. (Right) 
ETDN architecture consisting of a decision neuron that arbitrates between 2 expert networks 

The architecture exploits network modularity, evolutionary competition and specialization 
to facilitate emergent (self-organized) task decomposition.  Unlike traditional machine 
learning methods, where handcrafted learning functions are used to train the decision and 
expert networks separately, ETDN architectures require only a global fitness function.  The 
intent is for the architecture to evolve the ability to decompose a complex task into a set of 
simpler tasks with limited supervision.  

 

Figure 7.  (Left) BDT Architecture with 4 expert networks and 3 decision neurons. (Right) 
BRL Architecture with 4 expert networks and 2 decision neurons 

The ETDNs can also be generalized for nE expert networks. Here we discuss two extensions 
to the ETDN architecture, namely the Binary Relative Lookup (BRL) architecture and Binary 
Decision Tree (BDT) architecture (see Fig. 7).  The Binary Relative Lookup (BRL) architecture 
consists of a set of nD unconnected decision neurons that arbitrate among 2nD expert 
networks.  Starting from left to right, each additional decision neuron determines the 
specific grouping of expert networks relative to the selected group. Since the decision 
neurons are unconnected, this architecture is well-suited for parallel implementation.   
The Binary Decision Tree (BDT) architecture is represented as a binary tree where the tree 
nodes consist of decision neurons and the leaves consist of expert networks.  For this 
architecture, nD decision neurons arbitrate among nD + 1 expert networks. The tree is 
traversed by starting from the root and computing decision neurons along each selected 
branch node until an expert network is selected.  Unlike BRLs, there is a one-to-one 

www.intechopen.com



Frontiers in Evolutionary Robotics 

 

46 

mapping between the set of decision neurons output states and the corresponding expert 
network.  The computational cost of the decision neurons for both architectures is                 

CD α log nE. 
We also introduce modularity within each neuron, through the use of a modular activation 
function, where the EAs are used to train weights, thresholds and choice of activation 
function. The inputs and output from the modular activation function consist of discrete 
states as opposed to real values.  It is considered a modular activation function, since a 
neuron’s behaviour could be completely altered by changing the selected activation function 
while holding the modular weights constant.  The modular neuron could assume one of four 
different activation functions listed below: 

  

(3)

 

These threshold functions maybe summarized in a single analytical expression as: 

  (4) 

Each neuron outputs one of two states s ∈ S = {0, 1}, and the activation function is thus 
encoded in the genome by k1, k2 and the threshold parameters t1, t2 ∈  , where p(x) is 
defined as follows: 

  (5) 

wi is a neuron weight and xi is an element of the input state vector.  With two threshold 
parameters, a single neuron could be used to simulate AND, OR, NOT and XOR functions.   
The assumption is that a compact yet sufficiently complex (functional) neuron will speed up 
evolutionary training since this will reduce the need for more hidden layers and thus result 
in smaller networks. 

3.2.2  Experiments 

As mentioned above, we find that for the 3 × 3 tiling formation task, a lookup table 
architecture is found to be intractable (Fig. 8, top left).  The CA lookup table architecture 
appears to fall victim to the bootstrap problem, since EAs are unable to find an 
incrementally better solution during the early phase of evolution resulting in search 
stagnation.  In contrast, ETDN architectures can successfully solve this version of the tiling 
formation task and outperform other regular neural network architectures (regardless of the 
activation function used).  Analysis of a typical solution (for ETDN with 16 expert nets) 
suggests decision neuron assigns expert networks not according to ‘recognizable’ distal 
behaviours but as proximal behaviours (organized according to proximity in sensor space) 
(Nolfi, 1997).  This process of expert network assignment is evidence of task decomposition, 
through role assignment (Fig. 8, bottom right). 
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Figure 8. Evolutionary performance comparison, 2 × 2 (Top Left), 3 × 3 (Top Right, Bottom 
Left) tiling formation task, averaged over 120 EA runs. (Bottom Right) System activity for 
BRL (16 Expert Nets) (A) CA Look-up Table, (B) ESP (using Non-Emergent Net), (C) Non-
Emergent Net (Sigmoid), (D) ETDN (2 Expert Nets, Sigmoid), (E) Non-Emergent Net. 
(Threshold), (F) ETDN (2 Expert Nets, Threshold), (G) Non-Emergent Net. (Modular), (H) 
ETDN (2 Expert Nets, Modular), (I) BRL (16 Expert Nets, Modular), (J) BRL (32 Expert Nets, 
Modular), (K) BRL (8 Expert Nets, Modular), (L) BRL (4 Expert Nets, Modular), (M) BDT (4 
Expert Nets, Modular) 

It should be noted that the larger BRL architecture, with more expert networks 
outperformed (or performed as well as) the smaller ones (evident after about 80 generations) 
(Fig. 8, bottom left).  It is hypothesized that by increasing the number of expert networks, 
competition among candidate expert networks is further increased thus improving the 
chance of finding a desired solution.  However, as the number of expert networks is 
increased (beyond 16), the relative improvement in performance is minimal, for this 
particular task. 
ETDN architectures also have some limitations.  For the simpler 2 × 2 tiling pattern 
formation task, a CA lookup table approach evolves desired solutions faster than the neural 
network architectures including ETDNs (Fig. 8, top right).  This suggests that ETDNs may 
not be the most efficient strategy for smaller search spaces (2486 candidate solutions for the   
2 × 2 tiling formation task versus 24374 for the 3 × 3 version).  Our conventional ETDN 
architecture consisting of a single threshold activation function evolves more slowly than 
the non-emergent architectures.  The ETDN architectures include an additional ‘overhead’, 
since the evolutionary performance is dependent on the evolution (in tandem) of the expert 
networks and decision neurons resulting in slower performance for simpler tasks.  
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However, the ETDN architecture that combines the modular activation function 
outperforms all other network architectures tested.  The performance of the modular 
neurons appears to partially offset the ‘overhead’ of the bigger ETDN architecture. A 'richer' 
activation function set is hypothesized to improve the ability of the decision neurons to 
switch between suitable expert networks with fewer mutational changes. 

3.3 Walking Gait 

For the walking gait task (Earon et al., 2000); (Barfoot et al., 2006), a network of leg based 
controllers forming a hexapod robot (Fig. 9) need to find a suitable walking gait pattern that 
enables the robot to travel forward.  We use Evolutionary Algorithms on hardware, to 
coevolve a network of CA walking controllers for the hexapod robot, Kafka.  The fitness is 
simply the distance travelled by the robot, measured by an odometer attached to a moving 
tread mill.  The robot has been mounted on an unmotorized treadmill in order to 
automatically measure controller performance (for walking in a straight line only).  As with 
other experiments, the fitness measure is a global one and does not explicitly shape for a 
particular walking gait pattern, rather we seek the emergence of such behaviours through 
multiagent coordination amongst the leg controllers. 

 

Figure 9. (Left) Behavioural coupling between legs in stick insects (Cruse, 1990).  (Right) 
Kafka, a hexapod robot, and treadmill setup designed to evolve walking gaits 

3.2.1 Network of Cellular-Automata Controllers 

According to neurobiological evidence (Cruse, 1990), the behaviour of legs in stick insects is 
locally coupled as in Fig. 9 (left).  This pattern of ipsilateral and contralateral connections 
will be adopted for the purposes of discussion although any pattern could be used in 
general (however, only some of them would be capable of producing viable walking gaits).  
The states for Kafka’s legs are constrained to move only in a clockwise, forward motion.  The 
control signals to the servos are absolute positions to which the servos then move as quickly 
as possible.  Based on the hardware setup, we make some assumptions, namely that the 
output of each leg controller is independent and discrete.  This is in contrast to use of a 
central pattern generator to perform coordination amongst the leg controllers (Porcino, 
1990). This may be done by way of a set of basis behaviours.  Rather than specify the 
actuator positions (or velocities) for all times, we assume that we may select a simple 
behaviour from a finite predefined palette. The actual construction of the behaviours 
requires careful consideration but is also somewhat arbitrary.  
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Figure 10. Example discretizations of output space for 2 degree of freedom legs into (Left) 4 
zones and (Right) 3 zones 

Here the basis behaviours will be modules that move the leg from its current zone (in output 
space) to one of a finite number of other zones. Fig. 10 shows two possible discretizations of 
a two-degree-of-freedom output space (corresponding to a simple leg) into 4 or 3 zones.  
Execution of a discrete behaviour does not guarantee the success of the corresponding leg 
action due to terrain variability.  This is in contrast to taking readings of the leg’s current 
zone, which gives an accurate state (local feedback signal) of the current leg position.  The 
only feedback signal available for the discrete behaviour controller is a global one, the total 
distance travelled by the robot.  The challenge therefore is to find an appropriate arbitration 
scheme which takes in a discrete input state, d, (basis behaviours of self and neighbours) and 
outputs the appropriate discrete output, o, (one of M basis behaviours) for each leg.   One of 
the simpler solutions is to use separate lookup tables similar to cellular automata (CA) for 
each leg controller.  

3.2.1 Experiments 

Decentralized controllers for insect robots offer a great deal of redundancy, even if one 
controller fails, the robot may still limp along under the power of the remaining functional 
legs.  The cellular automata controller approach was successfully able to control Kafka, a 
hexapod robot, and should extend to robots with more degrees of freedom (keeping in mind 
scaling issues).   Coevolution resulted in the discovery of controllers comparable to the 
tripod gate (Fig. 11, 12). One advantage of using cellular automata, is that it requires very 
few real-time computations to be made (compared to a dynamic neural network 
approaches).  Each leg is simply looking up its behaviour in a table and has wider 
applicability in hardware. The approach easily lends itself to automatic generation of 
controllers as was shown for the simple examples presented here. 
We found that a coevolutionary technique using a network of CAs were able to produce 
distributed controllers that were comparable in performance to the best hand-coded 
solutions. In comparison, reinforcement learning techniques such as cooperative Q-learning, 
was much  faster at this task (e.g., 1 hour instead of 8) but required a great deal more 
information as it was receiving feedback after shorter time-step intervals (Barfoot et al., 
2006). Although both methods were using the same sensor, the reinforcement learning 
approach took advantage of the more detailed breakdown of rewards to increase 
convergence rate. The cost of this speed-up could also be seen in the need to prescribe an 
exploration strategy and thus determine a suitable rewarding scheme by hand.  However, 
the coevolutionary approach requires fewer parameters to be tuned which could be 
advantageous for some applications. 
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Figure 11. Convergence History of a GA Run. (Left) Best and average fitness plots over the 
evolution. (Right) Fitness of entire population over the evolution (individuals ordered by 
fitness).  Note there was one data point discounted as an odometer sensor anomaly 

 

Figure 12. Gait diagrams (time histories) for the four solutions, φone, φtwo, φthree, φfour 
respectively.  Colours correspond to each of the three leg zones in Figure 10 (right) 

3.4 Resource Gathering 

In this section, we look at the resource-collection task (Thangavelautham et al., 2007), which 
is motivated by plans to collect and process raw material on the lunar surface. Furthermore, 
we address the issue of scalability; that is, how does a controller evolved on a single robot or 
a small group of robots but intended for use in a larger collective of agents scale?  We also 
investigate the associated problem of antagonism.  For the resource gathering task, a team of 
robots collects resource material distributed throughout its work space and deposits it in a 
designated dumping area by exploiting templates (Fig. 13).  This is in contrast to the heap 
formation task, where simulated robots can gather objects anywhere on the 2-D grid world. 
For this task, the controller must possess a number of capabilities including gathering 
resource material, avoiding the workspace perimeter, avoiding collisions with other robots, 
and forming resources into a mound at the designated location.  The dumping region has 
perimeter markings on the floor and a light beacon mounted nearby. The two colours on the 
border are intended to allow the controller to determine whether the robot  is inside or 
outside the dumping location. Though solutions can be found without the light beacon, its 
presence improves the efficiency of the solutions found, as it allows the robots to track the 
target location from a distance instead of randomly searching the workspace for the 
perimeter. The global fitness function for the task measures the amount of resource material 
accumulated in the designated location within a finite time period.  
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Figure 13. Snapshots of two rovers performing the resource collection task using an ANT 
controller.  Frames 2 and 3 show the ‘bucket brigade’ behaviour, while frames 4 and 5 show 
the boundary avoidance behaviour 

 

Resources. Color Template. Obstacle Avoidance. 
Figure 14. Robot Input Sensor Mapping, Simulation Model Shown Inset for Resource 
Gathering task 

The simulated robots are modelled on a fleet of rovers designed and built at the University 
of Toronto Institute for Aerospace Studies.  The sensor input layout for the rovers is shown 
in Fig. 14. For this task we consider standard fixed-topology neural networks and a variable-
length topology called Artificial Neural Tissues (Thangavelautham & D’Eleuterio, 2005).  
ANT has been applied on a number of robotic tasks including a tiling pattern formation 
task, single-robot phototaxis (light homing) task and a sign following task.  For the 
multiagent tiling pattern formation task, ANT outperformed standard fixed-topology neural 
networks and BRL networks (Thangavelautham & D’Eleuterio, 2005). 

3.3.1 Artificial Neural Tissues 

One of the limitations with a fixed topology network is that it requires a priori supervisor 
intervention in determining the network topology.  An incorrect choice may result in 
longer training times or inability to find a desired solution.   What we are after is a 
scalable framework that explicitly facilitates self-organized task-decomposition while 
requiring minimal human intervention. This would be limited to providing a generic 
palette of basis behaviours, sensory inputs and a global fitness function for a task at hand.   
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In turn, we expect an algorithm to find a suitable multirobot controller solution such as 
for the resource gathering task.  Artificial Neural Tissues (ANT) addresses all of these 
stated requirements.   
ANT consists of a developmental program, encoded in the genome that constructs a three-
dimensional neural tissue and associated regulatory functionality. By regulatory 
functionality, we mean a dynamic system that can selectively activate and inhibit 
neuronal groups.  The tissue consists of two types of neural units, decision neurons and 
motor-control neurons, or simply motor neurons.  Both the motor neurons and decision 
neurons are grown by evaluating a growth program defined in the genome.  The variable-
length genome is modular, consisting of genes that identify characteristics of each gene.  
The growth program in turn reads the contents of the genes and constructs a three-
dimensional lattice structure consisting of the motor control and decision neurons.  
Mutations to the growth program result in addition of new miscopied genes (a means of 
gene replication) corresponding to formation of new neurons within the tissue or 
inhibition of existing genes. 

 

 

Synaptic Connections. Coarse Coding. 

Figure 15. (Left) Synaptic Connections between Motor Neurons from Layer l+1 to l. (Right) 
Activated Decision Neurons Diffuse Neurotransmitter Concentration Field Resulting in 
Activation of Motor Control Neurons with Highest Activation Concentration 

Synaptic connections between the motor neurons are local, with up to 9 neighbouring motor 
neurons feeding from adjoining layers as shown in Fig. 15 (left).  Decision neurons are fully 
connected to all the sensory input; however, these neurons do not share synaptic 
connections (wired electrical connections) with the motor neurons. Motivated by biological 
evidence of chemical communication in the nervous system, the decision neurons diffuse 
neurotransmitters chemicals, forming neurotransmitter fields as shown in Fig. 15 (right).  
One may think of the neurotransmitter fields as a form of wireless (as opposed to wired) 
communication between neurons. Motor neurons enveloped by superpositioning of 
multiple neurotransmitter fields and above a prescribed neurotransmitter density are 
activated, while the remaining motor neurons are inhibited as shown in Figure 15 (right).  
Through the coordinated interaction of multiple decision neurons, one observes coarse-
coding of the neurotransmitter fields, selecting for wired networks of motor neurons.  These 
selected networks of motor neurons in effect resemble the ‘expert networks’ from the ETDN 
architecture but are dynamic.   These dynamic interactions result in new neurotransmitter 
fields being formed or dissipation of existing ones depending on sensory input being fed 
into the decision neurons. 
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3.3.2 Experiments 

Fig. 16 (left) shows the fitness (population best) of the overall system evaluated at each 
generation of the artificial evolutionary process for the resource gathering task.  The 
performance of a fixed-topology, fully-connected network with 12 hidden and output 
neurons is also shown in Fig. 16 (right). While this is not intended as a benchmark network, 
in a fixed-topology network there tends to be more ‘active’ synaptic connections present 
(since all neurons are active), and thus it takes longer for each neuron to tune these 
connections for all sensory inputs. 
 
 
 

 

Figure 16. (Left) Evolutionary performance comparison of ANT-based solutions for 1 to 5 
robots (averaged over 30 EA runs). (Right) Evolutionary performance with 4 robots for fixed 
topology and with light beacon off (averaged over 30 EA runs).  Error bars indicate one 
standard deviation 

The results with ANT controllers in Figure 16 (left) show that performance increases with 
the number of robots. With more robots, each robot has a smaller area to cover in trying to 
gather and dump resources.  The simulation runs indicate that a point of diminishing 
returns is eventually reached. Beyond this point, additional robots have a minimal effect on 
system performance with the initial resource density and robot density kept constant. The 
evolutionary process enables the decomposition of a goal task based on a global fitness 
function, and the tuning of behaviours depending on the robot density. 
The behavioural activity of the controllers (see Fig. 17) shows the formation of small 
networks of neurons, each of which handles an individual behaviour such as dumping 
resources or detecting visual templates (boundary perimeters, target area markings, etc.).   
Localized regions within the tissue do not exclusively handle these specific distal 
behaviours.  Instead, the activity of the decision neurons indicate distribution of specialized 
‘feature detectors’ among independent networks. 
The ANT controllers discover a number of emergent behaviours including learning to pass 
resource material from one individual to another during an encounter, much like a ‘bucket 
brigade.’  This technique improves the overall efficiency of system as less time is spent 
travelling to and from the dumping area.  In addition, ‘bucket brigades’ reduce antagonism 
since there are fewer robots to avoid at once within the dumping area. 
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Figure 17. ANT tissue topology and neuronal activity of a select number of decision 
neurons. These decision neurons in turn ‘select’ (excite into operation) motor control 
neurons within its diffusion field 

 

Figure 18. Scaling of ANT-based solutions (population best taken after 2000 generations) 
from 1 to 5 robots 

3.3.3 Controller Scalability and Hardware Demonstrations 

We also examine the scalability of the fittest evolved controllers by varying the density of 
simulated robots, while holding the resource density constant (Fig. 18).  Taking the 
controller evolved for a single robot and running it on a multirobot system shows limited 
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performance improvement. In fact, using four or more robots results in a decrease in 
performance, due to the increased antagonism created. 
The scalability of the evolved solution depends in large part on the number of robots used 
during the training runs. The single-robot controller expectedly lacks the cooperative 
behaviour necessary to function well within a multiagent setting.  For example, such 
controllers fail to develop ‘robot collision avoidance’ or ‘bucket brigade’ behaviours and 
perform poorly when rescaled to multiple robots.  Similarly, the robot controllers evolved 
with two or more robots perform demonstrably better when scaled up, showing that the 
solutions are dependent on cooperation among the robots. To limit the effects of 
antagonism, controllers need to be trained under conditions in which the probability of 
encounters among robots is sufficiently high. 
Some of the fittest evolved controllers were also tested on a fleet of nonholonomic robots; 
snapshots are shown in Fig. 13.  The advantage of the ANT framework with generic basis 
behaviours is that the solutions can be easily ported to various other hardware platforms, 
provided actual basis behaviours on hardware match those in simulation.   

4. Discussion 

The use of a global fitness function shows the possibility of training multirobot controllers 
with limited supervision to perform self-organized task decomposition.  A global fitness 
function encourages solutions that improve system performance without explicitly biasing 
for a particular task decomposition strategy.  This is advantageous for use with multirobot 
controllers, where it is often easier to define the global goals over required local 
coordination behaviours that require task specific information.  In addition, such an 
approach facilitates discovery of novel behaviours that otherwise may be overlooked by a 
human designer.  Such novel behaviours include use of ‘bucket brigade’ behaviours for the 
multirobot resource gathering task, ‘error correction’ for the tiling formation task and 
incremental merging of the object piles for the heap formation task.  For the walking gait 
task, use of a global fitness function facilitated discovery of the local leg behaviours and 
resultant global gait coordination without the need for multistaged evolution. 
While some of the behaviours from evolved controllers may display novel attributes, 
quantitatively interpreting such solutions remains difficult.  This issue is of added 
importance because we are interested in how a set of local behaviours give rise to emergent 
global behaviours for multirobot control.  As Dawkins (1986) points out, successful 
evolutionary solutions are not evolved per se to ease our burden of understanding such 
solutions.  Biologically plausible techniques such as the ability to track energy consumption 
of the individual robots and bias for minimization of energy consumption within the fitness 
function also does not guarantee more decipherable solutions nor improved evolutionary 
training performance than without selecting for energy efficient controllers.  However, such 
implicit techniques may well reduce any redundant behaviours that may be energetically 
wasteful.  Alternatively, desired attributes could be explicitly encouraged through shaping, 
helping to simplify deciphering such solutions but this implies dealing with the problem of 
greater supervision for multirobot control and how best to perform decomposition of the 
task a priori. 
Comparison of the different evolutionary techniques discussed in this chapter shows that by 
exploiting hierarchical modularity and regulatory functionality, controllers can overcome 
tractability concerns.  Simple CA lookup table controllers are shown to be suitable for 
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solving a multiagent heap and 2 × 2 tiling formation tasks.  Although lookup tables are 
monolithic, the system exploits parallelism through use of decentralized modular agents.  
To overcome the tractability limitations of monolithic CA lookup table controllers, we 
introduce modularity through decomposition of agent functionality into subsystems for the 

3 × 3 tiling formation task or by exploiting inherent physical modularity for the walking gait 
task.  However, such techniques often require supervisor intervention or a conducive 
physical setup in devising a suitable modular task decomposition scheme.   
Use of neural networks is another form of modularization, where individual neurons 
acquire specialized functionality (via training) in solving for a given task.  The neurons 
unlike the CA lookup tables can generalize by exploiting correlations between combinations 
of sensory input.  Ensemble networks consist of a hierarchical modularization scheme, 
where networks of neurons are modularized into expert networks and the gating 
mechanism used to arbitrate and perform selection among the expert networks.  In addition, 
these networks can also exploit modularity within the neuron activation function.  Such 
techniques are shown to overcome tractability issues including the ‘bootstrap problem’ and 
reduce spatial crosstalk without use of a supervisor-devised task decomposition schemes.   
The limitation with fixed-topology ensemble networks is that they require supervisor 
intervention in determining the network topology and number of expert networks.  
Artificial Neural Tissues (ANT) can overcome the need for supervisor intervention in 
determining the network topologies through use of artificial regulatory systems.  Within 
ANT, the regulatory systems dynamically activate and inhibit neuronal groups by 
modelling a biologically plausible coarse-coding arbitration scheme.  ANT can also 
overcome tractability concerns affecting other variable-length topologies that lack neural 
regulation.  Variable-length topologies that lack neural regulatory mechanisms are grown 
incrementally starting from a single cell as the size of the network architecture may 
inadvertently make training difficult (Stanley & Miikkulainen, 2001). 
The techniques used to evolve controllers for the tasks discussed also rely on predetermined 
sensor input layout and set of predefined basis behaviours.  In practice, a sensor-input 
layout is often constrained due to hardware limitations or based on physical characteristics 
of a robot and thus relying on body-brain coevolution may not always be practical.    
Evolving for sensor input layouts in addition to the controller may give useful insight into 
sensors that are truly necessary to accomplish a task.  Naturally, one would devise a fitness 
function to encourage use of a minimal set of sensors.    
From the resource gathering experiments, we observe that evolutionary solutions can attain 
dependence to sensors and templates exposed during training but that are not necessary to 
complete a task, nor improve system performance.  For the resource gathering task, use of a 
light beacon for homing to the ‘dumping area’ could intuitively increase efficiency of the 
robots in completing a task.  It should also be noted that the light beacon is not necessary as 
the robots can also randomly forage for the dumping area.  Although the ANT controllers 
can become dependent on the light beacon, this doesn’t translate into improved system 
performance.  One remedy to overcoming this dependence on optional components is 
through use of varied training conditions, such as with and without the light beacon.  Other 
more elaborate failure scenarios could be introduced during training to ‘condition’ the 
controllers towards handling loss of components.    
The use of a predefined palette of basis behaviours is accepted as an ad hoc procedure.  
Alternately, such basis behaviours could be obtained using machine learning techniques 
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such as artificial evolution in stages.  Nevertheless, the intent with some of these 
experiments is to use a generic palette of basis behaviours that are not task-specific thus 
reducing the need for basis-behaviour-related design decisions by the experimenter.   In 
practice, there exists a trade off between use of hand-coded basis behaviours (microscopic 
behaviours) versus use of evolutionary search techniques for multirobot coordination and 
control (resultant macroscopic behaviours).  Where design and implementation of basis 
behaviours is more involved than determining the coordination behaviours, this approach 
may have limited practical value.   
Our premise based on experience with multirobot controllers is that designing the basis 
behaviours requires much less effort than determining the unintuitive coordination schemes 
that give rise to emergent group coordination behaviours.  To further emphasize this point, 
analyses of the evolved solutions indicate they are not organized according to readily 
‘recognizable’ distal behaviours but as proximal behaviours (organized according to 
proximity in sensor space) (Nolfi, 1997).  One of the more promising features of the evolved 
multirobot controllers solution is the scalability of these solutions to a larger ‘world’ size.  In 
contrast, scalability may be limited with a hand-coded solution as other robots tend to be 
treated as obstacles to be avoided or use of heuristics for interaction requiring ad hoc 
assumptions based on limited knowledge of the task domain.  

5. Conclusion 

This chapter has reported on a number of investigations to control and coordinate groups of 
robots.  Through four sets of experiments, we have made a case for carefully selecting a 
fitness function to encourage emergent (self-organized) task decomposition by evolutionary 
algorithms.  This can alleviate the need to have a human designer arbitrarily break a group 
task into subtasks for each individual robot.  We feel this approach fits well within the space 
engineering context where mission-level goals are commonly specified and the system 
designer must decompose these into manageable pieces.  We have shown, in limited context 
of our experiments, that an evolutionary algorithm can take on this system design role and 
automatically break down a task for implementation by a group of robots. Limited 
supervision also has it advantages, including the ability to discover novel solutions that 
would otherwise be overlooked by a human supervisor.  We also show that by exploiting 
hierarchical modularity and regulatory functionality, controllers can overcome tractability 
concerns.    
Our findings are encouraging but we also realize that ‘evolved controllers for multirobot 
systems’ have many hurdles to overcome before adoption on a real space exploration 
mission.  We must clearly show the advantages of (i) using multiple robots and (ii) 
programming them using an evolutionary algorithm.  This will certainly be a long road, but 
we are enthused by the fact that the number of potential applications of multirobot systems 
in the space exploration world is quickly growing.  For example, at the time of writing, there 
is renewed interest in the Moon and establishing a base near the lunar South Pole.  Several 
robotic precursor missions are being planned to select and prepare the site and then deploy 
equipment including solar arrays.  Once built, rovers will be needed to work alongside 
astronauts in searching for and gathering resources such as water ice.  These are precisely 
the types of task by which we were originally motivated and we hope that evolutionary 
robotics will one day aid in the exploration of other worlds. 
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