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1. Introduction 

The development of solid state 2 μm Tm, Ho lasers has remained a topic of particular 
interest for many years, due to a number of possible applications such as coherent laser 
radar, atmospheric sensing, a possible pump source for an optical parametric oscillator 
operating in the mid-infrared region, and medicine. In recent years significant progress in 
understanding the basic phenomena underlying Tm,Ho laser operation as well as in 
developing high power lasers has been achieved ( Tyminski et al., 1989; French et al., 1992; 
Petrin et al., 1992; Jani et al., 1991; Jani et al., 1995; Yu et al., 1998; Alpat’ev et al., 1998; 
Alpat’ev et al., 1993; Barnes et al., 1996; Lee et al., 1996; Rustad & Stenersen, 1996; Bruneau, 
1998; Bourdet & Lescroart, 1999; Jackson & King, 1998; Sudesh & Asai, 2003; Sato et al., 2004; 
Walsh et al. 2004; Galzerano et al., 2004; Izawa et al., 2000; Yu et al., 2006; Zhang et al. 2006; 
Louchev et al. 2007 and 2008) and recently reviewed by ( Eichhorn, 2008) and (Walsh, 2009). 
Nevertheless significant effort is still necessary for defining optimized parameters and 
achieving high lasing efficiency for high power operation associated with significant 
temperature increase and related effects of pulse energy inhibition and thermal lensing 
destroying laser operation (Akhmanov et al. 1972). 
In this work we review main computational and numerical optimization results of a side 
pumped Tm,Ho:YLF laser for producing MW-power giant pulses with durations of several 
hundred nanoseconds using the coupled thermo-optical model (Louchev et al., 2007; Louchev 
et al., 2008). In particular, section 2 focuses on optical model which integrates 8-level rate 
dynamics model with the oscillator energy equation. In section 3 we discuss the possibility of 
G-pulse optimization by doping concentration and by Q-switching control. Section 4 focuses 
on coupling optical and rate dynamics model with the heat transfer computations. In section 5 
we demonstrate main effects in water cooled laser operation. In section 6 we compare main 
results with available experimental data. In section 7 we outline main conclusions. 

2. Pulse generation model 

Our study is based on 8-level (see Fig. 1 for excited level scheme) rate dynamics model 
(Barnes et al. 1996; Walsh et al., 2004) describing the population dynamics in Tm,Ho lasers 
by the following set of equations:  

Source: Advances in Solid-State Lasers: Development and Applications, Book edited by: Mikhail Grishin,  
 ISBN 978-953-7619-80-0, pp. 630, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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Fig. 1. Energy transfer processes in Tm, Ho doped materials.  
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For the upper laser state (5I7):    
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For the lower laser state  (5I8):  
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where ni are the state concentrations, pij are the probabilities of the optical transitions (Walsh et 

al., 2004), η is the refractive index, τi are the state lifetimes, Rp(t,z,r) is the pumping source space 

and time distribution, σse is the stimulated emission cross-section, fi are the Boltzmann 
populations factors and ),( rtφ  is the local laser photon density with dimensionality of 1/m3.  

The local laser photon density is represented via the product of (i) the total number of 

photons depending on t and (ii) the normalized space distribution function as 

),()(),( 00 zrtt φφ Φ=r . The resulting equation for total photon number, )(0 tΦ , inside the  

oscillator cavity is given by the differential equation ( Risk, 1988; Rustad & Stenersen, 1996; 

Walsh et al., 2004; Černý & Burns, 2005): 
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which includes the integrals of the stimulated and spontaneous emissions over the crystal 

volume, Vcr, and where τc is the cavity time, and ε≈10-7-10-8 is the coefficient which takes into 
account the proportion of photons spontaneously emitted within the solid angle of resonator 
mirrors, thereby initiating the development of the  laser beam.  
For the operating resonator the cavity time is: 
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where 
crcavopt LLL )1( −+= η  is the characteristic optical length, 

cavL  is the cavity length and 

crL  is the crystal length; 
lR  is the back mirror reflectance, 

outT  is the output mirror 

transmittance and β is the parameter used in our simulations for  the optical loss associated 

with the active Q-switching: β=0 for the  open resonator and )1ln(ln 1 outTR −−−>>β  for the  

closed resonator. 
The value of 2 i i

i

lα∑  in Eq. (10) represents the sum of absorption losses in different elements 

along which laser beam propagates inside the cavity. This value should be small to ensure  
the feasibility of the laser operation. Otherwise the significant part of the laser energy 
generated by the crystal is lost. 
For the case of ≈500 ns pulse generation the cavity length Lcav >> Lcr and the laser beam 
radius inside the crystal may be considered to be constant. The spatial distribution of 
photons inside the operating crystal is simplified as: 
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where w0 is the beam waist size of TEM00 mode defined by the resonator parameters ( for 

instance, for the simplest case of the confocal spherical resonator one has 
0 2cav lw L λ π= ). 

The solution of the rates equation together with main oscillator equation gives the value of 
the output power, (W),  as: 
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We consider Tm,Ho:YLF operation side pumped by 780 nm LD radiation. For 6 % Tm 

doped YLF one finds for the absorption coefficient α=σaNTm≈2.8 cm-1. Thus, a 2 mm 

diameter YLF crystal is able to absorb (1-exp(-2αd))≈0.67-fraction of the incident beam flux 
in the case of the double-pass pumping scheme providing high uniformity of the absorbed 
flux over the crystal volume. High incident fluxes are able, in fact, to deplete the 3H6-level in 
Tm3+ and to inhibit absorption (Rustad & Stenersen, 1996; Černý & Burns, 2005). However, 
when the concentration of the 3H6-level does not fall below 0.9 of the initial Tm-
concentration, the related variations of absorption coefficient do not exceed 5 %, and in 
making simulation one can use for Rp: 

 

ppcr

pap

p
thLd

Q
tR

Δ
≈

νπ
ηη

2
)( , (13) 

where (1 ) 1 exp( 2 )a dη ρ α= − − −⎡ ⎤⎣ ⎦  is the absorption efficiency of the pumping radiation, ρ is the 

reflection  factor of pumping radiation, Qp is the pumping pulse energy, Δtp  is the pumping 

pulse duration, ηp≈1.3 is the pumping quantum efficiency for Tm,Ho:YLF. 

3. Giant pulse optimization 

Model parameters used for Tm,Ho:YLF in the simulations are fully specified  by Walsh et al. 
(2004). Other parameters used in the simulations reported below are: crystal length Lcr=2 
cm, crystal diameter d=2 mm, cavity length Lcav=1 m, output transmittance T=0.05, 
reflectance  R1=0.98, and  beam waist radius w0=0.85 mm. The simulations reveal two main 
effects important for efficiency optimization for producing nanosecond G-pulses.  
Fig. 2 shows a simulation results for 6 % Tm doping and two values of Ho doping, 0.4 and 
1.0 %, for the case of normal pulse operation (without Q-switch) demonstrating a series of 
relaxation oscillations. The pumping (780 nm laser diode) time for both modes is 0.5 ms and 
the total absorbed energy 

a pQη =1.8 J. Fig.2 (a) shows the power oscillations for the cases of 

Ho = 0.4 and 1.0 % respectively, whereas Fig. 2 (b) shows the output pulse energies versus 

time. The final pulse energy for the 0.4 % Ho case (≈0.9 J), is calculated to be higher than that 

of 1.0 %  Ho case (≈0.8 J). However, Fig. 2 (a) shows that the power of the first relaxation 
spike is higher for the case of 1.0 % Ho. Thus in G-pulse generation the 1.0 % Ho case is able 
to yield a higher output energy per pulse as compared with the 0.4 % Ho case.  
Fig. 3 shows calculations of (a) G-pulse powers and (b) energies versus time for 0.4 % and 
1.0 % Ho cases. The calculations assume that  Q-switch operation is open by the end of the 
0.5 ms pumping period. This figure shows that 1.0 % Ho doping can provide higher energy 
output per pulse as compared with 0.4 % Ho doping due to significantly larger level of the 
inverted population achieved after the pumping (See. Fig. 4).  
Fig. 5 compares the resulting pulse energy for the normal pulse and for the G-pulse as a 

function of Ho-concentration for the given 6 % Tm doping. These figures confirm that for 

the normal pulse 0.4 % Ho doping provides the highest output energy whereas for  G-pulse 

1.0-1.2 % looks to be  optimal.   

Let us now focus on the time optimization of G-pulse operation. The above results on G-
pulse generation assumed 0.5 ms pumping followed by immediate Q-switch opening. 
However, Fig. 4 suggests that such Q-switch opening is premature because the inverted 
population density does not achieve its maximum at the end of pumping. 

www.intechopen.com



Numerical Simulation of High-Power Operation of 2 μm Co-doped Tm,Ho Solid-State Lasers 

 

77 

6000

5000

4000

3000

2000

1000

0

p
u
ls

e 
p
o
w

er
 (

W
)

2.0x10
-3

1.51.00.50.0

time (s)

 6 % Tm, 0.4 % Ho

 6 % Tm, 1.0 % Ho

(a)
1.2

1.0

0.8

0.6

0.4

0.2

0.0

p
u

ls
e 

en
er

g
y

 (
J)

2.0x10
-3

 1.51.00.50.0

time (s)

(b)

 6 % Tm, 0.4 % Ho

  6 % Tm, 1.0 % Ho

 

Fig. 2. Pulse generation in normal mode: (a) pulse power versus time and (b) pulse energy 
versus time for two Tm, Ho concentrations. 
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Fig. 3. G-pulse generation: (a) pulse power versus time and (b) pulse energy versus time. 
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Fig. 4. Inversion population dynamics in G-pulse generation mode. 

Now we provide more details to emphasize the importance of proper time control. In 
particular, Fig. 6 (a) shows the dependence of G-pulse power as function of the time for 
three characteristic cases: (i) 0.5 ms  pumping followed by Q-switch opening (green), giving 

a pulse energy of ≈0.08 J, (ii) 1.9 ms pumping followed by Q-switch opening (blue) giving a 

pulse energy of ≈0.11 J and (iii) 0.5 ms  pumping followed by Q-switch opening at 1.2 ms 

(red) giving a pulse energy of ≈0.12 J. Fig. 6 (b) shows the behavior of the inversion 
population, 

8877 nfnfn −=Δ , for all three cases considered and provides the background 
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Fig. 5. Comparison of output pulse energy in normal (solid) and G-pulse (dashed) mode.  

information for understanding time optimization issues. That is, in the first case the Q-
switch is open prior to the moment when maximal population inversion in the Ho3+ is 
achieved and the resulting output G-pulse energy is small. After the pulse is finished and 
the Q-switch is closed, the excited Tm3+ state 3F4 continues to transfer excitation towards the 
Ho3+ 5I8. In this case  a very significant part of the excitation “stored” initially in Tm3+ is 
transferred to Ho3+  after the G-pulse generation, and later on uselessly dissipated through 
spontaneous radiation and non-radiative transitions. In the second case of the significantly 
increased pumping time 1.9 ms with simultaneous opening of Q-switch a significantly 
higher generated pulse energy is achieved, due to significantly higher electronic excitation 
energy stored on the Ho3+ 5I7 state by the end of the pumping pulse. The third case 
corresponds to the situation when a relatively short pumping time of 0.5 ms is used together 

with 0.7 ms delay in opening the Q-switch. This case gives maximal energy output of ≈0.12 J 
in G-pulse generation because the Q-switch opens exactly at the moment when the 
concentration on the lasing Ho3+ 5I7 state and the value of Δn reach their maximum, allowing 

maximal energy extraction  by the laser pulse. 
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Fig. 6. Optimization of G-pulse generation: (a) G-pulse powers versus time and (b) 
corresponding population inversion densities versus time for three different scenarios. 

Fig. 7 shows final results on G-pulse energy optimization: (a) for the case of extended LD 
pumping within the range 0.5 - 10 ms followed by immediate Q-switch opening and (b) 0.5 

ms LD pumping with delayed Q-switch opening.  Energy maxima exist in both cases: at ≈1.9 

ms for (a) and at ≈1.2 ms for (b). However, case (b) provides the higher absolute maximum. 
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Fig. 7. Optimization of operation times: (a) Q-switch  is open by the end of pumping and (b) 
pumping time is 0.5 ms and Q-switch is open after a delay. 

It is worth noting that the delay between the pumping period and Q-switch opening shown 
above to optimize the energy pulse is associated with the characteristic time of the electronic 
transfer from the upper exited state 3H4 to 3F4 and, later on, towards 5I7. Our simulation 
based on the above model shows  that the excitation transfer from the 3F4 state towards the 
5I7 state happens without any significant deceleration whereas significant delay is associated 

with the 3H4 → 3F4 radiation transfer process, i.e. the rise in concentration at the Tm3+  3H4 
state, defined by the pumping period used, and the depletion of this level, defined by the 

two-photon process  p41n4n1 and requiring ≈0.7 ms. In the case of extended pumping of 
several ms this delay does not play a very significant role, in contrast with short pumping 
times. The decrease in the delivered G-pulse energy shown in both cases for long times is 
associated with the increasing role of spontaneous radiation loss from both 3F4 and 5I7   states 
which have characteristic lifetimes of 16 and 15 ms respectively. 

To finalize the discussion we would like to note that a ≈0.7 ms delay between pumping and 
achieving the maximal population inversion density in a Tm,Ho:YLF laser found in this 
study is experimentally supported by the observation of the amplification signal in a 

Tm,Ho:YLF crystal pumped by a 780 nm radiation pulse of 65 μs duration (Bruneau et al., 
1998). Data recorded for the YLF case shows the amplification signal maximum at 0.6-0.7 ms 
after the start of the pumping. However, the data for Tm,Ho:YAG operation does not show 
any significant delay between pumping period and maximal amplification signal. 

4. Thermal model 

The heat absorbed inside the crystal leads to a temperature increase over the crystal volume. 
For high power operation this temperature shift is able to change the local values of the 
Boltzmann population factors of the upper and lower lasing levels: 

 [ ]
[ ]∑ −
−

=

j

Bjj

Bii
i

tTkEg

tTkEg
tf

),(exp

),(exp
),(

r

r
r

,  (14) 

where 
Bk is the Boltzmann constant, 

ig  is the degeneracy of the i-level, and ),( rtT  is the 

local temperature. 
Generally, the crystal is heated via lattice vibrations due to non-radiative decay of electrons 
from all levels involved in the excitations. The local heat source is defined by: 
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inriicr nEtq τ/),(

7

2i

∑
=

Δ=r , (15) 

where 
iEΔ is the energy difference between the i-manifold and the next lower manifold into 

which the electron makes the transition (Fig. 1) and 
inrτ  are the  non-radiative times 

inversely proportional to the non-radiative transition probabilities. 
In order to avoid difficulties in defining the probabilities of non-radiative transitions, an 
estimate of the heat source can be made via the difference between the pumped energy and 
the energy of  stimulated and spontaneous radiation leaving the crystal (Bruneau et al, 1998). 
This approach is mainly used for the CW mode or as an averaged estimate for high-
repetition pulsed mode. However, we (Louchev et al., 2008) use this approach for normal or 
Q-switched mode operation by introducing a modification which takes into account the 

rate, dtdnE ii /
7

2i

*∑
=

Δ  , at which the pumped energy is stored inside Tm3+ and Ho3+ ions as: 

 dtdnEnEtnfnfhchtRtq iiiriilseppcr / / ),()()(),(
7

2i

*
7

2i

8877
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==

− Δ−Δ−−−= τφνησν rr , (16) 

where in addition to  
iEΔ we introduce the energy difference between the i-manifold and 

the ground state *

iEΔ  (Fig. 1), 
pν is the pumping radiation frequency, 

lν  is the lasing 

frequency and 
irτ  are the corresponding radiative times (Walsh et al., 2004). 

The calculation of Eq. (16) for the Tm,Ho:YLF laser reveals several effects significant for 
energy extraction by lasing pulse. First, Fig. 8 shows (a) G-pulse power and (b) the energy 
and (c) optical loss balance integrated over the crystal volume versus time. In fact, Fig. 8 (b) 
reveals a very significant extension of the heat release period as compared with the 
pumping period. In particular, it shows that the heat is released inside the crystal over a 

period of ≈10 ms, whereas the pumping period is 0.5 ms during which only ≈30 % of heat is 
released. A two-time lower resulting temperature increase is achieved in crystal prior to G-
pulse generation (1.2 ms)  as follows from an  estimate neglecting the thermal conductivity 
effect: 

 ∫≈Δ
t

crcr dttq
c

tT
0

),(
1

),( rr

ρ
.  (17) 

Second, Fig. 8 (b) also shows that in the final energy balance ≈0.12 J corresponds to the G-

pulse energy, ≈0.75 J corresponds to the heat released inside the crystal and ≈0.84 J 
corresponds to the energy lost by spontaneous emission. Thus, about 43 % of the pumped 
energy is directly converted into heat. We should note that the  estimates of heat release 
based on 2-level rate equations  treat this value as the difference between the pumped 
energy and the optical energy of the laser pulse and the spontaneous emission from two 
levels, 3F4 and 5I7  (Bruneau et al, 1998). The energy spontaneously emitted by other levels, 
i.e.  3H5, 3H4, 5I5 and 5I6, are implicitly included into the heat released inside the crystal 
(Bruneau et al, 1998).  The 8-level model used here shows that the contribution of the 5I5 and 
5I6 levels into the spontaneous emission loss is negligibly small, whereas the contribution of 
3H4 and 3H5 appears to be quite significant, ≈0.1 and ≈0.4 J, respectively. Adding these 
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values to the heat release of ≈0.75 J gives ≈70 %, similar to the result from the 2-level model   
(Bruneau et al, 1998). 
 

1.0x10
6
 

0.8

0.6

0.4

0.2

0.0

G
-p

u
ls

e 
p

o
w

er
 (

W
)

1.2010x10
-3

1.20061.20041.20021.2000

time (s)

Q-switch open - 1.2 ms

Pumping time -  0.5 ms

(a)

 
3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

en
er

g
y

 (
J)

20x10
-3

151050

time (s)

 pumping

 heat source

 laser ouput

 optical loss

(b)

 
1.0

0.8

0.6

0.4

0.2

0.0

o
p

ti
ca

l 
 l

o
ss

 (
J)

20x10
-3

151050
time (s)

3
F4

3
H5

3
H4

5
I7

total optical loss
(c)

 

Fig. 8. Pulse power,  energy balance versus time during laser operation: (a) G-pulse power 
with corresponding  (b) energy balance  and (c) optical loss by spontaneous radiation  from 
different levels. 

Thus, only ≈43 % of the pumped energy is released directly as heat inside the crystal, 

whereas ≈45 % is spontaneously emitted radiation from the crystal at wavelengths: λ2=1.93 

μm, λ3=4.32 μm, λ4=2.46 μm and λ7=2.07 μm. These wavelengths are within the transparency 

range of the crystal and are therefore able to leave the crystal. Fig. 8 (c) shows the values of 

the total optical loss, 
irii nE τ/

7

2i

∑
=

Δ , and also the losses emitted  from all levels, 
irii nE τ/Δ  

integrated over the crystal volume. These radiation fluxes leaving the crystal are absorbed 

by the water flow typically used for crystal cooling. The water absorption coefficients for 

these wavelengths are given by Wieliczka et al., 1989: α2=124 cm-1, α3=300 cm-1,  
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α4=63.5 cm-1 and α7=31 cm-1. That is, the spontaneously emitted fluxes leaving the crystal are 

absorbed within lengths of 1

iα
−≈ , i.e. within 80, 33, 157 and 320 μm from the surface, 

respectively. The absorption of these fluxes in the vicinity of the crystal surface can 

significantly inhibit heat dissipation from the crystal. The heat transfer to the water flow 

depends on the Reynolds  number, Re, defining the level of the flow turbulency dependent 

on the water flow rate through the channel inside which the operating crystal is set up. 

Numerical estimates show that for the typical coaxial crystal in a tube water channel 

geometry and typical flow rates, the  value of the heat transfer coefficient is  h=103-105 W/m2 

K (Koechner, 2006). The main thermal resistance to the heat flow from the crystal surface is 

due to the thermal boundary layer, 
Tδ , within which the heat conductance dominates over 

the convective transport. The estimate of 
Tδ  follows from the equivalency of heat fluxes at 

crystal-water syrface: 

)( ∞−=∂∂−=∂∂− wsurcrsurwwsurcrcr TThrTkrTk , 

where kcr≈6 and kw≈0.6 W/m K are the thermal conductivity of crystal and water, 

respectively. That is, using 
Twsurcrsurw TTrT δ/)( ∞−−≈∂∂  one finally obtains for h=103-105 

W/m2 K: 

 ≈≈ hkwT /δ 6-600 μm. (18) 

Thus, the spontaneous IR fluxes are absorbed by water within a distance where the heat 

transfer is dominated by the thermal conductivity. Hence, the absorption of these fluxes is 

able to significantly inhibit the heat dissipation from the crystal. In order to consider the 

thermal effect we simulate the complex heat transfer non-steady state, two-dimensional 

problem by coupling the above optical model with the heat generation and heat transport 

through the operating crystal, and the water boundary layer inside which the absorption of 

spontaneously emitted IR radiation takes place. The radially symmetric temperature 

distribution inside the cylindrical crystal, ),( rtTcr
, and the thermal boundary layer in water, 

),( rtTw
, are defined by:  

 )r,()grad(div tqTktTC iiiiii +=∂∂ρ ,  (19) 

for crystal (i=cr) and water (i=w) with the boundary condition 
∞= ww TT  at 

TRr δ+= 0
, 

where ( )[ ]1exp 00 −= hRkR wTδ   takes into account the radial curvature. 
Heat source density inside the crystal is defined by Eq. (16) whereas the heat source density 

due to the absorption of spontaneously emitted IR fluxes in water is defined by: 

 [ ]∑ −−=
i

iiiw RrtJ
r

R
rtq )(exp)(),( 00

0 αα ,  (20) 

where )(0 tJ i
are the IR flux densities isotropically leaving  the  crystal given by:  

 dVtnE
S

tJ
V

irii

cr

i ∫Δ= τ/)r,(
1

)(0
.  (21) 
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The effect of IR radiation absorption is negligibly small for h>105 W/m2 K, when 1−<< iT αδ . 

However, for h≈104 W/m2 K (
Tδ ≈60 μm) this effect  is very significant, and can lead to the 

onset of an inverted temperature distribution inside the crystal when the temperature inside 

the boundary layer is higher than that inside the crystal.   

5. Coupled thermo-optical modeling  

In this section we consider coupled optical and thermal model results obtained for G-pulse 

generation by a Tm,Ho:YLF laser aimed to produce  ≈0.1 J pulses of 100-500 ns duration. In 
particular, we simulate here 20-50 Hz active Q-switched laser operation side-pumped by 0.5 

ms LD pulses of ≈785 nm wavelength. In Fig. 9 we show G-pulse simulation results for a 2 
cm long 2 mm diameter crystal placed inside a 1 m long cavity with a 0.85 mm radius waist. 
The Q-switch is opened after a 0.5 ms pumping period with a delay of 1.2 ms to ensure that 
the G-pulse generation starts after the maximal possible gain is achieved.  
In particular, in Fig. 9 we show the results of G-pulse  stabilization for h=104 W/m2 K for 
three different cases: (a) 2 mm diameter  crystal with Lcr=2 cm, pumping energy 1.8 J and 
f=20 Hz operation, (b) 4 mm diameter crystal with Lcr=2 cm, pumping energy 4.0 J and f =20 
Hz operation, and (c) 4 mm diameter crystal with Lcr=2 cm, pumping energy 4.0 J, and f =50 
Hz operation.   
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Fig. 9. G-pulse power stabilization versus time for  (a) 2 mm diameter crystal, 1.8 J pumping, 
f=20 Hz and h=104 W/m2 K, (b) 4 mm diameter crystal, 4.0 J pumping,  f=20 Hz and h=104 
W/m2 K, (c)  4 mm diameter crystal, 4.0 J pumping, f=50 Hz and h=104 W/m2 K and (d) 4 
mm diameter crystal, 4.0 J pumping, f=50 Hz and h=105 W/m2 K. 
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Additionally in Fig.9 (d) we show the pulse power for the case of enhanced heat transfer 
with h=105 W/m2 K for 4 mm diameter crystal with Lcr=2 cm, pumping energy 4.0 J and f 
=50 Hz operation. In this case the spontaneous radiation leaving the crystal is absorbed 

outside of the boundary layer, ≈≈ hkwT /δ 6 μm. 

The case (a) corresponds to ≈0.12 J pulse generation. In 20 Hz repetition rate operation the 

initial pulse power for this case is decreased by ≈11 %. The case (b) corresponds to ≈0.13 J 
pulse generation. In this case, after stabilization in 20 Hz repetition rate operation the G-
pulse looses about 40 % of its power and energy. In case (c) for 50 Hz repetition rate 
operation the G-pulse looses about 95 % of its initial power. In case (d) when heat transfer is 
enhanced the pulse energy decrease is about 60 %. One peculiar point worth noting here is 
that in 50 Hz operation  the second pulse has a 20 % higher pulse energy  than the first pulse 
(see Fig. 9 (c) and (d) ). This is due to the inversion population remaining after the first pulse 
during 20 ms and summarized with the effect of the second pumping pulse. 
The temperature evolution and stabilization related to these cases are shown in Fig. 10 (a-d) 
where the temperature is shown at the crystal axis and surface. The maximal temperatures 

are achieved at the end of ≈5 ms period and not at the end of pumping period. In particular, 
Fig. 10 (a), (b) and (c) show that at the initial stage the temperature at the crystal surface is 
higher than that at the crystal axis. This is due to the high optical fluxes spontaneously 
emitted from the crystal and heating water near the crystal surface. However, with time and 
operation stabilization the temperature inside the crystal becomes higher than that at the 
surface, and the heat from inside the crystal dissipates to the water. In the case (d) the 
temperature at the surface does not exceed that at the crystal axis even in the initial stage 
because for this case  the spontaneous radiation is absorbed outside of the boundary layer 

( ≈Tδ 6 μm< <α -1).   
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Fig. 10. Temperature  evolution at crystal axis and surface for the cases defined in Fig. 9. 
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Fig. 11  shows  the temperature distributions versus radius for the case of 4 J pumping of the 
crystal  4 mm in  diameter and Lcr=20 mm  for f=20 Hz operation  and h=104 W/m2 K. The 
temperature distribution are given (a) for the first pulse and (b) after pulse energy and 
temperature stabilization is achieved. The temperature distributions are given immediately 
after the pumping, 1.2 ms, (solid) and after the full pulse period of 50 ms (dashed). Fig. 11 
(a) shows that for the first pulse the temperature in the boundary layer is higher than that in 
crystal due to the effect of absorption of IR radiation inside the boundary layer. However, 
after the pulse energy and temperature stabilization shown in Fig. 11 (b) this effect does not 
look very strong. However, in fact, this effect averaged over the pulse period remains to be 
very significant in resulting temperature field. After the stabilization, the temperature 

amplitude inside the crystal over one period decreases to the level of ≈1 K. 
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Fig. 11. Temperature  distributions versus radius for 1.2 ms (solid) and 50 ms  (dashed) for 
f=20 Hz operation: (a) the first pulse and (b) after pulse energy  stabilization. 

Let us discuss the above obtained simulation results within the framework of simplistic 
estimates. First, the effect of heat dissipation inhibition  due to the radiation fluxes absorbed 
within the boundary layer shown by the above simulation can be demonstrated by an 
analytically resolvable model using the plane steady-state boundary layer approximation 
(

0RT <<δ ): 

 0)exp(/ 0

22 =−+∑
−

rJdrTdk i

i

iiww αα ,  (22) 

with the  mean radiation fluxes leaving  the crystal surface given by : 

 dVnEdt
S

J
V

irii

tcr

p

i ∫∫ Δ=
−

τ
ν

/0
,  (23) 

where Vcr=πR02Lcr is the crystal volume, Scr≈2πR0Lcr is the crystal surface through which the 
spontaneous radiation leaves the crystal and the boundary condition is written at r=0 as 

sw TT = and at r= hkwT /=δ  as *

ww TT = . 

After resolving this simplified model one can obtain the following analytical expression for 
the modified heat transfer coefficient:   

 ∑
⎭
⎬
⎫

⎩
⎨
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⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
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⎜
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−
−=

∂
∂

−
−=

= i

wi

wi

oi

wsRr

w
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w

h
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k

h
J

TT
h

r

T

TT

k
h

α
α

exp11
1

0

* ,  (24) 
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which takes into account the effect of spontaneous radiation absorbed within the thermal 
boundary layer on the heat transfer to the water. 

One can see that this estimate gives automatically hh =*  for the case when absorption does 

not take place within the boundary layer, or primarily occurs outside it. The estimate for the 
value of h*/h defined by Eq. (24) is shown in Fig. 12 for the possible range of h=103-105 
W/m2 K and  for IR fluxes corresponding to the  simulations given in Fig.9 (a) and averaged 

over the characteristic time of 1−=Δ νt =50 ms. In particular, Fig. 12 shows that even for this 

simplified treatment this effect appears to be very significant. That is, for low values of h<104 
W/m2 K the effective heat transfer coefficient falls rapidly and for h=103 W/m2 K the value 
of h* tends to zero. Eq. (24) also shows that h* can become negative (for low h values or high 
radiation fluxes) meaning that the water layer near the crystal surface can have a 
temperature that exceeds that of the crystal surface (as shown in simulation on Fig. 11). For a 

typical value of h=104 W/m2 K (δT≈60 μm) Eq. (24) gives h*≈ 0.55 h whereas for h=105 W/m2 

K (δT≈6 μm) the effect decreases giving h*≈ 0.94 h. The effect of radiation absorption in water 
becomes negligibly small for high values  of h>105 W/m2 K, i.e. when the thickness of the 
boundary layer becomes smaller than a typical absorption length and all radiation is 
absorbed outside of the boundary layer. 
Second, we have to note here that after onset of operation stabilization the mean 
temperature distribution across the crystal radius (averaged over one period) is well 
approximated by  modified analytical quasi-steady state approximation (Koechner, 2006):  

 ( )22

0*

0*

22
)( rR

k

q

h

Rq
TrT

cr

avav

w −++= ,  (25) 

where for qav we use the averaged heat source density defined by the integral over the 

characteristic pulse period, 1−=Δ νt , and  the crystal volume as: 

 ∫∫
ΔΔ

=
crV

cr

tcr

av dtdVtq
tV

q ),(
1

r
.  (26) 
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Fig. 12. The influence of absorbed infrared radiation spontaneously emitted from Tm-Ho 
laser on the heat transfer coefficient from the surface of the operating crystal to the water for  
2 mm diameter crystal, 1.8 J pumping and f=20 Hz.  
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Equation (25) explains well our simulation results given in Fig.9 (c) and (d), and Fig. 10 (c) 

and (d) which show that the absolute temperature level achieved during laser operation can 

be decreased by more intensive heat removal (by using higher water flow) or by using lower 

temperature water (in our simulations *

wT =290 K). In effect, Eq. (25) shows that 

intensification of the heat transfer, i.e. increase in h*, allows one to decrease the temperature 

of the crystal surface to that of water *

wT  (making 02 *

0 →hRqav
). However, the 

temperature difference installed across the crystal radius remains the same (≈30 K) because 

it is defined by the value of 
crav kRq 22

0
, and depends only on the crystal radius, crystal heat 

conductance and the heat source density inside the crystal.    
High temperature gradient across the crystal radius  is known to lead to thermal lensing 

effects and output laser beam distortions (Akhmanov et al.; 1979). Thus, in order to inhibit 

the temperature gradient across the radius and onset of thermal lenzing one should (i)  

decrease the pumping energy per crystal volume unit and (ii) to decrease the crystal radius 

as shown in Figs. 9 (a) and 10 (a) where significantly lower temperature gradient for 2 mm 

diameter crystal  are found as compared with 4 mm crystal diameter cases shown on Figs. 9 

and 10 (b) - (d). 

Finally, we have to note that Tm,Ho:YAG has lower temperature gradients across the radius 

due to two factors. First, YAG has larger heat conductance (11 W/m K) as compared with 

YLF (6 W/mK). Second, Tm.Ho:YAG has 2 times higher Tm 3H4 absorption cross-section 

(σa=7x10-21 cm2 ) as compared with Tm,Ho:YLF (σa =3.4x10-21 cm2) which allows one to use 

lower crystal radii with the same absorption efficiency. That is, for 6 % Tm doped YLF and 

YAG one finds αYLF≈2.82 cm-1 and αYAG≈5.75 cm-1. Thus, 2 mm diameter crystal is able to 

absorb (1-exp(-αd))-fraction of the incident beam, i.e. 43 % in case of YLF and 70 %  in case of 

YAG. For double passing scheme 2 mm YAG absorbs 90 % of the side-pumped incident 

beam whereas YLF absorbs only 68 %. In case of YLF 90% absorption is achieved in crystals 

of 4 mm in diameter. It should be noted that increase in the crystal radius increases the 

pumping density and also heat source density. However, 4-times increase in the heat source 

density in 2mm YAG crystal as compared with 4 mm YLF is exactly compensated by 4-time 

decrease in the temperature gradient across the radius shown by Eq. (25). 

6. Model verification 

6.1 Absorption losses 

As noted in section 2 the absorption loss 2 i i

i

lα∑  (in Eq. (10) ) taking place inside the cavity is 

able  to decrease significantly and even completely inhibit  laser output. In particular, Fig. 13 

shows the typical dependence of G-pulse energy from Tm,Ho:YLF laser versus the 

absorption loss inside the cavity. The absorption loss can be due to several factors. First, for 

the case of 2 μm lasers this effect can be due to the water vapor present inside the cavity. In 

effect, the absorption of water for ≈2.1 μm is α≈31 cm-1 (Wieliczka, et al., 1989). The 

absorption coefficient is defined by the absorption cross-section and water molecules 

density nσα = . Thus, the absorption cross-section for water is 

mn ww // αρασ == ≈9.3x10-22 cm2 (where nw is the density of molecules in water, ρw is the 

water density and m is the molecular mass of water). For the room temperature 240 C the 

equilibrium water pressure P≈3x103 Pa. Thus, for the humidity 50 % the vapor density is 
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nv=Pv/2kBT≈0.36x1018 cm-3. Respectively, the value of the absorption coefficient is 

vnσα = ≈3.3x10-4 cm-1 and for the cavity l=300 cm in length one gets  2 i i

i

lα∑ ≈0.2, which 

suggests that the air humidity can completely inhibit  laser operation. However,  for a  short 

cavity length of 30 cm  2 i i

i

lα∑ ≈0.02  and G-pulse energy loss is  ≈25 %. 
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Fig. 13. The effect of absorption loss inside the cavity. 

Second, the absorption loss can take place inside the sections of the crystal usually left 
undoped for the mechanical assembly of the crystal inside water  cooling camera, and also 
inside the Q-switch. For instance, in near IR region undoped YAG has linear absorption 

coefficient  α≈1.5x10-3 cm-1. Assuming similar absorption for ≈2.1 μm radiation one finds 

that for 4 cm of undoped YAG sections  2 i i

i

lα∑ ≈0.012  and about 10% loss in G-pulse. 

Third, the effect of two-photon absorption which may have a serious effect on G-pulse 
generation when the laser power attains MW level. In particular, in general case the 
absorption loss inside optical medium is defined by the following equation including linear 
and non-linear (two-photon) absorption as: 

 2/ IIdzdI βα −−= ,  (27)   

where the value β is known to be within the range of 10-11-10-9 cm/W for wide range of 
optical materials (Dmitriev et al., 1997). 

This equation suggests that the effect of two-photon absorption is significant when Iβα ≈ . 

In particular, for the undoped YAG sections this takes place when βI≈α≈0.0015cm-1. Let us 

estimate the possible range for βI assuming that the target level of pulse energy should 

attain the level of Q≈0.1 J with pulse width of τp≈500 ns. This gives us maximal power inside 

the cavity of P=Q/τp=0.1 J/ 500 ns= 2x105 W. The maximal intensity in the laser beam will 

be 2

0/ rPI π= ≈0.65x107 W/cm2 (where r0≈0.1 cm is the laser beam radius). Thus, one obtains 

for Iβ ≈10-11-10-9 cm/W x 0.65x107 W/cm2=6.5x(10-5 -10-3 ) cm-1, which shows that the effect 

of two-photon absorption may be similar and even higher than that of linear absorption 

α≈1.5x10-3 cm-1. Moreover, in experiments with shorter cavity and shorter pulse width  this 
effect may become even more significant. In particular, 500 ns pulses correspond to the 

cavity length of 3 m. In case of 1 m cavity the pulse duration shortens to the level of ≈100-

200  ns, and the maximal power achieves the level of P≈1 MW. Thus, for increased intensity 
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one gets Iβ ≈3.25x(10-4 –10-2) cm-1,which shows that the two-photon absorption may be an 

order of magnitude higher than that of linear absorption, α≈1.5x10-3 cm-1. 
Additionally one should pay attention to the possible interference of two-photon absorption 
loss with the output transmittance Tout. The above computational model shows that the 
increase in Tout shortens G-pulse width tending to increase its peak power. In fact, the 
possible involvement of the two-photon absorption can inhibit this effect decreasing G-pulse 
energy. We should also note that the simulation of the effect of two-photon absorption 

requires formal correction of Eq. (8) by introduction of an additional loss term 2

0Φβ∝ . 
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Fig. 14. G-pulse energy versus pumping  energy for the experimental conditions by Yu et al. 
1998. 

6.2 Tm,Ho:YLF 

For this case the rate dynamics equation and related parameters are fully specified by Walsh 

et al. 2004. The model was verified by using the set of experimental condition reported by Yu 

et al., 1998 for the development of Q-switched 125 mJ Tm,Ho:YLF laser using ≈790 nm LD 

pulse of 1.2 ms duration for side-pumping of 2 cm long 4 mm diameter crystal rod set up in 

3.3 m cavity with Tout=0.18 for the output mirror. Results of our simulations performed for 

this particular case are given in Fig. 14 where the resulting G- pulse energy is given versus 

the pumped energy for T=285, 290 and 295 K. The simulations show a good agreement with 

the experimental data  (Yu et al., 1998). In particular, 4 J pumping gives the output energy of 

about ≈0.14 J for T=285 K and ≈0.13 J for T=290 K, correspondingly. The experiment shows 

≈0.125 J for T=292 K (Yu et al., 1998). The pulse generation threshold is computationally  

found to be near the pumping energy of 2 J which is also close to the value of the 

extrapolated  experimental data (Yu et al., 1998). Additionally, the simulation data given in 

Fig. 14 shows that the G-pulse energy strongly depends on  the operating temperature. For 

instance, for 4 J pump the temperature increase from 285 K to 295 K is found to decrease G-

pulse energy on ≈15%.   

In Fig. 15 we show (a) G-pulse power versus time for several pumping energies,  (b) G-pulse 

power versus time for various photon injection seeder power and (c)  G-pulse width versus 

pumping energy. The pulse width shows decrease with the increase of the pumping energy 

similar to the experimental data. However, the values of pulse width found in our 

simulation is about 2 times higher that those of experimental study (Yu et al., 1998). The 

seeder does not significantly change the pulse width, and shortens the time between the 

moment of Q-switch opening and G-pulse generation.  
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Fig. 15. G-pulse power versus time for (a) for different pump energy, (b) constant pump 
energy 4 J and photon seeder powers, and  (c) pulse width versus  the pump energy for 
experimental conditions by Yu et al. 1998. 

6.3 Tm,Ho:YAG 

In the case of Tm,Ho:YAG serious simplifications  can be done allowing model reduction to 

two rate equations describing the electron density at the excited levels 3F4 and 5I7, and 

ground state levels 3H6 and 5I8 assuming  that the excitation is rapidly transferred from  3H4 

to 3F4 level. In particular, this model based on 4-level rate dynamics model (Bruneau, et al. 

1998) is given by the set of equations: 

 
17718228

2

22 )( nnpnnp
n

tR
dt

dn
p +−−=

τ
, (28) 
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where n1≈nTm-n2, n8≈nHo-n7, p28=31.7x10-17 cm3/s,  p71 =0.09p28,   p27=7.24x10-17 cm3/s are the 

probabilities of the optical transitions, τ2=11 ms and τ7=15.6 ms are the level lifetimes, 

σse=9.2x10-20 cm2 is the stimulated emission cross-section, f7=0.104 and f7=0.018 are the 
Boltzmann populations factors for T=20 0C.     
The experimentally measured and simulated normal pulse energy versus pumping energy 
is shown in Fig. 16 (a) and (b). The experiments were done using two crystal set of Tm (6%), 
Ho (0.4 %): ceramic YAG of 3 mm in diameter and 22 mm long doped zone (within the rod 
of 70 mm in length). Output cavity transmission is Tout=0.15, and cavity length is Lcav=40 cm. 
The temperature and humidity  inside the dehumidified box of 30 cm in length was 24.8 oC 
and H=0.029 (2.9 %), correspondingly. The temperature and humidity  outside the 
dehumidified box  was 25.2 oC and H=0.42 (42 %), correspondingly. The total loss inside the 
cavity was estimated for laser beam waist is 1.5 mm and loss inside the undoped YAG 
sections as 2 i i

i

lα∑ =0.034.  
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Fig. 16. Normal pulse energy versus pumping energy: solid line – computational, broken 
line – experiments: (a) pumping time 0.5 ms and (b) pumping time 1.0 ms. 

In Fig. 17 we show experimentally measured and simulated normal pulse power versus 
time made for the same crystal set, cavity length of 100 cm with the temperature of 22 0C 
and humidity H=0.36 (36 %) (Tout=0.15). Pumping time is 1 ms. Fig. 17 (a) shows very good 
agreement of the experimental and simulated pulse power versus time. However, the 
careful comparison shows several discrepancies which may be attributed to a difficulties in 
defining precise experimental conditions. Nevertheless, all time scales of pulse generation in 
Fig. 17 (a) and (b), including relaxation period of ≈0.2 ms, agree well with each other. 
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Fig. 17. Normal pulse power versus time (a) experiment and (b) simulation. 
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It is worth noting that experimental and simulated results show output power stabilization 
after several dozens of relaxation spikes agreeing with previous analytical derivations by 
Elder and Payne, 1995. 

7. Summary and conclusions 

Complex thermo-optical model for simulation and optimization of 2 μm co-doped Tm,Ho 
solid state lasers  is developed based on (i) 8-levels rate dynamics model for  the excitation 
transfer to Ho3+ ions from LD pumped Tm3+ ions and (ii) the oscillator energy equation with  
TEM00 distribution for stimulated photons inside the laser cavity. This optical model is 
rigourosly coupled with  two-dimensional time dependent heat transfer model including 
absorption, heat release and heat transfer inside the operating crystal, as well as thermal 
effect of  spontaneously emitted infrared radiation fluxes. In the case of water cooled laser 
operation these IR radiations fluxes are shown to be fully absorbed  within the water 
boundary layer of several hundreds microns and to produce a significant inhibition of heat 
dissipation from the operating crystal. In particular, in case of water cooled operation only 

≈40 % of the pumped energy is transformed into the heat directly inside the crystal, whereas 

≈45 % is  IR radiation spontaneously emitted by 3H4, 3H5, 3F4 and 5I7  levels and fully 
absorbed by water within the thermal boundary layer. This  model is used in simulations for 
a wide range of parameters for 780 nm LD side-pumped co-doped Tm,Ho:YLF and YAG 
lasers. Two significant effects are found for the particular case of Q-switched  high repetition 

(20-50 Hz) Tm,Ho:YLF laser operation with output pulse energy ≈0.1 J and  ≈500 ns pulse 
duration.  First, for obtaining a giant (G) pulse from a 2.06 μm solid state Tm,Ho:YLF laser 
by the active Q-switching technique, the optimal Ho  concentration will be higher than that 
used in normal operation. In simulations of 500 ns G-pulse generation maximal efficiency 
occurred at 6 % Tm and  1.0 % Ho, in contrast with 0.4% Ho  found to be optimal for the 
normal pulse generation. Maximal energy output from Tm,Ho:YLF lasers can be achieved 
by incorporating a  delay of about 0.7 ms between 0.5 ms 780 nm LD pulsed pumping  and 

the start of  Q-switched  G-pulse operation. Secondly, simulation suggests that the ≈0. 7 ms 
delay  after 0.5 ms LD pumping pulse should be used for retrieving the maximum of the 
pumped energy.  Finally, heat transfer effects are analyzed in detail   showing output pulse 
energy decrease for high repetition rates due to temperature influence on the upper and 
lower level population factors.  
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