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1. Introduction 

The minimum phase systems have ultimately been redefined for LTI discrete-time systems, 
at first SISO and later square MIMO ones, as those systems for which minimum variance 
control (MVC) is asymptotically stable, or in other words those systems who have ‘stable’ 
zeros, or at last as ‘stably invertible’ systems. The redefinition has soon been extended to 
nonsquare discrete-time LTI MIMO systems (Latawiec, 1998; Latawiec et al., 2000) and 
finally to nonsquare continuous-time systems (Hunek, 2003; Latawiec & Hunek, 2002), 
giving rise to defining of new ‘multivariable’ zeros, i.e. the so-called control zeros. Control 
zeros are an intriguing extension of transmission zeros for nonsquare LTI MIMO systems. 
Like for SISO and square MIMO systems, control zeros are related to the stabilizing 
potential of MVC, and, in the input-output modeling framework considered, are generated 

by (poles of) a generalized inverse of the ‘numerator’ polynomial matrix (.)B . Originally, 

the unique, so-called T -inverse, being the minimum-norm right or least-squares left inverse 
involving the regular (rather than conjugated) transpose of the polynomial matrix, was 
employed in the specific case of full normal rank systems (Hunek, 2002; Latawiec, 2004). The 
associated control zeros were later called by the authors ‘control zeros type 1’ (Latawiec, 
2004; Latawiec et al., 2004), as opposed to an infinite number of ‘control zeros type 2’ 
generated by the myriad of possible polynomial matrix inverses, even those called τ - and 

σ -inverses also involving the unique minimum-norm or least-squares inverses (Latawiec, 

2004; Latawiec et al., 2005b). Transmission zeros, if any, are included in the set of control 
zeros; still, we will discriminate between control zeros and transmission zeros. In the later, 
new ‘inverse-free’ MVC design approach based on the extreme points and extreme 
directions method (Hunek, 2007; Hunek & Latawiec, 2006), it was possible to design a pole-

free inverse of the polynomial matrix (.)B  so that no control zeros did appear. Well, except 

when transmission zeros are present, in which case the extreme points and extreme 
directions method does not hold. In the current important result of the authors, the Smith 

factorization of the polynomial matrix (.)B  can lead to its pole-free inverse, when there are 

no transmission zeros. Well, provided that the applied inverse is just the T -inverse, the 
Source: New Approaches in  Automation and Robotics, Book edited by: Harald Aschemann, ISBN 978-3-902613-26-4, pp. 392,  
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intriguing result bringing us back to the origin of the introduction of control zeros. And in 

case of any other inverse of Smith-factorized (.)B  we end up with control zeros. 

The remainder of this paper is organized as follows. System representations are reviewed in 

Section 2. Section 3 presents the problem of minimum variance control for discrete-time LTI 

MIMO systems. Section 4 describes the new approach to MVC design, confirming the 

Davison’s theory of minimum phase systems and indicates the role of the control zeros in 

robust MVC-related designs. A simple simulation example of Section 5 indicates favorable 

properties of the new method in terms of its contribution to robust MVC design. New 

results of the paper are summarized in the conclusions of Section 6. 

2. System representations 

Consider an un -input yn -output LTI discrete- or continuous-time system with the input 

)(tu  and the output )(ty , described by possibly rectangular transfer-function matrix 

)(pG uy nn ×∈R  in the complex operator p , where zp =  or sp =  for discrete-time or 

continuous-time systems, respectively. The transfer function matrix can be represented in 

the matrix fraction description (MFD) form )()()( 1 pBpApG −= , where the left coprime 

polynomial matrices ][pA yy nn ×∈R  and ][pB uy nn ×∈R  can be given in form 

n
n aIppA ++= ...)(  and m

m bbppB ++= ...)( 0 , respectively, where n  and m  are the orders of 

the respective matrix polynomials. An alternative MFD form )(
~

)(
~

)( 1 pApBpG −= , involving 

right coprime ][
~

pA yy nn ×∈R  and ][
~

pB yu nn ×∈R , is also tractable here but in a less 

convenient way (Latawiec, 1998). Algorithms for calculation of the MFDs are known 
(Rosenbrock, 1970; Wolowich, 1974) and software packages in the MATLAB’s Polynomial 
Toolbox ® are available. Unless necessary, we will not discriminate between 

n
npaIpA −− ++= ...)( 1  and )()( 1−= pAppA n , nor between m

mpbbpB −− ++= ...)( 0
1  and 

)()( 1−= pBppB m . In the sequel, we will assume for clarity that )(pB  is of full normal rank; a 

more general case of )(pB  being of non-full normal rank can be easily tractable (Latawiec, 

1998). Let us finally concentrate on the case when normal rank of )(pB  is yn  (‘symmetrical’ 

considerations can be made for normal rank un ). Now, for discrete-time systems we have 

n
n

n zaIzAzzA −−− ++== ...)()( 1  and m
m

m zbbzBzzB −−− ++== ...)()( 0
1 , with == − )()()( 1 zBzAzG  

)()( 111 −−−−= zBzAz d , where mnd −=  is the time delay of the system. The analyzed MFD 

form can be directly obtained from the AR(I)X/AR(I)MAX model of a system =− )()( 1 tyqA  

)()](/)([)()( 111 tvqDqCtuqBq d −−−− += , where 1−q  is the backward shift operator, yn
ty R∈)( , 

untu R∈)(  and yn
tv R∈)(  are the output, input and uncorrelated zero-mean disturbance, 

respectively, in (discrete) time t ; A  and B  as well as A  and ][zC yy nn ×∈R  are relatively 

prime polynomial matrices, with k
kzcczC −− ++= ...)( 0

1  and nk ≤ , and the D  polynomial in 
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1−z -domain is often equal to 11 −− z (or to yn -identity matrix in discrete-time MVC 

considerations). 

The familiar Smith-McMillan form )(pSM  (Kaczorek, 1998) of )(pG  (as a special case of the 

MFD factorization (Desoer & Schulman, 1974)) is given by )()()()( 00 pVpSpUpG M= , where 

][0 pU yy nn ×∈R  and ][0 pV uu nn ×∈R  are unimodular and the pencil )(pS uy nn
M

×∈R  is of the 

form 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−×−×−

−××

)()()(

)(

00

0
)(

rnrnrrn

rnrrr
M

uyy

u
M

pS  (1) 

with )/,...,/,/()( 2211 rrpM ψεψεψεdiag= , where )(piε  and )(piψ , ri ,...,1=  (with r  being 

the normal rank of )(pG ), are monic coprime polynomials such that )(piε  divides )(1 pi+ε , 

1,...,1 −= ri , and )(piψ  divides )(1 pi−ψ , ri ,...,2= . The particular Smith form is given by 

the appropriate pencil )(pS , with ),...,,()( 21 rpM εεεdiag=  often associated with Smith zeros 

or transmission zeros. The polynomials )(piε  are often called the invariant factors of )(pG  and 

their product )()( 1 pp i
r εε Π=  is sometimes referred to as the zero polynomial of )(pG . 

Extend the discrete-time system input-output description to the form accounting for 
additive disturbances 

 )()()()()()( 111 tvqCtuqBqtyqA d −−−− +=   (2) 

where )(tu  and )(ty  are the input and output vectors, respectively, )(tv  is the zero-mean 

uncorrelated disturbance vector, d  is the time delay and )( 1−qA , )( 1−qB  and )( 1−qC  are the 

appropriate matrix polynomials (in the backward shift operator 1−q ) of orders n , m  and k , 

respectively. As usual, we assume that the leading coefficient of )( 1−qA  is equal to the 

identity matrix. Assume that )( 1−qA  and )( 1−qB  as well as )( 1−qA  and )( 1−qC  are left 

coprime, with )( 1−qB  and (stable) )( 1−qC  being of full normal rank yn . For the general 

purposes and for duality with the continuous-time case, we use here the ARMAX model, 

even though it is well known that the )( 1−qC  polynomial matrix of disturbance parameters 

is usually in control engineering practice unlikely to be effectively estimated (and is often 
used as a control design, observer polynomial matrix instead). 
In the sequel, we proceed with discrete-time systems only but all the results are available for 
continuous-time systems as well (Hunek, 2003; Hunek & Latawiec, under review; Latawiec, 
2004; Latawiec & Hunek, 2002; Latawiec et al., 2004). 

3. Closed-loop minimum variance control 

Consider a right-invertible system described by equation (2) and assume that the observer 

(or disturbance-related) polynomial k
kqcqccqC −−− +++= ...)( 1

10
1  has all roots inside the 

unit disk. (Note: Similar results can be obtained for left-invertible systems.) 
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Then the general MVC law, minimizing the performance index 

 [ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧

+−++−+ )()()()(min T

)(
dtydtydtydtyE refref

tu
  (3) 

where )( dtyref +  and )()()]()(
~

)()()(
~

)[(
~

)( 111111
tvqFtyqHtuqBqFqCdty −−−−−−

++=+  (Hunek, 

2003; Hunek, 2007; Hunek & Latawiec, 2006; Hunek & Latawiec, under review; Latawiec, 
2004) are the output reference/setpoint and the stochastic output predictor, respectively, is 
of form 

 [ ])()(
~

)()(
~

)(
~

)()( 11111R tyqHdtyqCqFqBtu ref
−−−−− −+=   (4) 

The appropriate yy nn × -polynomial matrices 1

1

1

1

1 ~
...

~
)(

~ +−
−

−− +++= d

dn qfqfIqF
y

 and 

1
1

1
10

1 ~
...

~~
)(

~ +−
−

−− +++= n
n qhqhhqH  are computed from the polynomial matrix identity 

(called Diophantine equation) 

 
)(

~
)()(

~
)(

~ 1111 −−−−− += qHqqAqFqC d

   (5) 

with 

 
)()(

~
)()(

~ 1111 −−−− = qCqFqFqC
  (6) 

where 1

1

1

1

1 ...)( +−
−

−− +++= d

dn qfqfIqF
y

, k
kqcqccqC −−− +++= ~...~~)(

~ 1
10

1  and 
ynI  denotes 

the yn -identity matrix. 

For right-invertible systems the symbol )( 1R −qB  denotes three possible classes of minimum-

norm right T -, τ - and σ -inverses of the polynomial matrix )( 1−qB  (Hunek, 2003; Latawiec, 

2004; Latawiec et al., 2004; Latawiec et al., 2005b; Latawiec et al., 2003). Like with 

transmission zeros for SISO and square MIMO systems, poles of the right inverse )( 1R −qB  

have been defined as control zeros (Hunek, 2003; Hunek, 2007; Hunek & Latawiec, 2006; 
Hunek & Latawiec, under review; Latawiec, 1998; Latawiec, 2004; Latawiec et al., 2000; 
Latawiec & Hunek, 2002; Latawiec et al. 2005a; Latawiec et al., 2004; Latawiec et al., 2005b; 
Latawiec et al., 2003). The minimum-norm right inverse was used in the unique T -inverse 
to generate a unique set of control zeros type 1 for right-invertible systems (Hunek, 2003; 
Latawiec, 2004; Latawiec & Hunek, 2002; Latawiec et al., 2003). 
However, the formula (4) can be treated as a solver of the MVC-related matrix polynomial 
equation 

)()()( 1 tytuqB =−

 
(7) 

where [ ])()(
~

)()(
~

)(
~

)( 1111
tyqHdtyqCqFty ref

−−−−
−+=  (Latawiec, 2004). When analyzing 

possible solutions to equation (7) we have introduced new classes of inverses of polynomial 
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matrices, that is a finite number of τ -inverses and an infinite number of σ -inverses 

(Latawiec, 2004; Latawiec et al., 2004; Latawiec et al., 2005b), all surprisingly employing the 
unique minimum-norm right inverse. The τ - and σ -inverses contribute to generation of 

what has been referred to as control zeros type 2 (Latawiec, 2004; Latawiec et al., 2004; 
Latawiec et al., 2005b). It is interesting to note that transmission zeros make a subset of 
control zeros. 

4. New approach to MVC design 

In an attempt to essentially reduce the computational burden of the extreme points and 
extreme directions method we introduce yet another effective (and much simpler) approach 
to the MVC design, in which we make use of the equality (Hunek, 2007; Hunek & Latawiec, 
2006) 

 IqBqB =−− )()( 1R1   (8) 

Consider an LTI un -input yn -output system described by the ARMAX model (2). Put 

1−= qw  and factorize )(wB  to the Smith form )()()()( wVwSwUwB = , where )(wU  and 

)(wV  are unimodular. Now, )()()()( 1R1R wUwSwVwB −−= , with determinants of )(wU  and 

)(wV  being independent of w , that is possible instability of an inverse polynomial matrix 

)(R wB  being related to )(R wS  only. Amazingly, applying the minimum-norm right T -

inverse 1TTR
0 ])()([)()( −= wSwSwSwS  guarantees that no control zeros except transmission 

zeros appear in the inverse )(R wS . (Employing any other inverses, e.g. τ - or σ -inverses, 

causes the control zeros to appear in )(R wS  in addition to transmission zeros.) This 

intriguing result has been confirmed in a number of simulations but no formal proof exists, 

so far. The result confirms the value of the Smith factorization on the one hand, and the T -
inverse on the other. 

5. Simulation example 

Consider the three-input and two-output unstable system described by noise-free 

deterministic part of model (2) with ,
19.114

128.32
)(

11

11
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

= −−

−−
−

qq

qq
qB  =− )( 1qA  

21 19+570+500 −−= qq  and 2=d . The control zeros type 1, obtained on a basis of T -inverse 

of )( 1−qB , determine unstable MVC or perfect control of the system. Besides, it is very 

difficult to find stable MVC/perfect control on the basis of τ - and σ -inverses with control 

zeros type 2 associated. Since the system has one (stable) transmission zero at 1.0=z , it is 

impossible to employ the extreme points and extreme directions method. Therefore, we 

apply our new method of Section 4. Now, after substitution 1−= qw  and after Smith 
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factorization we obtain ⎥
⎦

⎤
⎢
⎣

⎡
=

11

01
)(wU , ⎥

⎦

⎤
⎢
⎣

⎡
−

=
0100

001
)(

w
wS , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+
=

010

01.02.0

1228.3

)(

ww

wV  

and finally 

 

[ ])()(
~

)()(
~

11

01

00
10

1
0

01

9.3119101

100

5.050

)(

111

1
11

tyqHdtyqF

q
qq

tu

ref
−−−

−
−−

−+⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−−
−
−

=

•

  (9) 

with specific forms of )(
~ 11 −−

qF  and )(
~ 11 −−

qH  not presented here due to their mathematical 

complexity. Now, for 11 =refy , 5.12 =refy  the outputs remain at the setpoint for 2=≥ dt  

under the stabilizing perfect control, whose plots )(1 tu , )(2 tu  and )(3 tu  according to 

equation (9) are shown in Fig. 1. For clarity, we have chosen to show the performance of 
(noise-free) perfect control rather than MVC. 
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Fig. 1. Perfect control plots for the specific example 

Remark. However, the Smith factorization approach undeniably contributes to the robust 
MVC design, in the majority cases the application of the control zeros can give much better 
results (Hunek, under review), giving rise to the extension of the Davison’s theory of 
minimum phase systems (Davison, 1983). Unfortunately, there exists no formal proof of the 
above statement and it has been left for future research. 

6. Conclusions 

The Smith factorization approach to the robust minimum variance control has been 
presented in this paper. The new method appears much better than others, designed by 
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authors, namely those based on the extreme points and extreme directions method and 
second one called minimum-energy. Firstly, it is computationally much simpler and 
secondly, it works also for the case when transmission zeros are (nongenerically) present in 

the nonsquare system. Strange enough, the presented method should operate on the T -
inverse exclusively and any other inverse applied gives rise to the appearance of control 

zeros. What is also strange, applying the T -inverse directly to the polynomial (.)B  (rather 

than to its Smith-factorized form) inevitably ends up with control zeros. Finally, the new 
approach confirms the Davison’s theory and indicates the need of the introduction of the 
complementary control zeros theory. 
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