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1. Introduction 

Linear time-varying (LTV) models have a niche of their own in the representation of systems 
whose behaviour may be fairly approximated as linear but whose parameters are not 
constant or when their behaviour shows some other properties not displayed by linear time-
invariant (LTI) models. LTV models have been applied successfully in a wide range of 
problems ranging from system modelling and control (see, for instance, Benton & Smith, 
2005; Kim et al., 2005; Vaishya & Singh, 2001) or electronic circuit design (Darabi et al., 2004) 
to less common applications such as the modelling of soil carbon dynamics (Martin et al., 
2007) or the analysis of the stability of oscillatory (bio)chemical systems (Zak et al., 2005). 
A common problem found in systems science and which is relevant for automation 
techniques and robotics is the proper identification of the parameters present in a given 
system. For this kind of problems, methods have been derived for the identification of LTV 
dynamics (see, for instance, Lortie & Kearney, 2001). However, in particular applications 
where it is required to estimate in real time the parameters of a given plant with LTV 
behaviour and there is limited computing power for this purpose, it would be desirable to 
resort to another less expensive scheme. 
A traditional scheme used to identify certain parameters of a given system is depicted in 
Figure 1. In this scheme, the output of the system under investigation x is compared to the 
output of the adaptive filter y and the difference e is used to tune the filter. Traditionally, the 
filter is based on an algorithm implemented on a suitable computing platform and adequate 
interfacing circuitry. However, nothing precludes the implementation of such a filter using 
analogue techniques which may lead to the synthesis of systems for analogue computing 
(Cowan et al., 2006). Nowadays circuit design techniques are advanced enough to synthesise 
in a rather convenient way all kinds of static and dynamic linear and nonlinear functions 
without relying in implementations comprising several operational amplifiers, resistors, 
capacitors and multipliers and working with low power consumption indexes and relatively 
high speed processing capabilities (Mulder et al., 1998). For instance, a second-order low-
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pass filter whose bandwidth depends linearly on the bias current Io is depicted in Figure 2 
(Frey, 1993). It is even possible to perform with such techniques quite advanced signal 
processing functions like, for instance, generation of wavelet bases (Haddad et al., 2005). 
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Figure 1. Parameter identification using adaptive filter 
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Figure 2. A second-order low-pass filter implemented with log-domain techniques (Frey, 
1993). 

In this chapter, a strategy to formulate continuous-time dynamical LTV systems with a 
prescribed dynamical behaviour will be proposed. Without any loss of generality, the 
strategy proposed will be first used to derive the model of a second-order LTV system with 
fully configurable modes. Such a model may be used to implement, for instance, an adaptive 
filter for system identification purposes together with an appropriate tuning scheme or may 
even be used for analogue computing (Cowan et al., 2006). Furthermore, the proposed 
model is guaranteed to have a stable behaviour provided that certain system constraints 
may be observed.  
The rest of this chapter is organised as follows: in Section 2, a model for a second-order LTV 
system which may accept fast variations in its parameters without compromising its 
stability will be derived. In Section 3, the stability properties of the proposed model will be 
assessed. The properties of the new model will be compared with previous work done by 
the authors. The behaviour of the new model will be further validated through simulations 
in Section 4. Finally, some concluding remarks will be given in Section 5. 
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2. Synthesis of continuous-time LTV models of n-th order 

Without any loss of generality, consider the second-order LTV differential equation  

 x’’(t) + a1(t)x´(t) + a0(t)x(t) = 0   (1) 

where x(t) is a scalar function depending on the time variable t with a prescribed dynamical 
behaviour and a0(t) and a1(t) are also scalar functions of the time variable t which serve as 
time-varying coefficients of (1).  
It is desired that the behaviour of x(t) in (1) may resemble the behaviour of the scalar 
function y(t) arising from the following LTI equation: 

 y ‘’(t) + 2┦ωy’(t) + ω2y(t) = 0  (2) 

where ┦ is the damping parameter and ω is the undamped natural frequency associated to 
(2). 
The general solution of (2) is given by 

 y(t)= C1eω (-┦ + (┦2-1)
1/2

)t  + C2eω (-┦ - (┦2-1)
1/2

)t  (3) 

where C1 and C2 are arbitrary constants. The general solution of x(t) in (1) should resemble 
the behaviour of the solution of (2). However, the parameters ┦ and ω presented in (3) must 
be in general time-varying. 
A possible solution is that x(t) is composed by a linear combination of two modes of the 
form 

 x1(t) = e∫ω(t) (- ┦(t) + (┦2(t)-1)
1/2

)dt  (4) 

 x2(t) = e∫ω(t) (- ┦(t) - (┦2(t)-1)
1/2

)dt  (5) 

The proposed modes for (1) are now defined in terms of time-varying parameters. These 
solutions may be used to determine the coefficients a1(t) and a0(t) which are required in (1) 
to have the specified dynamic behaviour.  
In order to obtain the time-varying coefficients of (1) from a set of known solutions, a linear 
algebraic system of equations has to be solved. Substitution of (4) and (5) in (1) leads to the 
following set of linear algebraic equations which may be solved for a1(t) and a0(t) 

┌
│
│
│
└

  x1‘(t)   x1(t) 
 

x2‘(t)   x2(t) 

┐ 
│ 
│ 
│ 
┘ 

┌
│
│
│
└ 

  a1(t) 
 

a0(t) 

┐ 
│ 
│ 
│ 
┘ 

= 

┌ 
│ 
│ 
│ 
└ 

   - x1’’(t) 
 

- x2’’(t) 

┐ 
│ 
│ 
│ 
┘ 

(6) 

The solution of (6) is guaranteed to exist since x1(t) and x2(t) are linearly independent 
functions. After solving (6) using (4) and (5), the following expressions for a1(t) and a0(t) are 
obtained 

 a1(t) = ┦(t)[ 2ω(t) – ┦’(t)(┦2(t) -1)-1 ] - ω(t)ω-1(t)  (7) 

 a0(t) = ω(t)[ 2ω(t) – ┦’(t)(┦2(t) -1)-1 ]  (8) 
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It should be noticed that other definitions for the modes of (1) could have been proposed 
which may resemble the dynamic behaviour of (2) when the time-varying parameters of (1) 
reach a constant value. Such a pair of modes would be, for instance 

 x1(t) = eω(t) (- ┦(t) + (┦2(t)-1)
1/2

)  (9) 

 x2(t) = eω(t) (- ┦(t) - (┦2(t)-1)
1/2

)  (10) 

However, such a choice would give a very complicated formulation of the functions a1(t) 
and a0(t) in (1).  
In general, the method used for the determination of a1(t) and a0(t) for (1) may be applied to 
determine the time-varying coefficients ai(t), i =0, 1,...,n − 1 of the n-th order differential LTV 
equation of the form 

 x(n)(t) + an−1(t)x(n−1)(t) + an-2(t)x(n-2)(t)...+ a1(t)x ‘(t) + a0(t)x(t) = 0  (11) 

provided that n linearly independent solutions xi(t), i = 1, 2,...,n are known. In this case, the 
time-varying coefficients ai(t) will be the solutions of the following system of algebraic 
equations 

┌ 
│ 
│ 
│ 
│ 
│ 
└ 

 x1(n-1)(t)     x1(n-2)(t)   …    x1‘(t)      x1(t) 
x2(n-1)(t)     x2(n-2)(t)   …    x2‘(t)      x2(t) 
…               …          …     …           … 

xn-1(n-1)(t)   xn-1(n-2)(t)  …   xn-1‘(t)   xn-1(t)
xn(n-1)(t)     xn(n-2)(t)   …    xn‘(t)      xn(t) 

┐ 
│ 
│ 
│ 
│ 
│ 
┘ 

┌
│
│
│
│
│
└

 
an-1(t)
an-2(t)

… 
a1(t) 
a0(t) 

 

┐
│
│
│
│
│
┘ 

=

┌
│
│
│
│
│
└ 

 - x1(n)(t) 
- x2(n)(t) 

… 
- xn-1(n)(t) 
- xn(n)(t) 

┐ 
│ 
│ 
│ 
│ 
│ 
┘ 

 

In this particular case, the existence of the solutions of this system of equations is 
guaranteed to exist since the solutions xi(t) are linearly independent and therefore their 
Wronksian will be different from zero for all t. In the formulation of a model with set of 
fully configurable modes, and depending on the expected dynamics of the system to be 
modelled, the modes given in expressions (4) and (5) are excellent candidates to represent a 
couple of complex conjugate poles whose exact locations are not known. On the other hand, 
the function x(t) = e -∫σ(t)dt  with σ(t) > 0 may be used to represent a real pole located in the 
left plane. As it will be seen soon, the proposed functions represent the best alternative to 
build a system based on equation (11) with complex dynamical behaviour. 
In previous work (Kaszyński, 2003; Jaskula, & Kaszyński, 2004; Piskorowski, 2006), the 
following equation was proposed for defining a new class of low-pass time-varying filters 

 x’’(t)+2┦(t)ω(t)x ‘(t)+ ω2(t)x(t) = ω2(t)u(t)  (12) 

where u(t) is the signal to be filtered, x(t) represents the output signal and ┦(t) and ω(t) 
represent time-varying parameters. If the coefficients of (12) are compared to the coefficients 
defined in (7) and (8) for (1), it can be concluded that the system defined in (1) will 
approximate the behaviour of (12) when the maximum magnitude of the logarithmic 
derivative of function ω(t) and the maximum magnitude of function ┦´(t)/(┦2(t) − 1) are 
small compared to 2┦(t)ω(t) and ω(t), respectively. In other words, ┦(t) and ω(t) have to vary 
slowly. 
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3. Stability properties of the proposed model 

The stability properties of (1) when a1(t) and a0(t) are defined according to (7) and (8) are 
determined solely by the modes used in the formulation of these coefficients. In the general 
case (i.e. when time-varying parameters ┦(t) and ω(t) vary arbitrarily), a suitable measure of 
the stability of the modes given in (4) and (5) can be obtained if their Lyapunov exponents 
are computed. The Lyapunov exponents L1 and L2 associated to modes x1(t) and x2(t) in (4) 
and (5) are given by 

 ( ) ( ) ( ) ( )( )1/2
1 1 2

1 1
L  lim  sup t  ln x t  lim Re t   t   t   t   1  dtω ξ ξ− −

→∞
⎡ ⎤= = ∫ − + −⎣ ⎦t

│ │   (13) 

 ( ) ( ) ( ) ( )( )1/2
1 1 2

2 2
L lim  sup t  ln x t  lim Re t   t   t    t   1   dt ω ξ ξ− −

→∞
⎡ ⎤= = ∫ − − −⎣ ⎦t

│ │  (14) 

In order to assure the stability of (1), L1 < 0 and L2 < 0. Therefore, it suffices that the real part 
of those time averages remains negative. This means that function ┦(t) may take arbitrary 
negative values and the stability of the system will be still guaranteed, provided that the 
average value of  ω(t) [-┦(t) ±  (┦2(t) − 1)1/2 ] is negative over the whole time interval in which 
(1) is operating. This gives added flexibility when implementing a control for modulating 
┦(t) and ω(t) according to a predefined rule. 
An important issue behind the proposed model in (1) is the possibility that it might be 
bounded-input bounded-output (BIBO) stable when the right hand of (1) contains a non-
zero term. In order to guarantee this type of stability, it suffices that the homogeneous 
response of (1) is exponentially asymptotically stable and that the coefficients a0(t) and a1(t) 
are bounded for all t (Anderson & Moore, 1969). In this case, both conditions are satisfied 
and therefore the proposed model has BIBO stability. The proposed modes in expressions 
(4) and (5) have exponential asymptotic stability provided  that ω(t) and ┦(t)  remain positive 
for all t. In order to guarantee the boundedness of the coefficients of (1), ω(t) hast to be 
different from zero for all t, whereas ┦(t) has to be different from 1 for all t. 
In the particular case of the system governed by equation (11), the considerations given in 
(Anderson & Moore, 1969) to guarantee its BIBO stability when the right hand of (11) is non-
zero are also applicable. It should be noticed that if the dynamics of the system should 
include a real pole in the left plane whose location is not known, function x(t) = e -∫σ(t)dt  has 
also exponential asymptotic stability provided that σ(t) > 0 for all t. Moreover, the average 
value of σ(t) will define the Lyapunov exponent associated to that solution. 
The results obtained so far should be compared against previous work. In (Kaszyński, 2003), 
the following conditions for assuring the stability of (12) were given 

 ω(t) > 0  (15)  

 ┦(t) > 0  (16)  

 │ω’(t)│<│2┦(t)ω2(t)│  (17) 
 

Such conditions were obtained using the second Lyapunov method. Conditions (15) and 
(16) are sufficient in (1) to ensure stability for all t. With these conditions, it is guaranteed 
that the arguments of the integrals in (13) and (14) are always negative, and therefore the 
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Lyapunov exponents computed in this way will be also negative. Condition (17) imposes an 
additional constraint on (12): in order to ensure stability, ω(t) may not be varied above the 
limit imposed by the product 2┦(t)ω2(t), thus limiting the tunability range of this parameter. 
System (1) with coefficients a1(t) and a0(t) as defined in (7) and (8) does not show the 
shortcoming described above. 
To further demonstrate that the dynamics of (1) and (12) are different, the sum of the 
Lyapunov exponents will be computed. According to (Nemytskii & Stepanov, 1989), the 
sum of the Lyapunov exponents ┥ of a regular n-th order LTV system of the form (11) is 
given by 

 ( )1 t

0 n 1
 lim   sup t  a  dτ τ−

−→∞
ν = − ∫

t

  (18)    

If the coefficient associated to the x’(t) term of (12) is compared to (7), it will be verified that 
the only way to make the sum of Lyapunov exponents equal for both systems is forcing the 
product 2┦(t)ω(t) to be the same in both systems and cancelling the time variations of ┦(t) 
and ω(t). This means that if the sum of Lyapunov exponents for (1) and (12) is meant to be 
the same, both systems must be LTI and have the same set of eigenvalues. 

4. Performance evaluation 

In order to verify the stability properties of the proposed model, its response will be tested 
for a predefined test signal (a step function). Therefore, x(t) will be estimated numerically 
from the following equation  

 x ‘’(t)+ a1(t)x’(t) + a0(t)x(t) = a0(t)u(t)  (19) 

where coefficients a1(t) and a0(t) are defined as in (7) and (8) and u(t) is the step function. 
The obtained response will be compared to the response obtained from a reference LTI 
system and from the LTV filter based on equation (12) subject to the same parameter 
variation. It will be assumed that the LTI reference filter is a second-order lowpass 
Butterworth filter with poles located on −5 ± 5j. Furthermore, it will be assumed that ω(t) 
and ┦(t) are given by the following expressions 

 ω(t) = [50+50e−40t + 100e−20t]1/2  (20) 

 ┦(t) = (10 + 10 e−20t)/2ω(t)  (21) 

Although it has been already demonstrated a long time ago that the eigenvalues obtained 
from an arbitrary LTV system by means of the well-known characteristic equation for LTI 
systems do not convey any valid information regarding the stability properties of the system 
or its solution (Vinogradov, 1952), with the definition given for ω(t) and ┦(t) in (20) and (21) 
the instantaneous location of the roots of the characteristic equation associated to (12) is 
modulated exponentially in time from −10 ± 10j at t =0 to −5 ± 5j within a relatively short 
time interval. With a time constant of 0.05 seconds for the modulation factor, the roots 
associated to the characteristic equation of (12) should be very close to the poles of the 
reference LTI system after 0.2 seconds. 
The simulated responses obtained in Mathematica for the LTI reference system, the filter 
described based on (12) and the proposed LTV model are depicted in Figure 3. From the 
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simulation results it can be seen that the responses of both LTV systems become identical to 
the response of the LTI reference system as t increases. Although the response generated by 
(12) rises faster compared to the response generated by (19), the proposed model produces a 
smaller overshoot. 
In Figure 4, the response to the step function of the systems defined by (19) and (12) is 
depicted. In this particular case, it was assumed that ω(t) and ┦(t) were varied according to 
the following relations 

 ω(t) = [50 + 90 sin(10πt) + 40.5 sin2(10πt)]1/2  (22) 

 ┦(t) = [10 + 9 sin(10πt) ]/ 2ω(t)  (23) 
 

0.20.40.60.8 1 1.21.4
t

0.2

0.4

0.6

0.8

1

Output

LTV2

LTV

LTI

 
Figure 3. Responses of (12) and (19) to a step response with an exponential variation of ω(t) 
and ┦(t). In this figure, the acronym LTV stands for the response of (12) whereas the 
acronymLTV2 stands for the response of (19) 

With the chosen variation parameters for ω(t) and ┦(t), the roots of the characteristic 
equation associated to (12) will vary periodically according to the following relation 

 p1,2 = −5 ± 5j +(−4.5 ± 4.5j) cos(10πt)  (24) 

where p1 and p2 stand for the roots of the characteristic equation of (12). With this variation 
scheme, the condition given in (17) for (12) is not valid anymore. However, in the case of 
(19), the stability measures given in (13) and (14) for equation (1) (L1 = L2 = −5), the 
exponential asymptotic nature of its homogeneous response and the boundedness of its 
coefficients guarantee that the output of (19) will be bounded (Anderson & Moore, 1969). 
Given that (12) is expected to show an unstable behaviour, backward differentiation 
formulae were chosen to solve numerically equations (19) and (12). From the results of the 
simulation it can be seen that both LTV systems reach in a finite time their steady-state 
behaviour. However, the system described by (12) displays a somewhat larger overshoot 
before it reaches steady-state behaviour. 
It is noteworthy to consider the role of the scaling coefficient of the input function u(t) in 
equations (12) and (19). According to condition (17), the output of equation (12) should be 
unstable if the coefficients given in expressions (23) and (24) are considered. However, the 
simulation results of Figure 4 show that the output of the filter described by equation (12) is 
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stable. If the scaling coefficient of the input function u(t) present in equation (12) is removed 
and the following equation is instead considered  

 x ‘’(t) + 2┦(t)ω(t)x ‘(t) + ω2(t)x(t) = u(t)  (25)  

it is possible to demonstrate that the stability condition given in (17) is indeed broken. 
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Figure 4.  Responses of (12) and (19) to a step response with a periodic variation of ω(t) and 
┦(t). 
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Figure 5. Responses of (25) and (26) to a step response with a periodic variation of ω(t) and 
┦(t) 

In Figure 5, the response of equation (25) with periodic coefficients ω(t) and ┦(t) as defined in 
(23) and (24) to a unit step function is depicted. This response is compared to the response of 
the LTV differential equation  

 x ‘’(t) + a1(t)x ‘(t) + a0(t)x(t) = u(t)  (26)  

and to the response of the lowpass filter described by the following LTI differential equation  

 x ‘’(t) + 50x ‘(t) + 10x(t) = u(t)  (27) 

In expression (26), coefficients a0(t) and a1(t) are defined as given in (8) and (7). From Figure 
5 it may be noticed that the responses of equations (25) and (26) are oscillatory and do not 
track the input function u(t). In this case, function u(t) is assumed to be a step function. 
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Figure 6. Time series considered for the output of (25) 
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Figure 7. Time series considered for the output of (26) 

A detailed analysis of a portion of the time series obtained from (25) and (26) gives more 
information on the results obtained through simulation with Mathematica. The time series 
considered for analysis appear in Figures 6 and 7. In a first attempt, Lyapunov exponents 
may be determined to establish the nature of the behaviour displayed by the systems 
represented by equations (25) and (26). However, given the periodic character of their time 
series, other methods should be used to assess the stability of (25) and (26) (Sprott, 2003). 
In order to determine whether the stability condition given in (17) is broken or not for 
equation (25), the power spectra of the time series considered should be obtained. According 
to (Sigeti, 1995), the power spectrum of a given signal with positive Lyapunov exponents 
has an exponential high-frequency falloff relationship. Such characteristic in the frequency 
domain is due to the fact that the function which defines the signal under consideration has 
singularities in the complex plane when the time variable t is seen as a complex variable and 
not as a real one (Sigeti, 1995). When the Fourier transform is computed for such a signal, 
the singularities must be avoided in the complex plane through an adequate integration 
path and in this way exponential terms appear on its associated Fourier transform (Sigeti, 
1995). In the presence of noise, the exponential frequency falloff relationship will be 
noticeable up to a given frequency and afterwards it will decay as a power of f-n where f is 
the frequency and n a natural number (Lipton & Dabke, 1996). These phenomena are also 
observable in chaotic systems as well, independently of the appearance of attractors or not 
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in their dynamic behaviour (van Wyk &. Steeb, 1997). When there are no singularities in the 
complex variable t present in a given signal and in the absence of noise, its power spectrum 
will decay at high frequencies as a power of f-n as well (Sigeti & Horsthemke, 1987). 
 

Frequency (Hz) Magnitude 
0 2.86448 × 10−2

5 1.32849 × 10−3

10 8.75641 × 10−5

15 2.82938 × 10−6

20 4.9275 × 10−8 
25 1.02782 × 10−9

Table 1. Discrete power spectrum for the output of equation (25) 

Frequency (Hz) Magnitude 
0 8.78076 × 10−2

5 4.50563 × 10−3

10 8.13031 × 10−4

15 5.94339 × 10−5

20 7.58989 × 10−6

25 2.38456 × 10−6

30 8.0822 × 10−7 
35 3.04263 × 10−7

40 1.23233 × 10−7

45 5.27326 × 10−8

50 2.35502 × 10−8

55 1.08831 × 10−8

60 5.1718 × 10−9 

Table 2. Discrete power spectrum for the output of equation (26) 

Given that the numerical solutions obtained for equations (25) and (26) are periodic, their 
power spectra turn out to be discrete. In Tables 1 and 2 the magnitude of the harmonic 
components of the responses computed via Mathematica has been tabulated. The data given 
in Table 1 was used to obtain the best fit in Mathematica using routine NonlinearFit[ ] for 
expressions 
                y = A1e B1f                      (28) 
and  
                y = A2fB2                     (29) 
 

where A1, A2, B1 and B2 are fitting parameters. If the data given in Table 1 is considered from 
f = 15 Hz for the fitting process, the constants A1 and B1 which fit best expression (28) are 
equal to 0.535465 and -0.810056 respectively. With the same data, the constants obtained for 
the best fit of expression (29) are A2 = 175010 and B2 = −9.17964. In Figure 8 expressions (28)  
and (29) are plotted together with the original data and it can be seen that the exponential 
curve matches better the obtained data from equation (25) at high frequencies. The same 
procedure was carried out with the data presented in Table 2. The coefficients obtained for 
expression (28) were A1 =0.0244961 and B1 = −0.401458 whereas for expression (29) the 
coefficients were A2 = 10292.2 and B2 = −7.00509. From Figure 9 it can be seen that 
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Figure 8. Power spectrum obtained for the time series of (25) 
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Figure 9. Power spectrum obtained for the time series of (26) 

expression (29) gives the best fit for the data obtained from equation (26) at frequencies 
greater than 15 Hz. Given that condition (17) is broken, it can be thus safely concluded that 
the response obtained from equation (26) is unstable when ω(t) and ┦(t) are defined as given 
in expressions (23) and (24). In the case of equation (26), under the same conditions, it turns 
out that its response is bounded. The response of equation (26) is bounded for a bounded 
input because the conditions given in (Anderson & Moore, 1969) for BIBO stability are 
enforced. 

5. Conclusions 

In this chapter, a strategy for the formulation of a LTV scalar dynamical system with 
predefined dynamic behaviour was presented. Moreover, a model of a second-order LTV 
system whose dynamic response is fully adaptable was presented. It was demonstrated that 
the proposed model has a exponentially asymptotically stable behaviour provided that a set 
of stability constraints are observed. Moreover, it was demonstrated that the obtained 
system is BIBO stable as well.  Finally, it was shown via simulations that the response of the 
proposed model reaches with a smaller overshoot its steady-state response compared to the 
response of a LTV lowpass filter proposed previously. 
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