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Chapter

Hierarchical Sliding Mode Control
for a 2D Ballbot That Is a Class of
Second-Order Underactuated
System
Dinh Ba Pham, Soon-Geul Lee,Thi Hang Bui

and Tien Phat Truong

Abstract

2D Ballbot is an actual under-actuated system with second-order nonholonomic
velocity constraints and input coupling case where only control input is employed to
control two outputs of the system. Controlling such a system is not easy because it
faces many changelings including nonlinearities, external disturbances, and uncer-
tainties. This study proposed a robust control system for a Ballbot mobile robot. The
proposed control scheme is constructed using the hierarchical sliding mode control
technique. The kinematics and dynamics of the Ballbot are derived. A Lyapunov
function is used to prove the stability of the closed-loop control system. The stabiliz-
ing and transferring problems are investigated through several simulations and
experiments by using the actual Ballbot platform.

Keywords: sliding mode control, Ballbot, under-actuated system, Lyapunov analysis,
stabilizing and transferring

1. Introduction

Ballbot has a body that balances on a single spherical wheel (ball). The robot uses a
drive mechanism consisting of three omnidirectional wheels (OWs) for a ball [1] to
ensure both stabilizing and transferring. The Ballbot can free travel in any direction on
plat plane, even if the robot is crowded with people in a common human-coexisting
environment.

An inherent property of the Ballbot system is a naturally nonlinear underactuated
multi-input multi-output system, in which the number of the control input signal is
less than the number of output signals. This property introduces the challenge related
to Ballbot control design. Several control designs were accomplished using a simplified
model (linear model) to overcome the complexities of the mathematical equations.
The linear model is the first way to deal with the complexity of the mathematical
equation of the Ballbot system. Reference [2] designed a control system based on a
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state feedback controller to control stabilizing and transferring. The experimental
results showed the ability to stabilize and travel with loads in any direction. However,
it can be led only to small external disturbances. Studies in [3, 4] employed a double-
loop linear control system to stabilize a Ballbot. Their control system had two con-
trollers: a PI inner-loop controller and a linear quadratic regulator (LQR) outer-loop
controller. Kantor et al. [5] proposed a double-loop control system. Both inner-loop
and outer-loop controllers were PID controllers. Sukvichai and Parnichkun [6] used a
linear controller based on an LQR control scheme for a double-level Ballbot.

The second way to deal with the complexity of the mathematical equation of the
Ballbot system is to use nonlinear and intelligent controls such as partial feedback
linearization control (FLC), sliding mode control (SMC), or fuzzy control. Lotfiani
et al. [7] employed an SMC controller along fuzzy trajectory planning to control a
Ballbot to track the desired trajectory. Moreover, a collocated PFL method [8] was
introduced for a Ballbot. The open-loop trajectory generation with the collocated PFL
controller was simulated which showed a low position error.

Some researchers have studied intelligent control techniques. Reference [9]
suggested an intelligent tracking control system combined with a dual Mamdani-type
fuzzy control strategy and supervisory control technique for an omnidirectional
spherical mobile platform. The experiment results showed the position tracking
response of the robot. A fuzzy wavelet cerebellar-model-articulation controller [10]
was proposed for a team of multiple Ballbots.

SMC is a well-known and robust nonlinear control scheme. To enhance robustness
for both actuated [11] and under-actuated [12–19] systems, several controllers have
been employed the SMC control method. The application of SMC for Ballbot control
can be found in several previous studies. Ching-Wen et al. [20] introduced a hierar-
chical SMC based on backstepping to control stabilizing and agile trajectory tracking
of a Ballbot with exogenous disturbance. Reference [21] enhanced Ching-Wen’s
backstepping SMC using interval type 2 fuzzy neural networks for motion control of a
Ballbot with a four-motor inverse mouse ball-diving mechanism. However, these
studies only presented numerical simulations.

As mentioned, the Ballbot is naturally an under-actuated system in which the
number of the control inputs is less than the number of the outputs. The Ballbot
system is nonlinear. Moreover, the control design problem also faces uncertainties,
un-modeling, and disturbances. Thus, the SMC control scheme is a suitable approach
for the Ballbot system.

In this study, we designed a robust controller to control a Ballbot. The proposed
control scheme is a basis of the hierarchical SMC technique to execute two main tasks
including stabilizing the body on the top of the ball and maneuvering the ball on the
floor.

2. System model

2.1 Kinematic model

The general kinematics of the Ballbot is a relationship between _ϕk ¼ _φx _φy _φz

h iT
,

the angular velocity of the ball relative to the body frame, and _ψ i (i ¼ 1, 2, 3), the
angular velocities of the three OWs relative to the reference frame of the body. The
kinematics relationship of dual-row OWs was discussed in [22]. For the Ballbot, the

2

Production Engineering and Robust Control



three OWs, a kind of single-row OW, are mounted on the body of the robot. The
driving axes are separated by 120° in the x-y plane and each driving axis is sloped
downward by α.

The main assumptions for simplification of the system are:

i. Body and floor are absolute solids.

ii. No slippage occurs on the surfaces of the ball-floor and the ball-OW.

iii. The points of contact of the ball-ground and the OWs-ball are points of
contact.

The non-slip condition of the surface of the ball-OWs is met by requiring that the
projection of velocities of the ball at all contact points in the actuation direction of the
OW be the same and expressed mathematically as

_ψ irw ¼ _ϕk � Pi

� �

uwi, i ¼ 1, 2, 3, (1)

where Pi is the position vector from the center of the ball to the contact point i
between the ball and the ith OW in the body frame as indicated in Figure 1, uwi is the
vector of direction cosines of the ith OW contact point velocities in the actuation
directions, and rw is the radius of the OW.

Therefore, the angular velocities of the OWs are expressed as

_ψ i ¼
1

rw
_ϕk � Pi

� �

uwi, i ¼ 1, 2, 3: (2)

As shown in Figure 1, the position vector of the contact point Pi can be defined by

P1 ¼ rk sin α 0 rk cos α½ �T, (3a)

Figure 1.
Sketch of decomposed angular velocities of three OWs and a ball.
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P2,3 ¼ � 1

2
rk sin α �

ffiffiffi

3
p

2
rk sin α rk cos α

� �T

: (3b)

Furthermore, the direction cosine vectors that provide the corresponding direction
of the speed at the contact point between the OWs and the ball are defined by

uw1 ¼ 0 1 0½ �T, (4a)

uw2,3 ¼ ∓

ffiffiffi

3
p

2
� 1

2
0

� �T

: (4b)

Substituting (3a), (3b), (4a) and (4b) into (2) yields

_φx _φy _φz

� �T ¼ J αð Þ _ψ1 _ψ2 _ψ3½ �T, (5)

where J αð Þ is the Jacobian matrix of the system

J αð Þ ¼

� 2rw
3rk cos α

rw
3rk cos α

rw
3rk cos α

0 �
ffiffiffi

3
p

rw
3rk cos α

ffiffiffi

3
p

rw
3rk cos α

rw
3rk sin α

rw
3rk sin α

rw
3rk sin α

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (6)

The Jacobian matrix (6) represents the effect of the zenith angle on the motion
relationship between the ball and three single-row OWs.

2.2 Dynamic model

Figure 2 presents the planar model of the Ballbot. The system of the Ballbot is
modeled as a rigid cuboid on top of a ball to get a simple calculation of the system
parameters. The ball mass mk and OW mass mw are considered as point masses
concentrated at their centers. ma represents the equivalent mass of all components
including the body, drive mechanism, and other parts. Chosen generalized coordi-
nates of the Ballbot system include xk tð Þ, yk tð Þ, θx tð Þ, and θy tð Þ, here, xk tð Þ, yk tð Þ denote

Figure 2.
Planar model of the main driving system of the Ballbot.

4

Production Engineering and Robust Control



the position of the, θx tð Þ, and θy tð Þ are the orientation of the body around the x- and y-
axes. The control input is the resultant moment of the three actuators, whose x and y
terms are τx and τy.

The Ballbot system dynamics are described by obtaining the kinetic and potential
of the ball, body, and OWs. For the ball,

Tkx ¼
1

2
mk þ

Ik
r2k

	 


_y2k,Vkx ¼ 0, (7)

where rk is the ball radius and Ik is the ball momentum inertia.
The OWs are attached to the body of the Ballbot. Thus, only the rotational motion

of the OWs has to be calculated, that is,

Twx ¼
3Iwcos2α

4r2w
_yk þ rk _θx

� �2
,Vwx ¼ 0, (8)

where rw is the radius of each OW, α represents the zenith angle, and Iw indicates
the momentum inertia of each OW.

For the body,

Tax ¼
1

2
Ix _θ

2

x þ
1

2
ma _yk � l _θx cos θx

� �2 þ 1

2
mal

2 _θ
2

xsin
2θx,Vax ¼ magl cos θx, (9)

where Ix is the body momentum inertia around the x-axis, l represents the distance
from the ball center to the body mass center, and g denotes the gravitational acceleration.

In the y-z plane, the generalized coordinates of the Ballbot system are defined as

qx ¼ yk θx
� �T

and the friction vector

D _qx

� �

¼ by _yk brx _θx
� �T

, (10)

where by and brx are the viscous damping coefficients that model the ball-floor
friction and ball-body friction in the y-z plane, respectively.

The Lagrangian function Lx is expressed as

Lx ¼ Tx � Vx ¼ Tkx þ Twx þ Tax � Vkx þ Vwx þ Vaxð Þ

¼

1

2
mk þ

Ik
r2k

	 


_y2k þ
3Iwcos2α

4r2w
_yk þ rk _θx

� �2

þ 1

2
Ix _θ

2

x þ
1

2
ma _yk � l _θx cos θx

� �2 þ 1

2
mal

2 _θ
2

xsin
2θx �magl cos θx

0

B

B

B

@

1

C

C

C

A

, (11)

The Euler-Lagrange equation that describes the motion of the Ballbot is

d

dt

∂Lx

∂ _qx

	 


� ∂Lx

∂qx

¼ 1

rw

1

rk

� �

τx �D _qx

� �

: (12)

From (12), the dynamic equations on the y-z plane are expressed as follows:

€yka1 þ a4 � a3 cos θxð Þ€θx þ a3 _θ
2

x sin θx þ by _yk ¼ r�1
w τx, (13)
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a4 � a3 cos θxð Þ€yk þ €θxa2 þ brx _θx � a5 sin θx ¼ rkr
�1
w τx, (14)

where a1 ¼ mk þ Ikx
r2
k

þma þ 3Iwcos2α
2r2w

, a2 ¼ mal
2 þ 3Iwr

2
k
cos2α

2r2w
þ Ix, a3 ¼ mal, a4 ¼

3Iwcos2α
2r2w

rk, a5 ¼ magl, Ik refers to the ball momentum inertia, Iw is the OW momentum

inertia, Ix denotes the body momentum inertia about the x-axis, by and brx are the
viscous damping coefficients.

Then, (13) and (14) can be rewritten as follows:

€yk ¼ Fx1 qx, _qx

� �

þ Gx1 qx

� �

τx, (15)

€θx ¼ Fx2 qx, _qx

� �

þGx2 qx

� �

τx, (16)

where Fx1 qx, _qx

� �

¼ A�1
x a3 cos θx � a4ð Þ a5 sin θx � brx _θx

� �

� a2 a3 _θ
2

x sin θx þ by _yk

� �h i

,

Gx1 qx

� �

¼ A�1
x r�1

w a2 þ a3rk cos θx � a4rkð Þ,

Fx2 qx, _qx

� �

¼ A�1
x a4 � a3 cos θxð Þ a3 _θ

2

x sin θx þ by _yk

� �

þ a1 a5 sin θx � brx _θx
� �

h i

,

Gx2 qx

� �

¼ A�1
x r�1

w a3 cos θx � a4 þ a1rkð Þ,

Ax ¼ a1a2 � a4 � a3 cos θxð Þ2:

In the x-z plane, the mathematical equations describe the Ballbot system dynamics
as follows:

€xxb1 þ b4 cos θy � b3
� �

€θy � b4 _θ
2

y sin θy þ bx _xk ¼ �r�1
w τy, (17)

b4 cos θy � b3
� �

€xk þ €θyb2 � b5 sin θy þ bry _θy ¼ rkr
�1
w τy, (18)

where b1 ¼ mk þ Ik
r2
k

þ 3Iwcos2α
2r2w

þma, b2 ¼ 3Iwr2kcos
2α

2r2w
þmal

2 þ Iy, b3 ¼ 3Iwcos2α
2r2w

rk, b4 ¼
mal, b5 ¼ magl, Iy represents the body momentum inertia about the y-axis, bx and bry
are the viscous damping coefficients.

In the x-z plane, minimal coordinates of the Ballbot system denotes

qy ¼ xk θy
� �T

, then (17) and (18), are rewritten as follows:

€xk ¼ Fy1 qy, _qy

� �

þ Gy1 qy

� �

τy, (19)

€θy ¼ Fy2 qy, _qy

� �

þ Gy2 qy

� �

τy, (20)

where Fy1 qy, _qy

� �

¼ A�1
y b2 b4 sin θy _θ

2

y � bx _xk
� �

þ b3 � b4 cos θy
� �

b5 sin θy � bry _θy
� �

h i

,

Gy1 qy

� �

¼ �A�1
y r�1

w b2 � b3rk þ b4rk cos θy
� �

,

Fy2 qy, _qy

� �

¼ A�1
y b3 � b4 cos θy

� �

b4 sin θy _θ
2

y � bx _xk
� �

þ b1 b5 sin θy � bry _θy
� �

h i

,
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Gy2 qy

� �

¼ A�1
y r�1

w rkb1 � b3 þ b4 cos θy
� �

,

Ay ¼ b1a2 � b4 cos θy � b3
� �2

:

3. Control system design

3.1 Hierarchical sliding mode control design

It can be assumed that all state variables are measurable. To design this controller
in the y-z plane, first we introduce a suitable pair of SMSs

sx1 ¼ cx1ex1 þ _ex1

sx2 ¼ cx2ex2 þ _ex2




, (21)

where cx1 and cx2 are positive constants, ex1 and ex2 are tracking errors

ex1 ¼ yk � ykd
ex2 ¼ θx � θxd




, (22)

where ykd ¼ const denotes the desired position of the ball and θxd is the desired tilt
angle about the x-axis of the body.

When the Ballbot balances, it means that the desired tilt angle θxd ¼ 0. Then, (21)
can be rewritten as

sx1 ¼ cx1 yk � ykd
� �

þ _yk

sx2 ¼ cx2θx þ _θx

(

: (23)

Let _sx1 ¼ 0 and _sx2 ¼ 0, the equivalent control laws of the two subsystems can be
gotten as

τxeq1 ¼ �G�1
x1 qx

� �

cx1 _yk þ Fx1 qx, _qx

� �� �

, (24)

τxeq2 ¼ �G�1
x2 qx

� �

cx2 _θx þ Fx2 qx, _qx

� �� �

: (25)

The hierarchical SMC law is deduced as follows. The first layer SMS is defined
as Sx1 ¼ sx1. For the first layer SMS, the SMC law and the Lyapunov function are
defined as

τx1 ¼ τxeq1 þ τxsw1, (26)

and

Vx1 tð Þ ¼ 0:5S2x1, (27)

where τxsw1 is the switch control part of the first layer SMC. Differentiate Vx1 tð Þ
with respect to time t

_Vx1 tð Þ ¼ Sx1 _Sx1: (28)
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Let

_Sx1 ¼ �kx1Sx1 � ηx1sign Sx1ð Þ, (29)

where kx1 and ηx1 are positive constants.
The first layer SMC law can be deduced from Eqs. (26) and (27), that is,

τx1 ¼ τxeq1 þG�1
x1 qx

� �

_Sx1: (30)

The second layer SMS is constructed based on the first layer SMS S1 and s2, as
shown in Figure 3.

Sx2 ¼ αxSx1 þ sx2, (31)

where αx is the sliding mode parameter.
For the second layer SMS, the SMC law and the Lyapunov function are defined as

τx2 ¼ τx1 þ τxeq2 þ τxsw2, (32)

and

Vx2 tð Þ ¼ 0:5S2x2, (33)

where τxsw2 is the switch control part of the second layer SMC.
Differentiating Vx2 tð Þ with respect to time t yields

_Vx2 tð Þ ¼ Sx2 _Sx2: (34)

Let

_Sx2 ¼ �kx2Sx2 � ηx2sign Sx2ð Þ, (35)

where kx2 and ηx2 are positive constants.
The total control law of the presented hierarchical SMC can be deduced as follows:

τx2 ¼
αxGx1 qx

� �

τxeq1 þ Gx2 qx

� �

τxeq2 þ _Sx2

αxGx1 qx

� �

þGx2 qx

� � : (36)

Figure 3.
Structure of hierarchical sliding mode surfaces.
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Similarly, the total control law of the hierarchical SMC in the x-z plane also given as

τy2 ¼
αyGy1 qy

� �

τyeq1 þGy2 qy

� �

τyeq2 þ _Sy2

αyGy1 qy

� �

þ Gy2 qy

� � : (37)

3.2 Stability analysis

Theorem 1: If considering the total control law (36) and the SMSs (23) and (31) for
the system dynamics (15) and (16), then SMSs, Sx1 and Sx2 are asymptotically stable.

Proof: Integrating both sides (34) with respect to time obtains

ð

t

0

_Vx2dτ ¼
ð

t

0

�ηx2 Sx2j j � kx2S
2
x2

� �

dτ, (38)

Then

Vx2 tð Þ � Vx2 0ð Þ ¼
ð

t

0

�ηx2 Sx2j j � kx2S
2
x2

� �

dτ, (39)

It can be found that

Vx2 0ð Þ ¼ Vx2 tð Þ þ
ð

t

0

ηx2 Sx2j j þ kx2S
2
x2

� �

dτ≥

ð

t

0

ηx2 Sx2j j þ kx2S
2
x2

� �

dτ: (40)

Therefore, it can be achieved that

lim
t!∞

ð

t

0

ηx2 Sx2j j þ kx2S
2
x2

� �

dτ≤Vx2 0ð Þ<∞:

By using Barbalat’s lemma [23], we can obtain that if t ! ∞ then ηx2 Sx2j j þ
kx2S

2
x2 ! 0. Then, lim

t!∞
Sx2 ¼ 0.

By applying Barbalat’s lemma, we can get lim
t!∞

Sx2 ¼ 0.

Thus, both Sx1 and Sx2 are asymptotically stable.
Theorem 2: If considering the control law (36) and the SMSs of (23) for the system

dynamics (15) and (16), then SMSs, sx1 and sx2, are also asymptotically stable.
Proof: From Theorem 1, the SMS of the ball subsystem dynamics is asymptotically

stable.
Now, we will prove that the SMS of the body subsystem dynamics is asymptoti-

cally stable. Limiting of both sides of (31) obtains

lim
t!∞

Sx2 ¼ lim
t!∞

αxSx1 þ sx2ð Þ ¼ αx lim
t!∞

Sx1

	 


þ lim
t!∞

sx2 ¼ lim
t!∞

sx2: (41)

The result of (41) shows lim
t!∞

sx2 ¼ lim
t!∞

Sx2 ¼ 0. It demonstrates that the SMS of

the body subsystem dynamics is asymptotically stable. Thus, the all SMSs of the
subsystems are asymptotically stable.
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Theorem 3: If considering total control law (36) and the SMSs (23) for the system
dynamics (15) and (16), assuming that all the state variables are equivalent

infinitesimal, then the parameter boundary of the SMS is 0< cx1 < lim
x!0

Fx1 qx, _qxð Þ
_yk

	 
�

�

�

�

�

�

�

�

and

0< cx2 < lim
x!0

Fx2 qx, _qxð Þ
_θx

	 
�

�

�

�

�

�

�

�

, where x ¼ qx _qx

� �

.

Proof: By solving sxi ¼ 0, the lower boundary of cxi can be obtained

sx1 ¼ cx1 yk � ykd
� �

þ _yk ¼ 0

sx2 ¼ cx2θx þ _θx ¼ 0

(

: (42)

The eigenvalue of (42) should be negative for meeting the system stability. Thus,
the lower boundary of cxi is cxi >0.

The upper boundary of cxi can be gotten from _sxi ¼ 0

_sx1 ¼ cx1 _yk þ Fx1 qx, _qx

� �

þ Gx1 qx

� �

τxeq1 ¼ 0

_sx2 ¼ cx2 _θx þ Fx2 qx, _qx

� �

þ Gx2 qx

� �

τxeq2 ¼ 0

(

: (43)

Therefore,

cx1 ¼
Fx1 qx, _qx

� �

þ Gx1 qx

� �

τxeq1
� �

_yk

�

�

�

�

�

�

�

�

cx2 ¼
Fx2 qx, _qx

� �

þGx2 qx

� �

τxeq2
� �

_θx

�

�

�

�

�

�

�

�

8

>

>

>

<

>

>

>

:

: (44)

Further, it can be got

cx1 <
Fx1 qx, _qx

� ��

�

�

�þ Gx1 qx

� �

τxeq1
�

�

�

�

� �

_yk
�

�

�

�

cx2 <
Fx2 qx, _qx

� ��

�

�

�þ Gx2 qx

� �

τxeq2
�

�

�

�

� �

_θx
�

�

�

�

8

>

>

>

>

<

>

>

>

>

:

: (45)

When the state of the subsystem keeps sliding on its SMS and converges to the
neighborhood of the control objective, the system can be treated as an autonomous

one. Thus, τxeqi ¼ 0 and the following inequation is gotten 0< cx1 < lim
x!0

Fx1 qx, _qxð Þ
_yk

	 
�

�

�

�

�

�

�

�

and 0< cx2 < lim
x!0

Fx2 qx, _qxð Þ
_θx

	 
�

�

�

�

�

�

�

�

.

The block diagram of the control system is shown in Figure 4. With the real motor
torques τ1, τ2, and τ3 as functions of the equivalent torques about the x- and y-axes, τx
and τy, in matrix form, yield [24].

τ1

τ2

τ3

2

6

4

3

7

5
¼

2

3 cos α
� 1

3 cos α
� 1

3 cos α

0

ffiffiffi

3
p

3 cos α
�

ffiffiffi

3
p

3 cos α

2

6

6

4

3

7

7

5

T

τx

τy

� �

: (46)

The corresponding simulation and experiment results will be given in the subse-
quent sections.
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4. Simulation result

A numerical simulation investigates the stabilize, robustness, and transfer of the
proposed controller for the Ballbot. The decoupled dynamics (15) and (16), and
(19) and (20) with the proposed control schemes (36) and (37) are modeled in
Matlab/Simulink real-time environment with ODE45 and a sampling time of
0.01 seconds.

The parameters of the Ballbot for both simulation and experiment are shown in
Table 1. For the numerical simulation, the control parameters are tuned by the
trial-and-error method and then selected as in Table 1.

Various simulations are conducted by considering the stabilizing controls with an
initial nonzero tilt angle and with external disturbances and tracking control.

4.1 Stabilizing control with nonzero initial tilt angles

In this simulation, the tilt angles about x- and y-axes are initialized as 6.3° and
�6.5°, respectively for checking the behavior. Simulation results are shown in
Figure 5. The tilt angles responses and the angular velocities are depicted in
Figure 5(a) and (b), respectively. The position of the ball is shown in Figure 5(c).
Figure 5(d) shows the curves of the control inputs.

These numerical results demonstrate that the proposed robust controller enables to
maintain stabilizing of the Ballbot.

Figure 4.
Block diagram of the control system.

System parameters Control gains

ma ¼ 116kg, Ix ¼ 16:25kgm2, Iy ¼ 15:85kgm2,

rw ¼ 0:1m, l ¼ 0:23m, Iw ¼ 0:26kgm2, rk ¼ 0:19m,

mk ¼ 11:4kg, Ik ¼ 0:165kgm2, bx ¼ by ¼ 5Ns=m,

brx ¼ bry ¼ 3:68Nms=rad, α ¼ 56°.

cx1 ¼ 0:01, cx2 ¼ 35, αx ¼ 0:05, ηx2 ¼ 0:1,

kx2 ¼ 10; cy1 ¼ 0:01, cy2 ¼ 17, αy ¼ 0:05,

ηy2 ¼ 0:1, ky2 ¼ 10

Table 1.
System parameters and control gains.
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Figure 5.
Simulation results of stabilizing while station-keeping. (a) Tilt angles of the body. (b) Angular velocities of the
body. (c) Trajectory of the contact point between the ball and the floor. (d) Control inputs.
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4.2 Stabilizing control with external disturbances

In the second simulation, the stabilizing control of the Ballbot is investigated under
an external disturbance. An external force of 300 N is applied to the Ballbot system at
the sixth second while the Ballbot is stabilizing on the floor. As the results, the body
tilt angles and angular tilt angles are depicted in Figure 6(a) and (b), respectively.
Under the external disturbance, The Ballbot cannot maintain its original position of
xk, yk
� �

¼ 0, 0ð Þ. Instead, the robot has traveled to a new position of xk, yk
� �

¼
�7:4cm, 3:1cmð Þ as shown in Figure 6(c). The control inputs by the proposed control
are converged to zeros after 2 seconds, as depicted in Figure 6(d).

4.3 Tracking control

In the third simulation, the Ballbot is commanded to track a rectangular trajectory
with a dimension of 75 cm � 90 cm in 40 s. The system responses of the tilt angles of
the body are shown in Figure 7(b). As indicated in Figure 7(a), the proposed control
system performs well in tracking desired rectangular trajectory.

5. Experiment result

In this section, several experiments on the actual Ballbot platform (Figure 8)
are implemented to further verify the performance of the proposed control system.
Especially, experiment for the robustness of the controller is executed under external
disturbances.

The robot control algorithm is programmed with multithread tasks so that the
control period is set to 15 ms. The program also consists of the torque conversion and
kinematic model [1] to estimate the position and velocity of the ball.

An inertial measurement unit (IMU) is utilized to measure the orientation and
angular rates of the Ballbot. The IMU includes an accelerometer and a gyro sensor.
Three encoders with a resolution of 4000 counts/rev are also utilized to obtain the
position of the ball. Full state variables of the Ballbot system can be obtained based on
the kinematics and the sensor fusion.

The drive mechanism is equipped with brushless DC actuators with a continuous
torque of 0.28 Nm and gearboxes with a ratio of 1:4 for driving the ball. Two 48 V
lithium battery packs supply power for the actuators and other devices with a working
time of several hours.

5.1 Stabilizing control with an initial nonzero tilt angle

This experiment investigates the stabilizing performance of the proposed hierar-
chical SMC with an actual Ballbot on the flat floor.

The initial position of the Ballbot is set as the origin point and the robot is set at 6.3°
in roll angle and� 6.5° in pitch angle. The stabilizing responses of the control system are
shown in Figure 9. The tilt angles of the body are presented in Figure 9(a) in which the
steady-state is 1.5 seconds and the steady-state errors of the roll and pitch are 0.4° and
0.5°, respectively. While the angular rates of the body are shown in Figure 9(b). The
proposed control system successfully controls the movement of the ball from an origin
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Figure 6.
Simulation results of robustness control. (a) Tilt angles of the body. (b) Angular velocities of the body.
(c) Trajectory of the contact point between the ball and floor. (d) Control inputs.
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Figure 7.
Simulation results of tracking a rectangular path. (a) Trajectory of the contact point between the ball and floor.
(b) Tilt angles of the body.

Figure 8.
The real Ballbot that is running. (a) Schematic design. (b)Without the cover. (c) Ballbot running. (d)Ballbot running.
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Figure 9.
Experiment results of stabilizing and station-keeping. (a) Tilt angles of the body. (b) Angular velocities of the
body. (c) Trajectory of the contact point between the ball and floor. (d) Control inputs.
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Figure 10.
Experiment results of robustness control performance. (a) Tilt angles of the body. (b) Angular velocities of the
body. (c) Trajectory of the contact point between the ball and floor. (d) Control inputs.
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point to the new point of (xk, yk) = (�14 cm, 2 cm) as shown in Figure 9(c). The
control input of the proposed control scheme is shown in Figure 9(d).

5.2 Stabilizing control under an external disturbance

The robustness performance of the proposed hierarchical SMC is evaluated by
applying the external disturbances to the robot. The experimental scenario is set as: at
the beginning, the robot is stabilizing at the origin position. Then the Ballbot is kicked.
The amount of the kick is about 300 N.

The tilt angles and angular rate of the body are shown in Figure 10(a) and (b).
Figure 10(c) shows the ball response along the x- and y-axes. Under the kick, the
robot moves from the origin position of (xk, yk) = (0, 0) to the new position of
(xk, yk) = (�0.92 cm, 1.65 cm) and then stabilizes at the new position. Torque control
input responses are also shown in Figure 10(d) to keep the stabilizing of the Ballbot.

5.3 Tracking control

In this experiment, the Ballbot is commanded to track the desired rectangular
trajectory with a dimension of 75 cm � 90 cm within 40 seconds. The system response
is presented in Figure 11. Figure 11(a) shows the trajectory of the ball on the floor.

Figure 11.
Experimental results of tracking a rectangular path. (a) Trajectory of the contact point between the ball and floor.
(b) Tilt angles of the body.
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There is some error while the robot tries to track the rectangular desired trajectory.
The position error occurs due to uncertainties, an un-modeling system.

The results demonstrate hierarchical SMC behaviors in stabilizing and transferring
control of the Ballbot.

6. Conclusions

In this study, a 2D model of the Ballbot is obtained using the Euler-Lagrange
equation and the decoupling method. A robust nonlinear controller based on the
hierarchical SMC technique is designed for the Ballbot to control stabilizing and
transferring. The capability of the closed-loop system with the hierarchical SMC is
achieved using the Lyapunov function. The performance and robustness of the hier-
archical SMC are examined under several tests in both simulation and experiment.
The simulation and experimental results demonstrate the capabilities of the proposed
controller for stabilizing and trajectory tracking.
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