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Chapter

Prediction of Large Scale
Spatio-temporal Traffic Flow Data

with New Graph Convolution
Model

Ping Wang, Tongtong Shi, Rui He and Wubei Yuan

Abstract

Prompt and accurate prediction of traffic flow is quite useful. It will help traffic
administrator to analyze the road occupancy status and formulate dynamic and flexible
traffic control in advance to improve the road capacity. It can also provide more precise
navigation guidance for the road users in future. However, it is hard to predict spatio-
temporal traffic flow data in large scale promptly with high accuracy caused by com-
plex interrelation and nonlinear dynamic nature. With development of deep learning
and other technologies, many prediction networks could predict traffic flow with
accumulated historical data in time series. In consideration of the regional characteris-
tics of traffic flow, the emerging Graph Convolutional Network (GCN) model is sys-
tematically introduced with representative applications. Those successful applications
provide a possible way to contribute fast and proper traffic control strategies that could
relieve traffic pressure, reduce potential conflict, fasten emergency response, etc.

Keywords: traffic flow, GCN, traffic data, deep learning, ITS

1. Introduction
1.1 Background and current status

Traffic problems such as frequent traffic congestion, serious traffic accidents, and
long commuting times have seriously reduced the travel experience of passengers and
the efficiency of traffic operations [1]. To cope with these problems, researchers work
on improving the traffic control strategies based on prediction of future traffic stratus
[2]. Traffic flow is one of important road conditions to access [3]. Based on prompt
and accuracy perdition, better and fast-adjusted traffic control and guidance could be
applied. Therefore, reliable traffic flow prediction is also one of the key factors to
upgrade the traffic system from “passive adjust” to “active control in advance”; even
prediction of future short-term traffic status of road sections is quite useful to prevent
congestion deteriorate. For traffic management departments, early detection of
traffic instability and abnormal potential risks based on reliable prediction data can
improve a large number of existing traffic management control applications, such as
traffic calming, signal control, etc.; for road users, real-time route updates and
adjustments based on dynamic traffic prediction results can adjust travel time and
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routes before congestion develops, thus providing vehicles to plan a driving path to
avoid congested road sections and congested intersections or to plan a path with the
shortest driving time for vehicles to improve traffic efficiency.

The current traffic prediction also faces the following challenges, as shown in
Figure 1: (1) analyzing the spatial correlation of the road network: some roads are
adjacent to each other and have different degrees of influence on upstream and
downstream traffic volumes, so the traffic flow in this part is spatially correlated, and
it is a challenge to consider the spatial location relationship to correlate the neighbor-
ing traffic flow characteristics [4]; (2) unlike the regular network layout, the traffic
map structure is irregular; (3) the nonlinear retention of medium and long time
prediction models: the traffic flow changes drastically at the peak time, which is
difficult to predict, especially as the prediction time increases, the nonlinear retention
ability of the model decreases and the time series signal gradually decays, so how to
better correlate the time series relationship of traffic flow to maintain the steady-state
time series prediction is also a long-term challenging task [5].

1.2 Related works

Traffic flow forecasting is based on historical traffic flow data to predict future
traffic flow, which is a typical regression problem of traffic network time series [6].
In order to solve the traffic flow forecasting problem, factors such as traffic pat-
terns, data types, spatial locations, and time periods need to be considered. Nowa-
days, many computational forecasting methods have been widely used in traffic
flow prediction and have achieved good research results. As shown in Figure 2,
common traffic flow prediction methods can be divided into three major categories
[7]. © early traffic flow prediction methods; @ machine-learning-based traffic flow
prediction methods; ® deep-learning-based traffic flow prediction methods.

1.2.1 Early traffic flow prediction methods

Early traffic flow prediction methods mainly model the relationship between
traffic flow, speed, and density and regress the traffic flow data as well as optimize
the parameters to achieve the fitting prediction of traffic data, mainly including
statistical models and traffic simulation.

1.2.1.1 Typical methods

* Miska et al. [8] proposed cellular automata (CA) to simulate each participant of
different flows and their interaction phenomena.

Figure 1.
Challenges in traffic flow prediction; (a) road relevance from the web (https://www.ivsky.com/tupian/daolu_
1948/); (b) the complex road network map of Shaanxi Province; (c) periodicity of traffic data.
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Figure 2.
Classification of time-line based traffic flow prediction methods.

* Ngoduy et al. [9] proposed the use of static and dynamic assignment methods
to allocate traffic on a simulated road network.

* Stephanedes et al. [10] have applied the historical mean model (HA) in urban
traffic control systems in 1984.

e Kumer et al. [11] used the Autoregressive Integrated Moving Average
(ARIMA) model to represent the predicted traffic flow in the form of a
mathematical model.

1.2.1.2 Advantages and disadvantages

Models such as statistical mathematical models and traffic simulations can
describe this traffic flow prediction as a time series problem approximately. How-
ever, simulation systems and simulation tools still need to consume a lot of compu-
tational power and skilled parameter settings to reach a steady state, and it is more
difficult to get accurate prediction results from this prediction model due to the
complexity of traffic scenarios. Besides, these methods based on statistics are only
applicable to linear data, while traffic flow data are nonlinear and complex; thus,
such methods are not capable of handling complex nonlinear traffic data.

1.2.2 Traffic flow prediction methods based on machine learning

With the demand for high accuracy in intelligent traffic scenarios, the short-
comings of traditional prediction methods that cannot model the complex state of
traffic flow become more and more prominent, and machine learning methods
gradually take an important place in traffic flow prediction tasks.

1.2.2.1 Typical methods

* YSetal. [12] proposed a traffic flow prediction method using support vector
machine regression. The idea of using support vector machine method is to
map the low-dimensional nonlinear traffic data to a high-dimensional space by
introducing a kernel function before linear classification.

e Zhu et al. [13] predict the path traffic volume and roadway flow by building a
Bayesian network model.
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* Qietal. [14] proposed a Hidden Markov Model (HMM) for short-term
highway traffic prediction.

1.2.2.2 Advantages and disadvantages

Machine learning methods can better model the stochastic processes and
nonlinear properties of traffic flows and have mostly better performance compared
with traditional models. However, such methods do not consider the spatial and
temporal correlation of traffic flow data and require extensive feature engineering.
Therefore, it is difficult to solve complex traffic flow prediction problems.

1.2.3 Traffic flow prediction methods based on deep learning

Deep learning has been very successful in the fields of computer vision, speech
recognition, and natural language processing, and more and more scholars are
applying deep neural networks (DNNs) to various real-world scenario tasks. In
traffic flow prediction, the models can be classified into road section prediction and
area prediction according to their prediction range characteristics.

1.2.3.1 Typical methods

* Chen et al. [15] proposed a convolutional neural network (CNN)-based traffic
flow prediction method using time series folding for multi-scale learning.

* Lv etal. [16] proposed a heap-based autoencoder (SAE) method for traffic
flow prediction considering spatiotemporal relationships.

* Yu et al. [17] proposed a Long-Short Term Memory (LSTM)-based method for
traffic flow prediction on road networks during peak periods.

* Cho K et al. [18] proposed a gated recurrent unit that can establish links for
traffic data at adjacent moments and preserve the memory by gating and other
means to learn long-term dependencies of traffic flow sequences.

* Yu et al. [19] proposed a spatiotemporal graph convolutional network
(STGCN) for traffic flow velocity prediction on a multi-scale traffic network.

* The ST-ResNet [20] model restricts the input to grid data rather than graph
structure in the traffic prediction problem, which makes it difficult to make
predictions on complex highway data.

* Geom-GCN [21] proposed a network to update the node representation, but it
could not capture the distance dependence between nodes.

* The DCRNN model (2018ICLR) [22] models spatial correlation as a
diffusion process on directed graphs to model the translation of traffic flows
and proposes diffusion convolutional recurrent neural networks capable of
capturing spatial and temporal dependencies between time series using the
seq2seq framework.

¢ The GMAN model (2020AAAI) [23] uses an attention mechanism to model
dynamic spatial and nonlinear temporal relationships, respectively.
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ASTGCN [24] considers only low-order neighborhood relationships between nodes
and ignores correlations between different historical time periods.

1.2.3.2 Advantages and disadvantages

The core of the traffic prediction problem lies in how to effectively capture the
spatiotemporal dimensional features and correlations of the data. Traditional
convolutional neural networks can effectively extract local features of data, but can
only work on standard grid data. The graph convolution can directly extract features
from graph structured data and automatically mine the spatial patterns of traffic data.
The convolution operation along the time axis can extract the temporal patterns of
traffic data. Therefore, this paper focuses on the deep learning model based on graph
convolutional network to capture the spatial and temporal characteristics of traffic
data and effectively solve the traffic flow prediction problem.

1.2.4 Future directions for exploring traffic flow prediction models

GCN has become a mainstream method in the field of traffic flow prediction,
but it started late, and its theoretical foundation and research depth are far from
enough. At present, it still faces many problems that need to be solved. There are
three main directions as follows.

1. Dynamic graph modeling: Most graph structures processed by GCN networks
are static graphs, and there are fewer models involving dynamic graph
structures. The graph structure of static graphs is static and unchanging, while
the vertices and edges of dynamic graphs change randomly or even disappear,
making it difficult to follow the rules.

2.Heterogeneous graph modeling: Homogeneous graph means that nodes and
edges are only one type, and this kind of data is easier to handle. The
heterogeneous graph refers to the type of nodes and edges, the same node and
different node connections will show different properties, the same edge and
different node connections will also show different relationships,
heterogeneous graph structure is relatively complex to deal with. However, the
heterogeneous graph is the most relevant scenario to the actual problem.

3.Deepening the model structure: One of the inherent advantages of GCN is that
it smoothes the graph signal, but as its layers keep deepening, its training
results are highly susceptible to over smoothing. Since graph convolution is a
special form of Laplacian smoothing, the smoothing operation makes the
signal more consistent at the feature level as the graph convolution aggregates
the features of neighboring nodes, thereby causing the signal to lose its
diversity and leading to a sharp performance degradation in the relevant
prediction task, a phenomenon that is more pronounced on small data sets.
Therefore, GCNs cannot be stacked continuously and deeply like general
convolutional models, but shallow neural networks suffer from limited
perceptual field and feature extraction capabilities.

2. Traffic prediction based on graph convolution

This section introduces the principles and techniques related to traffic flow
prediction based on graph neural networks. First, an overview of graph neural
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networks is given, and the graph convolutional networks (GCNs) [25] used to
capture the spatial dependence of traffic flows in the road network are introduced
separately in this paper. Secondly, the transformation of graph structure into actual
road traffic graph structure modeling method is introduced; finally, this paper
models the GCN on urban road networks and uses the topology of the GCN capture
graph to handle the spatiotemporal traffic prediction task, and the application
scenarios of traffic flow prediction are added at the end of the paper.

2.1 Basic graph theory and convolutional networks
2.1.1 Graph theory

Graph is a common data structure that is an important object of study in the
field of computer and data science [26]. A graph usually consists of two elements,
Vertex and Edge, where the vertices correspond to an abstract representation of the
object of study and the edges represent the interconnection between two of the
objects. Graphs are often used to represent things and specific relationships
between things; in fact, graphs can represent any system with binary relationships.
Graphs have a very wide range of applications in real life; social networks of human
life, citation systems, urban transportation networks, and biochemical molecules
can be effectively represented by graph structures.

2.1.1.1 Basic concept

In graph theory, a graph is usually represented as a set of vertices and edges [27],
denoted as G = (V, E), where V = {v1,v,, ..., v, } is the set of vertices and the elements
in this non-empty set are the vertices of the graph. The set of edges can be denoted as E.
A graph can be classified into directed and undirected graphs depending on whether the
edges in the graph have directionality or not. If the edges of a graph have directionality,
such edges are called directed edges as in Figure 3(a), and if the edges of a graph have
no directionality, then the corresponding graph is an undirected graph as in Figure 3
(b). The graphs can be classified into weighted and unweighted graphs according to the
presence or absence of specific weights of the edges in the graph [28]. Each edge in a
weighted graph has a real weight as in Figure 3(c), which represents the degree of
connection between two vertices or the “distance” between two vertices. For example,
in a traffic network, the weight of an edge can characterizes the physical distance
between two vertices. In contrast, the other category is the unweighted graph, which
can also be understood as the unweighted graph in which all the edge weights are equal.

2.1.1.2 Algebraic representation of graphs

As a common data structure, graphs have many kinds of algebraic representa-
tions, and common storage representations include adjacency matrices [29],

WVASOVAW VAW

Undirected graphs Directed graphs Weighted graph

Figure 3.
Basic types of common diagrams.
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adjacency tables, and association matrices. Among them, adjacency matrices are
widely used in graph representation learning because they can represent the con-
structional properties of graphs well and are easy to combine with matrix operations
to understand the structural features of graphs.

If two vertices of an edge in a graph are v; and v}, then v; and v; are said to be
their respective neighbors. We define the set of neighbors of v; as N(v;):

N(‘UZ') = {vleIeijeE OI‘EjiEE} (1)

The degree of v; is defined as: the number of edges with v; as the endpoint,
denoted as deg(v;), and therefore, deg(v;) = N(v;). In a directed graph, the degree of
a vertex can be divided into out-degree and in-degree. The number of directed
edges starting at vertex v; is called the out-degree of v;, and the number of directed
edges ending at vertex v; is called the in-degree of v;. The sum of the entry and exit
degrees of a vertex is equal to the degree of the vertex, and the sum of the degrees of
all nodes is equal to twice the number of all edges. ¢;; and e;; represent edges in
different directions between two vertices, e.g., e;; represents an edge in the direction
from i to j, while ¢;; is the opposite.

The degree matrix is a matrix of the degrees of the vertices, so that the elements
at the main diagonal positions are the vertex degrees and the remaining elements
are 0. Accordingly, the directed graph has an entry degree matrix and an exit degree
matrix. The adjacency matrix is a matrix used to represent the relationship between
vertices. For graph G = (V, E), the adjacency matrix can be expressed as:

(2)

1 if< Viy D >CE
7710 else
The core idea of the adjacency table of a graph is to have a neighbor table for
each vertex of the vertex set. The association matrix is used to represent the direct
association of nodes and edges and is defined as:

(3)

B. 1 if v;and e; are connected
7 0 else

The Laplace matrix [30] is a special matrix that is often used in graph theory to
study the structural properties of graphs. The Laplace matrix is defined as L =
D — A, where D is the degree matrix of the graph and A is the adjacency matrix of
the graph. Figure 4 shows the Laplace matrix representation of a simple graph.

2.1.2 Graph convolutional networks

Previous classical convolutional networks based on deep learning mostly con-
sider regular data in Euclidean space in processing data. When inputting ordered
data with fixed dimensions (e.g., images, speech, video, etc.), the convolutional
operation and the capture and compression of the pooling layer make the network
titting effect remarkable. However, when faced with sequentially disordered road
network traffic data with variable dimensions, the suitability of the traditional
convolution operation decreases. However, graph neural networks (GNNs) can
handle the abovementioned irregular graphs by passing node features into the
neural network during iteration and outputting the node states. The original GNNs
converge the hidden state to a fixed point based on the “immobile point” theory,
which is ineffective for extracting edge information, and in the specific scenario
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represented by the graph, some feature information is shared among nodes due to
the fixed convergence, making the actual information obtained scarce. Therefore,
two types of Graph Convolutional Network (GCN) based on frequency domain and
null domain are generated. Two types of GCN models: null domain convolution is
the same as the traditional convolution method, which can convolve directly at the
pixel point of the picture; frequency domain convolution needs to start from the
graph signal processing, treating the kernel in the convolution as a filter and the
learned features as signals for weighted summation.

As shown in Figure 5, the common network framework for graph convolution is
illustrated. First, the neighboring nodes of the input graph structure are updated
with a layer of convolution operation, and then a layer of ReLU activation function
is added to obtain the basic convolution layer plus activation function structure. The
above structure is stacked sequentially until the number of stacked layers reaches
the prediction of the model, and the output part transforms the node features into
labels for the relevant tasks. Unlike GNN circular iterative parameter sharing, GCN
is a multilayer stack and the parameters are different for each layer.

Further, it mainly includes graph convolution based on the spectral domain
(frequency domain) and the null domain. The spectral domain approach is to
construct CNN simulations into the spectral domain by considering the localization
of graph convolution through spectral analysis, such as Spectral Graph Convolution
(SGC), which mainly focuses on the continuous derivation and improvement of the
core formulations of spectral graph theory to reduce the computational power of
the model from the perspective of optimization parameters. Empty domain
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General framework of graph convolution.

methods perform convolution filters directly on the nodes of the graph and their
neighborhoods, such as Diffusion Graph Convolution (DGC).

2.1.2.1 Spectral Domain-based Graph Convolution Network (SGC)

Spectral domain approach [31]: The absence of graph translation invariance
poses difficulties in defining convolutional neural networks in the nodal domain.
The spectral domain approach uses the convolution theorem to define the graph
convolution from the spectral domain. The spectral domain graph convolution
network is proposed based on graph signal processing, where the convolution layer
of the graph neural network is defined as a filter, i.e., the filter removes the noise
signal to obtain the result of the input signal. In practical applications, it can only be
used to process graph structures that are undirected and have no information on the
edges. The Fourier transform of the signal f(x) and its inverse transform are:

F(w) = pw) = J ") exp (—iw)da (4)

flx) = ¢ (F(w)) ©)

where ¢ varphi denotes the Fourier transform. It can be found that the Fourier
transform that changes the time domain to the spectral domain is essentially the
integral of the summation f (x) with exp (—iwx) as the basis vector. Defining the
graph G of the input signal as a characteristic decomposable Laplace matrix L =
D — A, the normalized Laplace matrix L is defined as:

L=1I,-DIAD: (6)

where D denotes the degree matrix of graph G, A denotes the adjacency matrix,
and I, is the unit matrix of order #n. After performing the eigendecomposition, it can
be expressed as the universal structure L = UAU”. where A is a matrix with each
eigenvalue as a diagonal element, and U is a vector matrix composed of eigenvectors
corresponding to each eigenvalue. Since U is an orthogonal matrix, the basis of the
conventional Fourier transform exp (—iwx) is then replaced by U” and expressed in
matrix form to obtain the Fourier transform of the signal x on the graph as:

x=UTx 7)
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where x refers to the original representation of the signal, x refers to the signal x
after transforming it to the spectral domain, and U’ denotes the transpose of the
eigenvector matrix for doing the Fourier transform. The inverse Fourier transform
of the signal x is:

x = Ux (8)

Using the Fourier transform and the inverse transform on the graph, the graph
convolution operation can be implemented as follows.

xgg =U((U'x) O (U'y)) ©)

where (*; as denotes the graph convolution operator, x denotes the signal in the

node domain on the graph, g is the graph convolution kernel, and () refers to the
Hadamard product, which denotes the multiplication of the corresponding ele-
ments of two vectors. By replacing the vector U’y with the diagonal array g, theta,
the Hadamard product is transformed into a matrix multiplication. The graph
convolution operation is denoted as Ug,U” x.

To solve the excessive computation of Laplace eigenvalues and eigenvectors,
Defferrar et al. [32] proposed ChebNet based on Chebyshev polynomials. The
eigenvalue matrix is approximated by Chebyshev polynomials, and the Chebyshev
polynomials are as follows.

k-1
go(A) =) 0 Ti(A) (10)
=0

where 0 is the Chebyshev coefficient; T}, (A) is the k-th order Chebyshev

2A
lmax

Thus, the convolution operation can be expressed as follows:

polynomial of A; A = 22~ — [,,, A are the normalized eigenvalue diagonal matrices.

k—1 k—1
xigy = U(Z 0T (A)) U'x => 6T (L)x (11)
k=0 k=0

where ﬁ — I,,; the computational complexity of the graph convolution calculation

is reduced from O(N?) to O(LE) by replacing the Chebyshev expansion T} (A) with
the eigen-decomposition part of the frequency domain convolution g, in the original
GCN, effectively avoiding the computational part of the eigen-decomposition, where
E is the number of edges in the input graph and L is the order of the Laplace operator
polynomial. ChebNet results in a significant reduction in computational complexity
and a significant improvement in computational efficiency.

After that, Kipf et al. used first-order Chebyshev polynomials and simplified the
spectral graph convolution by restricting the parameters in order to make ChebNet
have better local connectivity properties. Let K = 2, T (i) =1,T, (f,) =L, Ao = 2.
Then the graph convolution calculation is simplified as:

x5g,~00x + 01 (L — I,)x = Opx — 6,D 2AD ix (12)
Where: 0y and 6, are free parameters, shared by the whole graph. Let 8 = 6, =

—04, i.e., the two parameters are transformed into a one-parameter model, then the
graph convolution is calculated as:

10
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XogoR 0 <In + D’%AD’%>x (13)

However, since I,, + D 2AD is the eigenvalue of [0, 2], which may lead to the

problem of disappearing, exploding or unstable values of neural network gradients,

Df%zzl]ﬁf2 is used instead of I, + D 2AD? for normalization.

2.1.2.2 Graph Convolutional Network (DGC) based on spatial domain

The spatial domain approach: spatial-based graph convolutional networks were
first proposed in Neural Network for Graphs (NN4G), which is different from the
spectral domain graph convolutional neural network from signal processing theory,
the spatial domain graph convolutional neural network starts from the nodes in the
graph, designs the aggregation function to gather the features of neighboring nodes,
adopts the message propagation mechanism, and thinks about how to accurately
and efficiently use the features of neighboring nodes of the central node to update
the features of the central node. The essence of CNN is weighted summation, and
the spatial domain graph convolutional neural network is based on the basic con-
struction process of CNN to accomplish the purpose of GNN aggregation of neigh-
boring nodes from the perspective of summation. Since the nodes in the graph are
unordered and the number of neighboring nodes is uncertain, one idea of the spatial
domain graph convolutional neural network is (1) to fix the number of neighboring
nodes and (2) to sort the neighboring nodes. If the above two tasks are completed,
the non-Euclidean structured data becomes ordinary Euclidean structured data, and
naturally the traditional algorithm can be completely migrated to the graph. Among
them, step (1) also facilitates the application of GNN to graphs with many nodes.

Currently, GCN has become a fundamental model for traffic flow prediction
research and a benchmark method for experiments. Although neither the air-
domain graph convolution network nor the frequency-domain graph convolution
network is proposed for the traffic flow prediction problem, the natural graph
structure property of traffic data makes GCN show high efficiency and accuracy in
the field of traffic flow prediction than the traditional methods.

2.2 Modeling experiments for traffic prediction

This section will first give a specific definition of the traffic flow prediction
problem and then give the flow of the traffic flow prediction model based on
spatiotemporal characteristics.

2.2.1 Construction of traffic road network graph structure

Traffic prediction is a typical time series prediction problem [33], and its road
network traffic flow data exhibits a high degree of periodicity, which provides a
great deal of potential for traffic prediction. Figure 6 shows the traffic data for the
first week of December for individual toll stations on the Shaanxi Provincial Free-
way, demonstrating a high degree of periodicity.

Given the first M flow observations, the flow data measured at the # sensor
stations at time step H can be viewed as a matrix of size M x N. The most likely
flow measurements predicted at the next H time steps are:

Ft+1, ,Fer = argmaxlogP(FtH, ---Ft+H|Ft—M+1, ,Ft) (14)

11
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where F; € R" is a vector of observations for #» road segments at time step ,

- —

TOTB[21100

where each element records the historical observations for a single road segment.
For unordered road network traffic data, the observations F; are not independent
and can be viewed as graph signals defined on an undirected graph G with weight as

shown in Figure 7, the graph is expressed in terms of an adjacency matrix G, =

(Vy, E, W). F, is a finite set of vertices corresponding to the observations of the # toll

stations in the traffic.E is a set of edges representing the connections between

stations, and W € R**" represents the weighted adjacency matrix of G;.

2.2.2 Traffic data acquisition and preprocessing

2.2.2.1 Traffic datasets

Traffic flow prediction by deep learning requires a large amount of data support,
that is, real-world road traffic speed data. With the continuous improvement of

12



Prediction of Large Scale Spatio-temporal Traffic Flow Data with New Graph Convolution...
DOI: http://dx.doi.org/10.5772/intechopen.101756

traffic facilities, the amount of traffic data has also produced an explosive growth.
Traffic flow prediction is precisely based on huge traffic data, so understanding the
current common traffic data is the basis for achieving traffic flow prediction. The
sources of traffic data mainly include road fixed-point detectors, vehicle GPS
records, bus IC cards, license plate recognition, cell phone data, etc. We have made
the common traffic data used for traffic flow prediction as Table 1.

2.2.2.2 Data preprocessing

Traffic flow data mainly detects parameters such as speed, flow rate, time, etc.
The data collection process may result in detection equipment failure, instrument
error, software failure, communication interference, environmental noise, etc., and
even sudden road failure may have a great impact on the data, resulting in real-time
data may be missing or abnormal, so the overall process of validity processing of
this type of traffic data according to its type is shown in Figure 8.

* Abnormal data processing

The preprocessing methods of abnormal data can be divided into two categories:
Data rejection. Data rejection can be used when there is less erroneous data in the
traffic data. The rejection of individual erroneous data will not affect the integrity
and trend of the data, but if the proportion of erroneous data is large, the rejection
method cannot be adopted because too much rejection of erroneous data will

Data set Data set name Data fields Sampling
classification period
Expressway PeMS Timestamp, Station ID, Region. 5 min

Highway ID, direction, trip

METR-LA Vehicle speed 5 min
SEATTLE LOOP Vehicle speed 5 min
Madird Traces Vehicle track 0.5s
Los-Loop Vehicle speed 5 min
Cabs NYC Taxi Boarding and alighting times, location, /
distance traveled, fare, payment type
TaxiBJ21 GPS data and weather data 30 min
SH-Speed Vehicle ID, location, operation status, speed 10 min
CRAWDAD Vehicle ID, time, coordinates 7s
SZ-taxi Vehicle speed 15 min
T-Drive Vehicle track /
Internet taxi Didi-GAIA-Open-Data Vehicle speed /
Rail Transit SHMetro People flow 15 min
HZMetro
City Road VTC (vant-trace-creteil) ~ Time, lane, vehicle angle, speed, and vehicle 1s
Network ID
0d_bologna Coordinates, speed, vehicle ID 1s
Koln.Tr
NYC-Bike Vehicle ID, coordinates, time /

Table 1.
Common data sets for traffic flow prediction models.
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Figure 8.
Overall flow of data preprocessing.

destroy the integrity of the data and its trend. Peak denoising. Since traffic data is
highly nonlinear and the traffic data at peak hours can be very significant, i.e., the
noise oscillation region during peak hours, peak denoising is needed. Commonly
used methods such as empirical mode decomposition (EMD)), i.e., fluctuation
decomposition in the local oscillation part of the trend change.

* Missing data processing [34]

Missing data is caused by hardware and software factors that do not detect data
at the detection end or packet loss during data communication. In road traffic, this
can be due to excessive vehicle density and inaccurate data collection by traffic flow
detection instruments, data failures in transmission, and many other reasons for
gaps in the collected data, such as missing data at a point in time, a certain period, or
several periods of time. Typically, there are two classical missing patterns in time
series data as shown in Figure 9 below. Figure 9(a) indicates that the exported toll
records have randomly lost observations at a single toll station, and the white circles
indicate the missing values. Figure 9(b) indicates that there are several consecutive
time points in the records of multiple toll stations with no observed values, which is

\_,\f\,\“\/‘\/\’_v\/

L

A

Flow
Flow

' 7 ' 4T 57 6T T IT 3T aT sT T

(a) Random missing points (b) Non-random ly missing consecutive time points

Figure 9.
Example of missing pattern of spatiotemporal data (traffic data as an example).
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a more common pattern of missing spatiotemporal traffic data. The green curve in
the green panel represents the observed values and the gray curve represents the
missing values. This situation requires correlating and processing the missing data,
and then repairing the data using interpolation and smoothing algorithms, prior to
dimensionlessizing the data using initialization operators to consider the fact that
the units and orders of magnitude of the characteristic series of influencing factors
are not uniform.

¢ Data normalization/normalization

Generally, the obtained traffic data are scattered, and the distribution charac-
teristic curve presented by the data is fuzzy, and the distribution cannot be deter-
mined. Therefore, the data do not satisfy the normal distribution and need to be
normalized to regularize the data and improve the comparability between the data
to facilitate the subsequent model prediction. The data are z-core normalized to
approximately satisfy the normal distribution, so that the weights are more evenly
distributed in the subsequent model training, i.e.,

(15)

where u, 6 are the mean and standard deviation.

2.2.3 Classical graph convolution framework

To solve the problem of non-Euclidean structure of traffic network data, graph
neural networks are often used to model spatial dependencies in traffic networks,
and then convolution is used to fundamentally improve the efficiency of graph
analysis and network construction from frequency and spatial domains, i.e., Graph
Convolutional Network (GCN). Graph Convolution extends traditional convolution
to graph-structured data, and powerful methods such as graph convolutional net-
works and their variants are widely used for these spatiotemporal network data
prediction tasks with good performance. Most existing graph convolutional traffic
flow forecasts are spatiotemporal in nature, since most traffic data sets have both
spatial and temporal attributes. The development of traffic flow prediction models
based on graph convolutional networks is presented as in Figure 10. In this paper,
five of the most typical and most referenced models will be selected for illustration.

spectral-based
convolutional GNNs

spatial-based
convolutional GNNs
2019 2020
ASTGCN MRA-BGCN Al
2019 2020 2021 STGDN

2019
2016 2018

i T-GCN : ’
GCRN STGCN DGCNN RGC-LST™ 1\ rGeN
2016
Ll 2020
RN STFGNN
2019 2020
MRes-RGNN ~ GDCRN
Figure 10.

Traffic flow prediction model based on graph convolution.
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Architecture of spatiotemporal graph convolutional networks.

2.2.3.1 STGCN predicts traffic flow

The STGCN model proposed by Yu et al. [19] (Figure 11) (2018AAAI) for the
first time uses graph structures to model traffic networks while using graph convo-
lution to model spatiotemporal sequences and uses pure convolutional structures to
extract spatiotemporal features from the graph structures simultaneously.

STGCN is composed of several spatiotemporal convolutional blocks, each of
which is formed as a “sandwich” structure with two gated sequential convolution
layers and one spatial graph convolution layer in between. The framework STGCN
consists of two spatiotemporal convolutional blocks (ST-Conv blocks) and a fully-
connected output layer in the end. Each ST-Conv block contains two temporal gated
convolution layers and one spatial graph convolution layer in the middle. The
residual connection and bottleneck strategy are applied inside each block.

The model, although using convolution instead of LSTM-like patterns, does speed
up training, but it also leads to missing historical data information and can only
achieve short-term prediction, not long-term prediction, and graph convolution cap-
tures information between different nodes to model spatial models, which does not
seem to make good use of the potential relationships between different regions.

2.2.3.2 DCRNN for predicting traffic flow

The DCRNN model proposed by Li et al. [22] (Figure 12) (2018ICLR) models
spatial correlation as a diffusion process on directed graphs, thus modeling the
transformation of traffic flow, and proposes diffusion convolution recurrent neural
networks that can capture the spatial and temporal dependence between time series
using a framework of seq2seq. To address these challenges, we propose to model the
traffic flow as a diffusion process on a directed graph and introduce Diffusion
Convolutional Recurrent Neural Network (DCRNN), a deep learning framework
for traffic prediction that incorporates both spatial and temporal dependency in the
traffic flow. Specifically, DCRNN captures the spatial dependency using
bidirectional random walks on the graph and the temporal dependency using the
encoder-decoder architecture with scheduled sampling.
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2.2.3.3 GMAN prediction of traffic flow

The GMAN model (2020AAAI) proposed by Zheng et al. [23] (Figure 13) uses a
spatiotemporal attention mechanism to model dynamic spatial relationships and
nonlinear temporal relationships separately, while using a gating mechanism to
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Figure 12.
System architecture for the diffusion convolutional vecurrent neural network designed for spatiotemporal traffic
prediction.
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The framework of graph WaveNet.

adaptively fuse the information extracted by the spatiotemporal attention
mechanism.

Because the whole traffic is a network, the error of one node is amplified by
other nodes, which affects the final prediction results. To solve the above problem,
GMAN adopts an encoder-decoder architecture, where encoder is used to extract
features and decoder to predict. A transformed attention layer is applied in between
these two to transform the encoded traffic features to generate a sequential repre-
sentation of future time steps as the input to the decoder. Here Encoder and
Docoder are composed of ST-attention block. Then the authors use an STE block to
combine the spatial and temporal information and then input into the ST-
ATTENTION block to solve the problem of complex time—space correlation.
Finally, the experimental results of the article on two real-world traffic prediction
tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the
superiority of GMAN.

2.2.3.4 Graph WaveNet prediction of traffic flow

Wau et al. [35] (Figure 14) propose in this paper a novel graph neural network
architecture, Graph WaveNet, for spatial-temporal graph modeling. The model
uses the idea of diffusion convolution in extracting spatial features of road networks
and adds a novel adaptive connection matrix to make up for the deficiency of fixed
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The framework of ASTGCN. SAtt: Spatial attention.

topology in extracting spatial features and employs dilated causal convolution and
gate mechanism on time series without the traditional RNNs cycle, which is vali-
dated by METR-LA and PEMS-BAY data sets, GWN in terms of training effect and
time good results were achieved.

2.2.3.5 ASTGCN prediction of traffic flow

Guo et al. [24] (Figure 15) propose a novel attention-based spatial-temporal
graph convolutional network (ASTGCN) model to solve traffic flow prediction
problem. ASTGCN mainly consists of three independent components to respec-
tively model three temporal properties of traffic flows, i.e., recent, daily-periodic,
and weekly-periodic dependencies. More specifically, each component contains two
major parts: 1) the spatial-temporal attention mechanism to effectively capture the
dynamic spatial-temporal correlations in traffic data; 2) the spatial-temporal con-
volution, which simultaneously employs graph convolutions to capture the spatial
patterns and common standard convolutions to describe the temporal features. The
output of the three components is weighted fused to generate the final prediction
results.

These five typical traffic flow prediction models above are compared in Table 2.

2.3 Application scenarios for traffic flow prediction

Many researchers have already applied the proposed traffic flow prediction
models to various traffic scenarios and achieved excellent results. For example, by
predicting the traffic flow of a roadway in advance, it can provide drivers with more
advanced travel routes. In addition, it can also provide prerequisites for traffic light
optimization, etc. In this paper, three scenarios are chosen to illustrate the
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Models Model’s characteristics
STGCN (1) Compared with traditional spatio-temporal models (RNN, LSTM) based on
(2018) recurrent neural networks, the STGCN model combines graph convolution and gated

time convolution, and for the first time uses pure convolutional layers to extract time
and space information at the same time.

(2) The STGCN model uses one-dimensional convolution to learn information in the
time dimension and is not limited by the prediction data at the previous time point, so
that the model can better capture the drastic changes in the data (such as traffic flow
data during peak hours).

(3) Due to the characteristics of the convolutional structure, STGCN model is
parallelized at the input, with fewer parameters and faster training speed, allowing the
model to process large-scale networks with higher efficiency.

DCRNN (1) In view of the dynamic characteristics of traffic flow, DCRNN model introduces
(2018) diffusion convolution when modeling spatial dependence and considers forward
propagation and back propagation and is more suitable for traffic networks with a
directed graph structure.
(2) When the DCRNN model models the time dependence, the matrix multiplication in
the GRU model is changed to diffusion convolution, and the diffusion convolution-
gated recurrent unit (DCGRU) is obtained.

ASTGCN (1) The ASTGCN model effectively learns the dynamic spatiotemporal correlation of
(2019) traffic data through the spatiotemporal attention mechanism.
(2) The ASTGCN model designed a multichannel network structure from multiple
time periods, combining global time and space information to improve prediction

accuracy
GWN (1) In terms of spatial dependency acquisition, The GWN model constructs an adaptive
(2019) dependency matrix that can retain the implicit spatial relationship of the road network.

(2) In the acquisition of time dependence, The GWN model adopts stacked dilated 1D
convolution and does not need to consider the problem of information disappearance
too long ago and can extract longer time dependence than RNN-based cyclic
convolutional networks.

GMAN (1) The GMAN model refines the complexity of time and space. It is divided into
(2020) dynamic spatial correlations and Non-linear temporal correlations, and the attention
mechanism is introduced.
(2) The GMAN model solves the cumulative error problem of stepwise prediction. A
transformation attention layer is added between the encoder and the decoder, so that
historical and predicted traffic characteristics can be converted.

Table 2.
Characteristics of typical models.

application of traffic flow prediction in the context of highways. These three sce-
narios are the work that has been done by our team so far, and the reason for
choosing the highway is that the work in this area is more mature.

2.3.1 Scenario 1. quantitative assessment on truck-velated road risk for the safety control

Traffic conditions of truck flow is one of the critical factors influencing trans-
portation safety and efficiency, which is directly related to traffic accidents, main-
tenance scheduling, traffic flow interruption, risk control, and management. The
estimation of the truck flow of various types could be better to identify the irregular
flow variation introduced by various trucks and quantitatively assessed the
corresponding road risks.

Jin et al. [36] first improved on the gated recursive unit (GRU) based on a deep
learning approach to estimate various types of truck traffic. Then a multiple logistic
regression method was proposed to classify the road risk into three classes: safe,
risky, and dangerous. According to the CSV trend, road risks are classified into
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Road visk assessed by predicted truck flow in April 12,018.

three categories as shown in Figure 16. Different risk classes can guide traffic
control and management and broadcast traffic information to drivers to help them
choose their travel routes.

Finally, the road risk calculated by the predicted truck traffic is shown in
Figure 17, from which the road risk status can be obtained at every moment.

2.3.2 Scenario II. Improved manpower planning for highway toll gate

In China, the relatively heavy queues at freeway toll booths and service areas
during peak hours, coupled with the saturation of manpower scheduled during off-
peak hours, are undoubtedly a huge obstacle to efficient and cost-effective freeway
operations. Therefore, it needs an intelligent manpower planning strategy to simul-
taneously ensure the efficiency of highway transportation management and road
user satisfaction.

Jin et al. [37] addressed a high-precision prediction of vehicle flow based on
historical multisource traffic data. Based on the prediction results, an improved
manpower planning strategy is proposed to schedule the work accordingly. And the
method was tested on a randomly selected toll station as an example, as Figure 18
shows the daily traffic pattern of the highway Hechizhai toll station.
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Hechizhai Toll Gate

Figure 18.
Daily traffic pattern of the Hechizhai toll gate on the freeway.
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Reversible toll lane configuration suggestion. The red lines vefer to the number of toll lanes designed in each
divection. The blue and brown gradient lines indicate the change in the number of exit and entrance lanes per
hour, respectively. The black dash lines depict the reversible toll lane change period.

The results show from Figure 19 that the upper part and the lower part show the

lane opening at the entrance and exit of toll gates in one week, respectively. Two
narrow black dotted lines indicate the morning and evening peak hours. During the
morning peak, it is obvious that two entry lanes are not used while the number of
toll lanes of the exit has reached its upper threshold. The opposite phenomenon is
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Comparison of duplex lane simulation process.

seen in the evening peak. Therefore, we suggest that one or two of the entrance
lanes can be set as a reversible lane so that the traffic pressure can be released in
peak hours. Note that the usage condition of this suggestion is that the entrance and
exit of the toll gate must be adjacent such as Hechizhai toll gate.

2.3.3 Scenario III. Capacity analysis of toll stations

Yuan et al. [38] used the results of traffic prediction to analyze the capacity of a
toll station and used different queuing models to describe the capacity of typical
lanes and compared the delay time and queue length of each model and obtained
that the single-way model is more efficient in a typical system. The traffic index of
the multiplex lane is also simulated, and the specific simulation process is shown in
Figure 20, and the capacity of the multiplex lane is obtained to be larger than that
of the typical MTC lane, which can relieve the traffic pressure during the peak
hours.

3. Conclusions

Traffic is the main driving force of urban development, and real-time and
accurate traffic flow prediction is the key to the application of intelligent transpor-
tation system. Graph convolutional neural network is an efficient model for
processing graph data and has received a lot of attention from researchers in the
past few years. This section attempts to summarize the recent graph convolutional
neural network models and their applications to traffic flow prediction.

1. This section summarizes the GCN-based traffic flow prediction model.

Starting from the basic definition of graph convolution, the basic principles of
GCN are introduced with the focus on frequency-domain graph convolution
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and space-domain graph convolution. Then, the representative models are
clarified, and the structure and characteristics of different prediction models
are further categorized and reviewed.

2.This section provides the traffic prediction problem with constructed traffic
graph structure. Some public traffic data sets that are widely used in scientific
research worldwide are introduced for traffic prediction experiments,
including their data sources, data contents, and data acquisition addresses, and
the whole data processing process is analyzed.

3.The application scenarios of traffic flow prediction are discussed. There are
two applications are provided: 1) with prediction of the traffic flow of truck,
the transportation safety and efficiency could further assess. 2) The work
schedule arrangement could also improve based on the prediction of traffic
flow to avoid manpower waste and allow more passing gate to open in the peak
hours. Other than those applications, there still many aspects worth to explore.
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