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Chapter

The Role of Organic Fertilizers 
in Transition to Sustainable 
Agriculture in the MENA Region
Helen Avery

Abstract

Organic fertilizers can serve as an element of transitions to sustainable low-input 
agriculture in semi-arid regions of the MENA region. They play a key role in sup-
porting soil biota and soil fertility. Yield improvements, availability and relatively 
low costs make organic fertilizers an attractive alternative for farmers. In semi-arid 
regions, important considerations are improved soil quality, which in turn affects 
soil water retention, while better root development helps crops resist heat and water 
stress. Organic fertilizers thus support climate adaptation and regional food secu-
rity. Soil quality is crucial for carbon sequestration, at the same time that increased 
nutrient retention reduces impacts of agricultural runoff on groundwater and water 
bodies. Factors that impede the generalised use of organic fertilizers include lack 
of expertise, subsidy structures, constraints of the wider food and agricultural 
systems, and difficulties in transitioning from conventional agriculture. Such 
obstacles are aggravated in countries affected by security issues, financial volatility 
or restrictions in access to market. Against the background of both general and local 
constraints, the chapter examines possible pathways to benefit from organic fertil-
izers, in particular synergies with other sustainable agricultural practices, as well as 
improved access to expertise.

Keywords: organic fertilizers, sustainable agriculture, transition pathways, 
smallholder farmers, semi-arid regions, low-input agriculture, soil health, soil carbon, 
GHG emissions, conservation agriculture, water management,  
climate adaptation and mitigation

1. Introduction

Organic fertilizers are a highly diverse family of products used in agriculture for 
soil improvement and to provide nutrients. Their characteristics and benefits will 
depend on their origin and processing, as on how they are used or combined in par-
ticular contexts [1–5]. The main common denominator is therefore that organic fertil-
izers provide a sustainable option to avoid the negative impacts of chemical fertilizers 
for long term soil fertility [6], decrease vulnerability to climate stress and weather 
variability, while reducing the impacts of agriculture on the environment [7, 8].

The term ‘organic fertilizers’ refers to a very wide range of products, as do the 
terms chemical, inorganic or synthetic fertilizers. It is therefore exceedingly difficult 
to make sweeping generalisations concerning the respective benefits or character-
istics of these types of fertilizers. The task becomes all the more challenging, since 
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outcomes will depend on numerous factors. These include how the fertilizer matches 
soil characteristics, crops, climatic and topographical questions, landscape char-
acteristics, but also irrigation and tilling practices, time and manner of application 
of the fertilizer, as well as details concerning source and manner of producing the 
fertilizer. Undesirable effects may result from inappropriate fertilizer production 
processes, and the presence of metals and other contaminants in source materials is a 
major concern [9, 10]. There are also challenges linked to the overall or local avail-
ability of source materials.

Using organic matter to improve soils is not only related to fertility, but also 
to effects on physical, chemical and biological soil properties, including aeration, 
permeability, water-holding capacity and nutrient preserving capacity [11]. 
Benefits will depend on the exact type of organic fertilizer used, as well as on soil 
characteristics [7, 11]. Organic fertilizers can be used alone, or in combination with 
other fertilizers. For instance, a study under experimental conditions suggests 
that under deficit irrigation conditions, a combination of chemical fertilizer with 
vermicompost produced better results than chemical fertilizer alone [12]. The use 
of organic fertilizers appears particularly interesting in conditions of stress and 
weather variability, while a tailored combination with micro-nutrients suitable 
for crop and soil enhances yields (see e.g., Parmar et al. [13]). However, much of 
the literature on fertilizers reduces outcome to the question of crop yield rather 
than resilience, and more specifically short-term gains in crop yield under normal 
circumstances.

The use of synthetic fertilizers was generalised as part of the so-called green 
revolution [14, 15], which stood for a vision of modernising agriculture through 
use of agricultural machinery, synthetic fertilizers, pesticides, and systematic 
improvement of crop varieties. The ambition was to dramatically increase food 
production, and thereby alleviate hunger globally, so the focus on short term crop 
yield is therefore not surprising. The vision of the green revolution was also very 
much part of an industrial paradigm, with a simplified vision of agriculture as 
resembling other industrial production processes, with a flow consisting of input 
and output, controlled process, and output, where success was measured in pro-
duction units. Today, however, we have come to a realisation that this oversimpli-
fication brought with it a very high cost to the environment, human health, as well 
as a degradation of planetary conditions necessary for food production in the long 
term. Crop yields remain important, of course, but there are other implications 
of our choice of agricultural practices that equally need to be considered. While 
much of agronomical research investigates linear correlations between a small set 
of isolated factors under relatively stable conditions, Hou et al. [16] argue for the 
need to consider soil health holistically, dynamically and from an interdisciplinary 
perspective.

Besides the narrow focus on productivity, the industrial paradigm within which 
agriculture was placed has tended to favour a comparatively linear and mechanistic 
understanding, while disregarding the complexity of ecosystems below ground, 
above ground, and in water bodies. Soil exchanges gases and chemical substances 
with air, and aerosols from erosion, burning and vegetation affect cloud formation, 
precipitation and greenhouse effects [17–19]. Also, as farmers have always known, 
weather is highly unpredictable, and far from the controlled conditions that indus-
trial production supposes. In view of current rapid climate change [20], farmers 
are facing increasing weather variability, a greater number of extreme events, and a 
greater extent of uncertainty with respect to future developments [21, 22]. The use 
of organic fertilizers alone is not sufficient to address these challenges but can, in 
combination with other sustainable agricultural practices, constitute an important 
ingredient in farmers’ climate adaptation and mitigation strategies.
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2. Agriculture in the Middle East and North Africa

Soil types, crops and trade patterns vary considerably across the Middle East and 
North Africa (MENA) region [23], but all countries are affected by water scarcity. 
The region comprises arid, semi-arid and hyper-arid areas, but even comparatively 
water-rich countries are affected by severe water stress [24], caused in part by eco-
nomic incentives to cultivate water-intensive crops. Crop choice therefore plays an 
important role [25]. The water crisis is aggravated by deterioration of water quality 
caused by pesticides and nutrient runoff [26, 27], while groundwater is impacted by 
leaching and excessive pumping [28, 29]. Rural flight and decline of rural popula-
tions in several countries, such as Iran and Turkey [30] can reflect reduced need for 
labour due to mechanisation but may also reflect insecure livelihoods and difficult 
conditions of farmers [31, 32], while rural populations are also affected by displace-
ment caused by disasters related to extreme weather, including forest fires, flooding 
and crop failure. The region is heavily dependent on imports of cereals. Both price 
fluctuations and transitions away from hydrocarbons globally will lead to decline 
in hydrocarbons exports on which many states of the region depend, affecting their 
ability to ensure food security through imports [23]. However, vested interests in 
exploiting hydrocarbons for the production of petrochemicals for agricultural use, 
as well as the existence of major phosphate deposits are likely to influence national 
economic diversification policies.

Large parts of the Middle East and North Africa are affected by protracted 
conflicts, internally displaced populations, and high volatility [33, 34]. Political 
and economic crises are affecting access to food, clean water and energy for large 
population groups [35], while agriculture is impacted by rising costs of fertilizers, 
pesticides, fuel and machinery, combined with disruptions to infrastructure and 
processing, storage and distribution systems for agricultural produce. These chal-
lenges will increasingly be aggravated by climate change [36–41] and environmental 
degradation. Consequently, resilient food systems and food security will become 
issues of major concern for the region [42, 43], highlighting the question of climate 
adaptation strategies for farmers [31, 44–46].

Research on organic fertilizers in the MENA region from an environmental 
perspective is as yet relatively limited. Thus, a Scopus search on October 14, 2021, 
with the search term ‘organic fertilizers’ yielded 517 articles and reviews in English 
concerning agricultural sciences in the MENA region for the period 2017–2021, 
compared to 6558 worldwide for the same period. Publications in this field were 
dominated by Iran, Iraq, Egypt and Turkey (92%). Only 102 (20%) of the 517 MENA 
publications related to environmental or earth and planetary sciences. Within these 
102, a mere 5 directly dealt with water-related issues, (including keywords such as 
irrigation, water quality, water stress, arid regions or groundwater), and none of the 
overall 517 publications on organic fertilizers mentioned climate adaptation or miti-
gation. In view of the interrelated urgent challenges that climate change and food 
security pose for the region, I will therefore draw on the international literature, to 
situate the use of organic fertilizers with respect to these challenges.

3. Environmental impacts of agriculture

Climate and environmental impacts of fertilizer use and soil management 
practices include not only emissions and pollution from production of fertilizer 
[47], but also those linked to the mechanised and chemical-intensive agricultural 
production systems they are associated with, impacts of nutrient runoff and 
chemicals [48, 49] on receiving water bodies, as well as impacts connected to food 
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processing, storage, transport and waste. Effects on the world’s oceans are concern-
ing. Unsustainable land use poses a threat for climate and biodiversity [20, 36, 50]. 
Agricultural land use and soil management practices are from a climate and envi-
ronmental perspective of relevance for carbon storage [51], but also with respect to 
nutrient runoff, and persistent chemicals, and to emissions of N2O and CH4 [52]. 
According to the IPCC, the use of fertilizers has increased nine-fold since 1961 [53], 
and soil management accounts for half of greenhouse gas (GHG) emissions of the 
agricultural sector [54].

3.1 IPCC estimates of climate impacts and mitigation potentials

No global data are available specifically for agricultural CO2 emissions, and 
there is considerable uncertainty concerning net balance of CO2 land-atmosphere 
exchanges. However, land is an overall carbon sink, with a net land-atmosphere flux 
from response of vegetation and soils of −6 ± 3.7 GtCo2yr (averages for 2007–2016). 
The capacity of land to act as a carbon sink is expected to decrease as an effect of 
global warming. The major impacts of agricultural land use (food, fibre and bio-
mass production) on CO2 (5.2 ± 2.6 GtCo2yr) are connected to deforestation, drain-
age of soils and biomass burning rather than to the net flux balance directly caused 
by different fertilization practices. Numbers regarding CO2 emissions from land use 
can be compared to net global anthropogenic CO2 emissions, which are estimated at 
39.1 ± 3.2 GtCo2yr. In addition to land use impacts, agriculture causes CO2 emissions 
in the order of 2.6–5.2 GtCo2yr through activities in the global food system, includ-
ing grain drying, international trade, synthesis of inorganic fertilizers, heating in 
greenhouses, manufacturing of farm inputs, and agri-food processing [55].

Agricultural land use directly represents 40% (4.0 ± 1.2 GtCo2eq yr) of total net 
global anthropogenic CH4 emissions, and represents 79% (2.2 ± 0.7 GtCo2eq yr) 
of total net global N2O emissions. CH4 emissions are mainly caused by ruminants 
and rice cultivation. Half of N2O emissions are caused by livestock, and the rest 
mainly by N fertilization (including inefficiencies). Total average net global GHG 
emissions (CO2, CH4 and N2O) for all sectors 2007-2016 are estimated at 52.0 ± 4.5 
GtCo2eq yr, of which agriculture directly contributes with 17-22% (not including 
impacts of agriculture on land available for forests), or 21-37% (including agricul-
tural land expansion and other contributions of the food system) [55]. Importantly, 
agricultural soil carbon stock change is not included in these statistics. Irrigation 
and agricultural land management contribute to making forests vulnerable to fires, 
while desertification [37] amplifies global warming through release of CO2, but 
such emissions as well as impacts from runoff on net fluxes from wetlands, water 
bodies and oceans are not included in the above figures.

Although net GHG emissions are often converted to CO2 equivalents for 
accounting purposes, different gases remain in the atmosphere for different periods 
of time and will consequently have different impacts on the progression of global 
warming. The specific proportions of GHG will affect the likelihood of crossing 
critical thresholds and tipping points, setting off cascades (cf. Lenton et al. [56]) 
with ecosystem collapse and mass extinctions, while driving biophysical processes 
that further aggravate the dynamics. Effects of mitigation measures also have vary-
ing timelines.

The creation of reactive N in agriculture has significant environmental impacts 
[57], and excessive application of nitrogen can increase nitrous oxide emissions 
without improving crop yields [54]. On average, only 50% of N is used, but in coun-
tries with heavy N fertilization the efficiency can be much lower, and the potential 
for mitigation therefore increases [7, 36]. Use of fertilizer is responsible for more 
than 80% of N2O emissions increase since the preindustrial era [58]. Ruminant 
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livestock is the overall main source of CH4 from agricultural practices [55, 59], and 
among organic fertilizers cattle manure has therefore been widely studied. Rice 
cultivation makes the greatest contribution to CH4 emissions from agricultural soils 
[60]. Both water logging and soil compaction also contribute to CH4 emissions [61].

4. Climate mitigation potentials in agriculture

In view of the imminent threat to planetary life systems posed by climate change 
[20, 56, 62], research has in recent years accelerated on potentials for carbon 
offsetting and impacts on GHG emissions of different land use and management 
systems [63–67], as well as with respect to climate adaptation [68] and food security 
[69, 70]. Large areas of the MENA-region are exposed to desertification, including 
relatively water rich countries. For instance, at least half of Turkey is affected [37]. 
Desertification amplifies global warming through the release of CO2 linked with the 
decrease in vegetation cover, GHG fluxes, sand and dust. In dry areas, net carbon 
uptake is about 27% lower than elsewhere, reducing the capacity of land to act as 
a carbon sink. A rise in temperatures accelerates decomposition, at the same time 
that moisture is insufficient for plant productivity. Further SOC is lost due to soil 
erosion. An estimated 241–470 GtC is stored in the top 1 m of dryland soils [37]. 
In 2011, semi-arid ecosystems in the southern hemisphere represented half of the 
global net carbon sink [37].

Integrated sustainable practices are essential for climate adaptation, but esti-
mates with respect to mitigation potentials vary. The chapter on interlinkages in the 
IPCC special report on climate change, desertification, land degradation, sustain-
able land management, food security, and greenhouse gas fluxes in terrestrial 
ecosystems [8] considers technical and economic feasibility of possible mitigation 
measures, as well as impacts on livelihoods and human health. Some measures that 
specifically concern cropland and soil management are summarized in Table 1.

There is some overlap in the categories listed in Table 1, since different interven-
tions could be envisaged for the same land, and the integrated measures discussed 
by Smith et al. [8] notably result in increased carbon storage in soils. The category 

Improved cropland management 1.4–2.3*

Increasing soil organic matter stocks 1.3–5.1*

Reduced deforestation and forest degradation 0.4–5.8*

Reduced conversion of grasslands 0.7*

Agroforestry 0.11–5.68**

Reduced conversion of coastal wetlands 0.11–2.25**

Biochar 0.03–6.60**

Cropland nutrient management N2O 0.03–0.71**

Manure management N20 and CH4 0.01–0.26**

Improved rice cultivation CH4 0.08–0.87**

Reduced enteric fermentation CH4 (ruminants) 0.12–1.18**

Soil carbon sequestration in croplands 0.25–6.78**

*[8].
**[36].

Table 1. 
Yearly global climate mitigation potential of different interventions (IPCC estimates in GtCO2eq yr).
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‘improved cropland management’ includes practices such as reduced tillage, cover 
crops, perennials, water management and nutrient management.

4.1 Uncertainties in estimates and critical issues

The type of management system that farmers adopt, will substantially deter-
mine the capacity of soil to act as a carbon sink, and the extent to which agricultural 
land will contribute to GHG emissions. However, estimates regarding the potential 
of agricultural soil management practices to mitigate climate change vary con-
siderably, and have been calculated in various manners. While Minasny et al. [71] 
estimate that raising soil organic matter could offset 20–35% of total GHG emis-
sions, Schlesinger and Amundson [72] believe that the combined use of biochar and 
enhanced silicate weathering on agricultural land will not offset more than 5% of 
emissions. Differences in what is included in calculations, as well as in assumptions 
regarding anticipated conditions and future projections naturally affect conclu-
sions. Biochar has attracted considerable interest for its ability to improve soil 
fertility and immobilize pollutants, while offering potential for long term storage 
of carbon [51]. However, the stability of biochar and its long-term impacts will ulti-
mately depend on conditions that affect biochar aging [73]. With respect to upscal-
ing enhanced silicate weathering as a climate mitigation strategy, uncertainties and 
possible negative environmental impacts need to be taken into account [74, 75].

Types of organic fertilizer that contain organic matter will directly contribute 
to soil organic carbon (SOC) content, but fungi and microbes contained in cer-
tain types of organic fertilizer, as well as impacts of pH and the proportions of 
other nutrients and micro-nutrients, will all affect the dynamics of soil biota and 
ecosystems. This leads to indirect positive or negative affects not only on fertility, 
water retention and resilience, but also on net GHG emissions (see e.g., Galic et al. 
[7], Walling et al. [47], Xu et al. [52]). Among other factors, annual precipitation 
significantly affects SOC dynamics [37, 76], and must be considered in arid and 
semi-arid regions.

4.2 Carbon sequestration

Carbon stocks in agricultural soils have been depleted worldwide, affecting 
productivity (see Droste et al. [77]). However, these losses do not all necessar-
ily correspond to release of CO2 into the atmosphere, and Chenu [78] therefore 
makes the distinction between carbon sequestration, which aims to counteract 
global warming, and carbon storage in soils. Numerous approaches are developed 
to enhance carbon sequestration. In New Zealand, for instance, ‘flipping’ is used 
for podzolized sandy soils with pasture grassland, to avoid water logging. Burying 
topsoil led to long term SOC preservation, while new organic matter could accumu-
late in the surface soil under these conditions [79]. However, as for most practices, 
impacts will be dependent on local circumstances, since disrupting soil ecosystems 
will alter SOC dynamics, thereby carbon contained in above-ground vegetation 
or root systems, while exposure of topsoil can lead to erosion. Madigan et al. [80] 
compare different approaches to managing pasture and argue that full-inversion 
tillage (FIT) during pasture renewal has potential in an Irish context, particularly 
when combined with re-seeding.

While many of the approaches aiming at carbon sequestration and reduction 
of GHG emissions [65] bring benefits for agriculture through soil improvement, 
increasing water retention, reducing agricultural runoff and effects of heat stress, 
as well as conserving ecosystems, there are nevertheless risks associated with the 
need to rapidly offset GHG emissions produced by the burning of fossil fuels. From 
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the point of view of agricultural production, organic matter is urgently needed 
to counter loss of topsoil and soil degradation, while equally urgent ambitions to 
rapidly achieve long term sequestration of carbon at a large scale, will reduce the 
amount of organic material available. Some approaches to carbon sequestration 
keep soil organic matter (SOM) in soil layers and forms that remain available to 
vegetation, while others such as flipping [79] bury the SOM in lower layers in order 
to slow down metabolic processes. However, yet others aim to bind carbon in forms 
that are not bioavailable or bury it in deep sediment or geological layers that remove 
both carbon and nutrients contained in organic waste from biological cycles.

Soil microbial activity is beneficial to crops and supports agricultural productiv-
ity but can also result in a net increase of GHG emissions, depending on balance 
and conditions. The use of agricultural lime to improve acidic soils can either lead 
to increased release of CO2 in the atmosphere, or to carbon sequestration. For 
instance, Bramble, Gouveia and Ramnarine [81] found that combining the applica-
tion of agricultural lime with poultry litter prevented CO2 emissions. Finally, it is 
important to also consider energy conservation in climate mitigation strategies. Soil 
organic content substantially affects energy requirements, and Hercher-Pasteur  
et al. [82] therefore argue that this should be included when calculating optimal 
uses for biomass.

5. Sustainable agricultural practices

Choice of fertilizer cannot be understood in isolation, but as part of overall soil 
and land management practices in agriculture. In the following, some examples 
of sustainable practices are given, that are supported by the use of organic fertil-
izers, but which can also enhance their benefits. Combinations of approaches lead 
to synergies, not only with respect to bioavailability of nutrients, but also with 
respect to water balance, prevention of erosion [37], pest and pathogen control, and 
resilience to other stressors. For instance, improving tillage practices and incorpo-
rating residue was found to increase water-use efficiency by 30%, rice–wheat yields 
by 5–37%, income by 28–40%, while reducing and GHG emissions by 16–25% 
[8]. Further options of interest include perennial crops [83–85], polyculture [86], 
mosaic landscapes [87] and the use of pollinator strips or other habitat [88, 89], 
which support crop productivity through ecological intensification [90].

5.1 The role of soil health and microbial activity

Loss of soil health exposes crops to various diseases [54]. Among the numerous 
challenges for soil health in arid and semi-arid regions is the risk of salinization 
[37, 54, 91], which is driven not only by evaporation and low precipitation, but 
also by use of synthetic fertilizers and reduced moisture retention in soils with 
low content of organic materials. Soil organisms are essential for soil fertility, by 
making nutrients available to crops. A healthy soil ecosystem decomposes organic 
matter, makes nutrients available, prevents nutrient leaching and fixes nitrogen. 
It also protects plants from pathogens [54], improves soil structure and promotes 
well-functioning root systems. However, microbial activity can contribute to GHG 
emissions, and net effects under different conditions therefore need to be carefully 
considered.

The fungal to bacteria biomass ration (F/B) is one of the important indicators of 
soil health. Optimal F/B ratios depend on intended use. While grains and vegetables 
require bacterial dominance or a balance between fungi and bacteria, orchard trees 
need a dominance of fungi, which are more effective at immobilizing nutrients, 
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preventing leaching. For grasslands, higher F/B ratios are an indication of more 
sustainable systems, with less environmental impacts [92]. It should be noted that 
biomass in itself is not a complete indicator for fungal and microbial activity [92] 
and that the distribution across various depths is also important for fertility and 
GHG flux dynamics.

Fiodor et al. [54] point to the potential use of specific plant growth promoting 
microbes (PGPM) that protect against a wide range of stressors and pathogens, 
and which can be applied by methods such as inoculation. Although microbial 
communities can in many respects be interchangeable from a functional point of 
view, unique strains of PGPM that mitigate effects of biotic and abiotic stressors 
are especially relevant in the light of rapid climate change. Research on how organic 
fertilizers can support such microbes is therefore called for, as is research soil 
ecosystems and plant-microbial symbiotic relationships (see e.g., Porter and Sachs 
[93]). Impacts of antibiotic residues in organic fertilizer [10] also require attention.

5.2 Conservation agriculture

Soil conservation practices are needed for sustainable productivity [94]. 
Conservation agriculture (CA) conserves soil moisture and reduces both erosion 
and runoff, improving water quality, as well as promoting biodiversity and above-
ground ecosystems [95], with potentials for pest control and pollination. CA has 
been found to reduce water use substantially, as well as decreasing energy inputs 
[96]. It is of particular interest under extreme climatic conditions, due to its ability 
to mitigate heat and water stress, thereby increasing crop yields [96] and resilience.

In an Indian context, Battacharya et al. [94] compared performance of CA practices 
with farms applying conventional tillage over a nine-year period, using a wide range 
of measurements for soil health and sustainability. In this Indian study, conservation 
agriculture was shown to increase SOC, while requiring low input. However, Palm  
et al. [95] underline that CA will not necessarily increase soil carbon sequestration in 
all contexts. In studies they reviewed, only about half reported increased sequestra-
tion with no-till practices. Furthermore, in Sub Saharan Africa, Palm et al. [95] found 
that lack of residues was a significant obstacle to implementing CA for smallholder 
farmers. Use of organic residues for soil amendment in these contexts competed with 
other uses that had higher values, primarily as fodder for livestock. They conclude that 
it is important to distinguish between high-input CA systems applied in large-scale 
mechanised farms, and which require large inputs of herbicides to control weeds, with 
conditions for smallholder systems in the tropics and subtropics.

5.3 Tillage practices

No-tillage systems and suitable cover crop management can improve SOC, total N, 
available P, exchangeable K-Mg, CEC, bulk density, soil penetration resistance, and 
substrate-induced respiration, as exemplified in a Japanese study concerning Andosols 
[97]. Inversely, tillage will increase microbial activity that contributes to emissions, 
accelerate decomposition, but the disturbance will reduce microbial communities over 
time [97]. However, according to the review made by Palm et al. [95], no-till systems 
in cooler and wetter climates are more likely to result in lower soil carbon and reduced 
crop yields.

5.4 Cover crops

Cover crops conserve water, moderate soil temperature, and help to control 
weeds. Cover crops can further increase fungal biomass and improve the biological 
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structure of soil [92]. Long-term use of cover crops improves soil fertility through 
the accumulation of SOM [92]. Disrupting soils through tillage kills fungi, and 
therefore shifts the balance towards bacteria. Legume intercrops or cover crops 
can lead to higher soil carbon storage and slower decomposition in no-till rotation 
systems [95]. Palm et al. [95] found that while quality of organic inputs affected 
short-term carbon dynamics, it did not appear to substantially affect long-term 
storage. Quality could be modified by addition of lignin. Materials with a high 
carbon to N ratio could result in reduced crop yields, while residues with a lower 
C:N ratio, as in the case of legume residues and legume cover crops, increased N 
availability. Legumes are not only of interest for their N-fixing properties, but for 
other facilitation effects as well [98–100].

5.5 Agroforestry

Agroforestry brings benefits for soil fauna and generally improves soil quality 
[101–103], and soil organic carbon sequestration [51, 104]. Depending on condi-
tions, reduced light can affect yields of crops that are grown with trees, but agrofor-
estry is also deliberately used to provide shade and create beneficial microclimates 
to mitigate heat stress and loss of water through evapotranspiration, as well as to 
adjust for lower or more variable rainfall [105], which is highly relevant for arid and 
semi-arid regions. With global warming, weather systems will contain more energy, 
and agroforestry therefore can play a role in preventing erosion and loss of soil from 
wind [37], as well as from extreme rainfall. Agroforestry systems can offer valu-
able habitat for pollinators and fauna essential for pest control, but trees should be 
selected for climate resilience and the precise combinations of species of orchards, 
crops or other vegetation in these systems needs to be considered, as well as spacing, 
orientation and adjustment to topography.

6. Water conservation and pollution prevention

Major landscape changes, with loss and deterioration of wetlands [26, 106], 
mean that nutrient flows from agriculture rapidly move on into the oceans, destabi-
lizing ecosystems [107]. Drainage, to claim land for agriculture or other purposes, 
and extensive irrigation in agriculture cause wetlands to dry [108], while other 
drivers of wetland loss are urbanisation and surface sealing for road networks, 
industrial use of water and large dams. With climate change, water is no longer 
released gradually over the year through snow smelting, and forest fires [41], use of 
woodlands for fuel or commercial logging create additional disruptions in the water 
systems on which wetlands depend [109]. The amount of carbon stored in wetlands 
and peatlands constitutes in the order of 30–40% of terrestrial carbon [110, 111].

According to UN Water, 72% of all water withdrawals globally are used by agri-
culture [112]. Besides practices such as no-till, reduced till, cover crops or terracing 
and contour farming to retain water and reduce erosion [37], leaving crop residue 
on the surface also serves these purposes [113]. Importantly, demand for water can 
be further reduced by supporting complex agricultural landscapes that include trees 
and other vegetation, and by shifting to crops and cultivars that require less water. 
Alongside conventional approaches to water conservation such as drip irrigation, 
such approaches are necessary to address the water crisis, which will in many 
regions be aggravated by climate change [39–41]. For arid and semi-arid regions in 
particular, conservation agriculture and other sustainable practices are crucial for 
their role in preserving soil moisture and reducing irrigation needs. Both organic 
fertilizers and other methods of increasing SOM play a role in reclaiming land and 
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combatting desertification [8, 37, 59, 99, 114–116]. Several solutions to the issue of 
polluted water [26, 106] have been suggested, including phytoremediation or the 
use of agricultural waste to serve as biosorbants [117–119].

Bhattacharyya et al. [120] suggest nutrient budgeting as an effective approach to 
preventing soil-water-air contamination from crop-livestock systems. Excess nutri-
ents do not only impact rivers, lakes and coastal waters, but also affect groundwater 
quality [28, 29]. Nutrient surpluses are linked to use of fertilizers and manure, as 
well as to low nutrient utilization efficiency of plants. Leaching, runoff and erosion 
are therefore all significant for sustainable agricultural practices. In this respect, a 
slower release of nutrients and improvements in soil structure are important poten-
tial benefits of organic fertilizers, compared to chemical fertilizers. Contributions 
to soil and ecosystem health of sustainable practices reduce the need for pesticides 
to control pests and pathogens, thereby increasing availability of good quality water 
[49] and protecting the world’s oceans [121, 122].

The various interlinkages and trade-offs that need to be considered in use of 
water resources are acknowledged in European policy on the water, energy, food, 
and ecosystems (WEFE) nexus [123], as well as in recent research in this field 
[124–127]. Both general conflicts in demands concerning use of land and resources, 
and water scarcity, in particular, affect the arid and semi-arid regions of the MENA 
region. For these regions, land management must pay greater attention to how soil 
health and quality affects water retention. Degraded soils have poor water retention 
capacity, demand more fertilizer, and are less able to contribute to carbon seques-
tration. A more holistic view of land and soil management can also mitigate effects 
of stress caused by heat, extreme weather events and increased climate variability.

7. Transition issues

Conservation agriculture can lead to yield benefits, but improvements may 
not be noticeable in the initial years [94]. In a Swedish context, examining various 
sites over a period of 54 years, Droste et al. [77] find that increasing SOC leads to 
long-term yield stability and resilience, which is important in view of accelerating 
climate change. However, adopting sustainable management practices can come 
at the cost of short-term productivity. Policy changes to support the transition are 
therefore recommended [77, 128]. To minimise initial economic impacts for farmers 
of conversion, Yigezu et al. [46] and Tu et al. [129] recommend transition strategies 
that involve gradually reducing conventional inputs.

Sustainable agricultural practices achieve control of pests and pathogens without 
damaging the environment, but these practices are also largely dependent on healthy 
soil biota and rich ecosystems in the agricultural landscape. Agricultural soils have 
been affected by numerous sources of pollution [130]. Soil management practices 
and use of chemicals will have negative effects on many soil invertebrates and 
microbes [131, 132] but will favour others. The net effect is therefore not only loss of 
important strains of soil biota or total mass, but the creation of imbalances in micro-
bial communities that can have detrimental effects for plant health and crop yields.

Since soil health and ecosystems have been damaged by prior unsustainable prac-
tices, including use of synthetic fertilizers and pesticides, restoring health takes time, 
and processes of remediation and restoration are therefore crucial [59, 77, 132–134]. 
The ability of new cultivars to benefit from plant-microbial symbiosis has been affected 
by selection of cultivars for other traits, and by reduced dependence on this symbiosis 
through the use of synthetic fertilizers [93]. Transition to sustainable farming with 
organic fertilizers should therefore also consider the choice of suitable cultivars and 
heritage varieties that retain the ability to fully benefit from improved soil health.
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8. Smallholder farming and sustainable agriculture

It is difficult to evaluate the magnitude of smallholder and subsistence farming 
world-wide, since it is frequently undertaken in regions with limited statistics, on 
fragmented or mixed-use plots where land-use can be difficult to identify from 
satellite images. In many contexts, it is not necessarily the primary occupation of 
the farmer. Despite its marginal position in debates on agricultural productivity, 
smallholder farming plays a vital role for biodiversity, food security, human health, 
equity and climate resilience, since value is not lost in the distribution chain but stays 
with producers and their communities. Locally sourced food reduces community 
vulnerability to disruptions in the food supply chain, due to disasters, logistics 
failures, financial crises, or armed conflict. The latter consideration is significant for 
the MENA region, where several countries are affected by conflict or volatility [33]. 
Food systems worldwide are exposed to numerous disruptions, which will increase 
as a result of climate change and environmental degradation [69]. Smallholder farm-
ers are particularly vulnerable to such shocks and have difficulties making adequate 
choices in the face of uncertainty [21, 22, 31]. To address such challenges, Kim et al. 
[70] suggest a land-water-nutrient nexus (LWNN) approach (see also Jat et al. [96] 
for strategies from an Indian context). Crop diversification can be a strategy to meet 
the double uncertainty of price fluctuations and crop failures [135], and polycultures 
also have environmental benefits. However, food processing industries and interna-
tional markets tend to be oriented towards monocultures, and smallholder farmers 
can be obligated by contracts to produce particular crops.

Low-input smallholder production systems are one of the dominant food pro-
duction systems globally [136]. In an Ethiopian case, Baudron et al. [136] observe 
that complex agricultural landscapes that incorporate trees offer better overall 
livelihoods for farmers, lead to better carbon balances, as well as being more resil-
ient both to fluctuation in input prices and to climate stress. They further underline 
that low-input farming with resource-saving practices can increase profitability for 
farmers more than yield optimization, while yield stability is another important 
consideration for smallholders.

Baudron et al. [136] therefore argue for an increased attention to agricultural 
practices that support synergies between agriculture and biodiversity, rather than 
presenting the situation as an irreducible choice between ‘land sparing’—aiming 
to reduce demand for land through intensification— and ‘land sharing’, assuming 
loss in yields, as a consequence of practices that are more favourable to wildlife 
and biodiversity. Baudron et al. emphasize the reliance of low-input smallholder 
agricultural production on ecosystem services provided by biodiverse ecosystems, 
and further point to the crucial role of ecosystem services to maintain soil fertility, 
pollination, and for pest and disease control [136, 137].

Despite the benefits that low-input farming can bring [138], barriers include 
lack of locally relevant expertise, and the time needed to rehabilitate soils degraded 
by use of synthetic fertilizers and pesticides. Subsidy systems may support heavily 
mechanised and chemical-intensive agriculture [3, 14], with questionable benefits 
for smallholder farmers. Further barriers in transitioning to sustainable agricul-
tural practices are access to markets, and global food systems structured to favour 
monoculture of particular crops and cultivars.

9. Conclusions

In view of the numerous factors that influence outcomes for the use of organic 
fertilizers, locally tailored strategies that combine approaches to enhance soil health 
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and sustainable land management would be recommended. However, sufficiently 
detailed data is still lacking on how different management practices affect yields 
and environmental impacts depending on local conditions, particularly in the 
global South. Citizen science has the potential to offer a better evidence base for 
farmers’ choices, but the structure of many citizen science projects rarely supports 
longer term collaboration and dialogue with smallholder farmers in the global 
South [139, 140]. In addition, smallholder farmers may not be able to afford indi-
vidualised consulting, and agronomists may lack expertise applicable to low-input 
agriculture. Transitioning to sustainable practices is knowledge intensive [44], and 
this is therefore an area where international networking with academic institutions 
could play a significant role in supporting climate adaptation and mitigation efforts. 
Exchange of knowledge among farmers [141] and farmers’ organizations can also 
play a role for mobilizing resources and expertise, but such potential contributions 
will depend on the orientation of the organization [142].

Among other implications of the current climate crisis, a narrow focus on crop 
yields is not sufficient, since outcomes of fertilizer application are usually estimated 
under optimal or normal growing conditions. Increased weather variability and 
the ensuing risk of crop failure, means that greater attention must be devoted to 
resilience, and the capacity to cultivate under unpredictable and less than optimal 
conditions. This in turn means, for instance, that effects on root growth, the 
capacity of root systems to absorb water and nutrients under extreme conditions, as 
well as the capacity of the soil to retain water and nutrients over longer periods of 
time all become critical factors. Also, rather than considering fertilizer application 
merely from the view of inputs and short-term yields, and besides measures such as 
C:N ratios, we need to take on a more holistic view, looking at how choice of fertil-
izer relates to nutrient absorption efficiency, drought resistance of root systems 
[143], soil health, land degradation, water management and ecological intensifica-
tion. Future shortages of P [144–146], loss of arable land [37], decline in soil carbon 
[147], as well as widespread decline in soil fertility driven by industrial practices in 
agriculture, point to the important role of organic fertilizers. However, availability 
of organic material is constrained by competing demands on biomass and land 
for industrial and carbon sequestration purposes, while contamination of organic 
waste and wastewater [10, 118, 148] poses an issue for possible circular approaches. 
To generalise the use of organic fertilizers, redesign of food systems and policy 
changes are therefore required, adopting a more comprehensive approach to the 
complex interlinkages that are involved.
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