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Chapter

Ruminal Microbiome Manipulation 
to Improve Fermentation Efficiency 
in Ruminants
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Abstract

The rumen is an integrated dynamic microbial ecosystem composed of  
enormous populations of bacteria, protozoa, fungi, archaea, and bacteriophages. 
These microbes ferment feed organic matter consumed by ruminants to produce 
beneficial products such as microbial biomass and short-chain fatty acids, which 
form the major metabolic fuels for ruminants. The fermentation process also involves 
inefficient end product formation for both host animals and the environment, such 
as ammonia, methane, and carbon dioxide production. In typical conditions of 
ruminal fermentation, microbiota does not produce an optimal mixture of enzymes 
to maximize plant cell wall degradation or synthesize maximum microbial protein. 
Well-functioning rumen can be achieved through microbial manipulation by altera-
tion of rumen microbiome composition to enhance specific beneficial fermentation 
pathways while minimizing or altering inefficient fermentation pathways. Therefore, 
manipulating ruminal fermentation is useful to improve feed conversion efficiency, 
animal productivity, and product quality. Understanding rumen microbial diversity 
and dynamics is crucial to maximize animal production efficiency and mitigate the 
emission of greenhouse gases from ruminants. This chapter discusses genetic and 
nongenetic rumen manipulation methods to achieve better rumen microbial fermen-
tation including improvement of fibrolytic activity, inhibition of methanogenesis, 
prevention of acidosis, and balancing rumen ammonia concentration for optimal 
microbial protein synthesis.

Keywords: microbial manipulation, rumen, feed additives, phytochemicals,  
fiber degradation, microbial protein, acidosis

1. Introduction

Rumen inhabits several microbial populations, that is, bacteria, protozoa, fungi, 
bacteriophages, yeasts, and methanogens symbiotically, which are very dynamic, 
plastic, and redundant in function with the changes in diets though core microbiota 
persists, which has probably evolved by host-microbiota interaction in the evolution-
ary pressure over thousands of years [1]. A symbiotic relationship exists between 
rumen microbes and host animals in which both provide desirable substrates to 
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each other mainly through these ways—1) physical breakdown of feed particles by 
mastication and rumination expands their surface area for microbial attachment and 
degradation, and consequently, microbes secrete various enzymes for dietary sub-
strate degradation, 2) ruminal movements bring microbes in contact with the dietary 
substrate by mixing of digesta and consequently produce fermentation products (e.g., 
H2, CO2, ammonia, short-chain fatty acids (SCFAs), and 3) utilization (absorption 
and consumption) of the fermentation products for keeping optimal ruminal condi-
tions (e.g., pH) to maintain microbial growth and microbial protein synthesis [2]. 
Therefore, due to the interactive ecosystem of the rumen, any modification to one 
component of this system has several effects on other components. The fermentation 
end products of any diet are incorporated into the final animal products (meat or 
milk). Thus, manipulation of the ruminal fermentation pathways is the most effective 
approach to improve ruminant health and production efficiency without exaggerated 
increases in nutrient supply. This in particular should help the small livestock holders 
in developing countries for continued production.

The literature explored various manipulation strategies including enhancing or 
inhibiting the growth or the metabolic activity of specific rumen microbiota (e.g., 
archaea for methanogenesis) and/or altering the ruminal fermentation toward 
specific pathways (e.g, decreasing H2 production and increasing short-chain fatty 
acids (SCFAs) production [3, 4]. Extensive literature supports the supplementations 
of various rumen modifiers; however, efforts are still underway to find appropriate 
methods to simultaneously improve livestock production while reducing greenhouse 
effects on the environment. Through the following aspects, the most common meth-
odologies for modifying the ruminal microbiome and fermentation characteristics 
are discussed in this chapter.

2. Enhancing fibrolytic activity and short-chain fatty acid production

Lignocellulose (complex polymers of cellulose, hemicellulose, pectin, and lig-
nin) makes up the majority of the ruminant diet. Generally, forages, including crop 
residues, provide the main source of nutrition to ruminants that contribute to the 
food security and primary source of income of smallholder farmers in the developing 
countries [5–7]. This is also true where grazing animals are common in the developed 
countries. Hence, forage is virtually the only source of nutrition in the main beef-
producing northern Australia, North and South America [8].

Although ruminants can digest fibrous feedstuffs, dietary cell wall polysaccharides 
are rarely completely degraded in the rumen. Less than 50% of the plant cell wall of 
most forage grasses are digested and utilized. This is attributed to the combination of the 
biochemical and physical barriers present in the ingested fibrous feedstuffs and retention 
time limitations of the ingested dietary substances in the rumen [9], resulting in excessive 
nutrient excretion, low nutrient intake, and a significant loss of dietary energy in the form 
of CH4 emission [10]. Therefore, enhancing the rumen microbiota to degrade plant cell 
walls usually leads to improve animal productivity.

Ruminants cannot degrade lignocellulose themselves. An involved community 
of fibrolytic microorganisms catalyzes the degradation of the plant cell walls in 
the rumen. The major classical fibrolytic bacteria involved in fiber degradation are 
Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens, Butyrivibrio, 
and Prevotella spp. [11]. Anaerobic fungi also contribute to degrade cell wall com-
ponents and play a special role in degrading low-quality forages. Fungi are able to 
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penetrate the plant tissue as a result of their filamentous growth and can degrade up 
to 34% of the lignin in plant tissues [12]. Fungi (i.e., Neocallimastix sp.) have a broad 
range of highly active fibrolytic enzymes and are the only known rumen microorgan-
isms with exo-acting cellulose activity [11]. Cellulolytic activity is present in many 
rumen protozoa species, and the most efficient cellulose degraders are Epidinium 
ecaudatum, Eudiplodinium maggii, and Ostracodinium dilobum [13].

There are various well-established procedures that can be used to improve forage 
utilization including modifying ruminal microbial fermentation toward more fiber 
degradation. These include mechanical and chemical processing of forages and geneti-
cally engineering of plants for cell wall composition. However, we will focus on ruminal 
fibrolytic microorganisms and their products in the following sections of the chapter.

2.1 Genetically engineered fiber-degrading bacteria

The manipulation of genes in genetically engineered organisms can produce 
a product with novel specific characteristics that may have significant value. This 
concept was exploited in developing genetically modified fiber-degrading bacteria 
to optimize their activity by producing the correct mixture of fibrolytic enzymes to 
maximize plant cell wall degradation. Ruminococcus and Fibrobacter strains were the 
most targeted fiber-degrading bacteria for genetic modifications because they cannot 
produce exocellulases that are active against crystalline cellulose. Therefore, altering 
this activity would make them more potent [11]. The genome sequences of F. succino-
genes, R. albus, and Prevotella ruminicola strains are available [11].

As early as 1995, Miyagi et al. [14] suggested that inoculation of genetically 
marked R. albus into a goat rumen might be of benefit to rumen function, but they 
found that the inoculant usually disappears from goat rumen after 14 days. One of 
the reasons for this is that bacteria reproduce within the physiological and ecological 
limits of the rumen ecosystem in which cooperative networks exist among ruminal 
microorganisms; since some organisms cleave specific bonds, others utilize particular 
substrates, while others produce inhibitors [11]. The scientists’ sights were turned 
to Butyrivibrio species because they are among the most rumen bacteria capable of 
hemicellulose degradation and are regarded as being ecologically robust [15]. Gobius 
et al. [16] reported the successful transformation of a diverse range of eight strains 
of Bu. fibrisolvens with xylanase (family 10 glycosyl hydrolases) from rumen fungus 
Neocallimastix patriciarum. Glycosyl hydrolases family 10 was selected because it is 
different from family 11, which typically exists in Bu. Fibrisolvens and this family is 
characterized by high specific activity and resistance to proteolysis. The transforma-
tion was functionally successful and the in vitro fiber digestibility measurements 
revealed an improvement in plant fiber degradation by the recombinant xylanase; 
however, this still does not allow them to compete with the far more fibrolytic spe-
cies Fibrobacter and Ruminococcus [11]. Another genetically engineered bacteria, 
Bacteroides thetaiotaomicron was inoculated at approximately 1% of the total popu-
lation into in vitro dual-flow continuous culture fermenters and persisted for at 
least 144 h with relative abundances of 0.48–1.42% and increased fiber digestion, 
particularly hemicellulose fraction [17]. Generally, most of the experiments that used 
modified fibrolytic bacteria were in vitro trials. However, it should be taken into con-
sideration that the in vitro fermenters did not express the full complement of rumen 
microorganisms (particularly protozoa). Moreover, this microbial manipulation 
application seems to be costly, especially for the small livestock holders in developing 
counties.
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2.2 Direct-fed microbials

The concept of direct-fed microbials is different from the term probiotics. 
Probiotics were identified by any live microbial feed additive that may beneficially 
influence the host animals upon ingestion by improving microbial balance in the 
intestine [18]. Viable microbial communities, enzyme preparations, culture extracts, 
or combinations of those products were included in the concept of probiotic supple-
ments [19]. The DFM has a narrower definition than probiotics as it is defined as 
a source of life, naturally occurring microorganisms alive, naturally occurring 
microorganisms that improve the digestive function of livestock. The DFM includes 
three main categories; bacterial, fungal, and a combination of both [20]. DFM must 
be alive to impact ruminal fermentation; thus, the viability and number of organ-
isms fed must be ensured at the time of feeding. Lactic acid-producing and utilizing 
bacterial species of Lactobacillus, Bifidobacterium, Streptococcus, Bacillus, Enterococcus, 
Propionibacterium, Megasphaera elsdenii and Prevotella bryantii, and yeasts such as 
Saccharomyces and Aspergillus were the significant microbes of most of the DFM for 
livestock production [21].

DFM can grow under ruminal conditions and manipulate the microbial ecosys-
tem. Various factors may affect the activity of DFM including microbial strains, time 
of feeding, feeding system, treatment period, physiological conditions, and dosages 
[20, 22]. The microbial strains seem to be the main influencer—DFM containing 
mainly lactic acid-producing and utilizing bacteria can manipulate the growth of 
microorganisms adapted to lactic acid in the rumen while preventing the drastic pH 
drops, for example, M. elsdenii [19]. DFM of Propionibacterium species can manipu-
late the fermentation pathways toward a more molar portion of propionate produc-
tion [20, 23]. Propionibacterium is naturally found in high numbers in the rumen 
ecosystem and known to ferment lactate to propionate, providing more substrates for 
lactose synthesis in early lactation dairy cows, improving energy efficiency for the 
growing ruminants by reducing methane emission [20, 23].

Direct-fed microbials, based on fungal cultures, mainly contain Saccharomyces 
cerevisiae and Aspergillus oryzae, which can remove oxygen from the surfaces of 
freshly ingested feed particles to maintain the ruminal anaerobic conditions for the 
growth of cellulolytic bacteria [22, 24]. Moreover, the end metabolites of yeasts in the 
rumen can provide the ruminal microbiota with growth factors (i.e., rumen aceto-
gens, digestive enzymes, anti-bacterial compounds, organic acids, and vitamins), 
resulting in stimulation of ruminal cellulolytic bacteria and maintenance of pH for 
optimal fiber degradation, and consequently greater production performance [21, 
22]. Due to the low cost of DFM compared to other commercial feed additives, it can 
be included among the suitable solutions to manipulate the ruminal fiber degradation 
for the smallholder livestock sectors.

2.3 Exogenous fibrolytic enzymes

Products of exogenous fibrolytic enzymes (EFE) that contain primarily cellulo-
lytic and xylanolytic activities can manipulate the ruminal fiber degradation, and 
improve feed conversion efficiency and thus lead to enhanced productive efficiency 
of ruminants [9]. Published literature suggests that the mode of actions of EFE 
products are likely different than that of DFM products. The activities introduced to 
the rumen by EFE are not novel to the ruminal ecosystem as they would act upon the 
same sites of the feed substrate particles as endogenous fibrolytic enzymes [25]. The 
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release of reducing sugars by EFE is probably an essential mechanism by which EFE 
operates [26]. The degree of sugar release is dependent on the substrate types as well 
as the type of enzymes. The released sugars can attract secondary ruminal microbial 
colonization, or remove barriers to the microbial attachment to substrate feed parti-
cles by cleaving the linkage between phenolic compounds and polysaccharides [9]. As 
a result, the most significant effects of EFE probably occur in the interval between the 
arrival of the feed particles into the rumen and its colonization by ruminal microor-
ganisms, as only the rate, not the extent, of cell wall degradation, has been improved 
[25]. EFE can also manipulate the rumen fibrolytic microorganisms by enhancing 
their endogenous fibrolytic activities.

Genes from ruminal fungi encoding cellulases, xylanases, mannanases, and endo-
glucanases have been successfully isolated. Protein bioengineering has been employed 
to improve the catalytic activity and substrate diversity of fibrolytic enzymes from 
ruminants. This has resulted in fibrolytic enzymes with up to 10 times higher specific 
activity, pH and temperature optima, and enhanced fiber-substrate binding activity 
than the original enzymes [27]. This, together with the low manufacturing cost, has 
led to more recent developments in the enzyme production industry, and as a result, 
a wide range of commercial EFE products is now available. Frequently the manufac-
tures’ recommended doses of most commercial EFE products have been measured 
under wide ranges of pH (4.2–6.5) and temperatures (40–57°C), which are not always 
close to typical ruminal conditions. Moreover, most of the commercial EFE products 
for ruminants are often referred to as xylanases or cellulases. However, none of these 
products comprise single enzymes; secondary enzyme activities are invariably pres-
ent, namely, proteases, amylases, or pectinases [9]. A wide variety of feed substrates 
can be targeted by a single EFE product. Thus, the random addition of these products 
to ruminant diets without consideration for specific rumen conditions (pH 6.0–6.5 
and 39°C) and the not yet tested efficiency for specific substrate will result in unpre-
dictable effects and thus discouraging the adoption of the EFE technology [28, 29].

In general, enhancing the rumen microbiota to degrade the dietary fibers through 
the above-discussed strategies may lead to accelerating the energy production in the 
forms of short-chain fatty acids (SCFAs) and/or microbial protein synthesis. At the 
same time, it may also produce high amounts of CO2 and CH4.

3. Decreasing methanogenesis and increasing propionate production

The ruminal fermentation is the primary source of CH4 emission from livestock; 
it is one of the most potent greenhouse gases featured by short atmospheric mean 
lifetime. Furthermore, a significant proportion of the ingested feed energy is also lost 
as CH4 [40]. Methane is produced by methanogens mainly by reduction of CO2 through 
the hydrogenotrophic pathway. Formic acid and methylamines produced by other 
ruminal bacteria are also reduced to CH4 by some methanogens. Therefore, methano-
gens interact with other ruminal microorganisms (e.g., protozoa, bacteria, and fungi) 
through interspecies H2 transfer [4]. Thus, maximizing metabolic H2 flow away from 
CH4 toward SCFAs production could improve production efficiency in ruminants 
and decrease environmental impact. There are various direct and indirect strategies 
to manipulate rumen methanogenesis; among these options, inhibiting the growth or 
the metabolic activity of methanogens seems to be the most effective approach. The 
efficiency of these strategies mainly depends on where methanogens reside. It can be 
seen from the smaller number of archaeal 16S rRNA gene sequences (461 vs. 8162) 
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recovered from protozoa than from ruminal content or fluid [4]. Free methanogens are 
mainly integrated into the biofilm on the surfaces of feed particles where H2-producing 
bacteria actively produce H2. These methanogens protected by the biofilm may not be 
inhibited to an extent similar to the free-living peers by anti-methanogenic inhibitors 
[4]. Also, methanogens can be inhibited indirectly through inhibiting rumen ciliate 
protozoa. Based on fluorescence in situ hybridization analysis, about 16% of the rumen 
ciliate protozoa contained methanogens inside their cells [30]. Most rumen ciliate 
protozoa have hydrogenosomes, unique membrane-bound organelles producing H2 by 
malate oxidization; therefore, these organelles can attract some species of methanogens 
as endosymbionts [4].

Methane formation pathways comprise of three main steps; transfer of methyl 
group to coenzyme M (CoM-SH), reduction of methyl-coenzyme M with coenzyme 
B (CoB-SH), and reusing heterodisulfide CoM-S-S-CoB [4, 31]. Thus, obstruction of 
any of these steps may manipulate CH4 production. A wealth of literature on rumen 
CH4 manipulation strategies in ruminants have been published recently, but relatively 
very few have emphasized the suitable mitigation strategies at the farm level [32]. 
Each method has some potential advantages and limitations. The principal interest for 
animal producers is income, as they usually do not take CH4 mitigation strategies or 
climate changes into account. Thus, any strategy to mitigate greenhouse gasses emis-
sion would only be of practical interest if achievements on the efficiency of animal 
production can be obtained. This can be obtained through rumen CH4 modifiers 
that enhance the production of SCFAs and/or reduce proteases. The following part 
addresses some of these microbial modifiers.

3.1 Ionophores

Ionophores are polyether antibiotics that act as inhibitors to hydrogen-producing 
bacteria. They are widely used as successful growth promoters in the livestock industry 
due to their ability to modulate rumen fermentation toward propionate production, 
thereby decreasing CH4 production. Since propionate and CH4 are terminal acceptors 
for metabolic H2, any increase in propionate production may accompany reduced CH4. 
In addition, ionophores positively affect ruminal fermentation through inhibition of 
deamination compared to proteolysis, inhibition of hydrolysis of triglycerides, and 
biohydrogenation of unsaturated fatty acids, while enhancing the trans-octadecenoic 
isomers (cited from [33]).

From the literature, monensin and lasalocid are the most well-known ionophore-
type antimicrobials used as rumen modifiers. Mainly, they inhibit Gram-positive 
bacteria; however, they can also inhibit some Gram-negative bacteria. Ionophores 
decrease CH4 production by inhibiting H2 producing bacteria by penetrating the 
bacterial cell wall membrane. They act as H+/Na+ and H+/K+ antiporters, dissipating 
ion gradients required for the synthesis of ATP, transport of nutrients, and other 
essential cellular activities in bacteria, resulting in retardation of cell growth and 
cell death [4, 34]. Monensin can decrease total methanogens number in cattle, and 
also alter the community composition of methanogen species, for example, monen-
sin decreased the population of Methanomicrobium spp. while increasing that of 
Methanobrevibacters spp. [4].

Unfortunately, ionophores present a temporary impact on ruminal manipulation 
effects due to the adaptation of the microorganisms of these inhibitors. Ionophores 
are now restricted due to the possible resistance of pathogenic microorganisms to 
antibiotics [33]. Recently, the global scenario has shifted the interest toward plant 
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natural feed additives with potential abilities to modulate CH4 emission [35, 36]. 
Moreover, the type of the dietary feeds affects the efficiency of ionophores with the 
better effect of ionophores observed in high starch diets [33]. Thus, this approach 
seems to be less effective for the small livestock holders in most developing countries 
since the forages are the main ingredient in the diets.

3.2 Natural feed additives as rumen modifiers

3.2.1 Plant secondary compounds

Numerous plant secondary compounds (PSC), including tannins, flavonoids, 
saponins, essential oils (EOs), organosulfur compounds, have been recognized as 
having the potential to modulate ruminal microbial fermentation [37–39]. Plant sec-
ondary compounds are natural phytochemicals with the potential ability to manipu-
late rumen fermentation without causing microbial resistance or residual noxious 
effects on animal products [3]. Unlike ionophores, the different active components 
found in plant extracts may manipulate ruminal microbiota through more potent 
mechanisms of action (e.g., antimicrobial and antioxidant), which may avoid the risk 
of losing activity over time [40].

3.2.2 Tannins

Tannins are polyphenolic compounds with different molecular weights ranging from 
500 to 5000 Da [41]. Tannins are classified into two major groups, that is, condensed 
(CT) and hydrolyzable tannins (HT). CT are proanthocyanidins consisting of oligomers 
or polymers of flavan-3-ol subunits. They act through binding with dietary proteins and 
carbohydrates by making strong complexes at ruminal pH [41–43]. Therefore, they are 
the most plant secondary metabolites studied in terms of rumen modulation pathways.

The literature reported quite various effects of CT supplementations regarding 
CH4 mitigation [38]. Some studies suggest a direct effect of CT on methanogens by 
binding with the proteinaceous adhesin or parts of the cell envelope, which impairs 
the establishment of methanogens-protozoa complex and decreases interspecies H2 
transfer, and inhibits growth [44]. Other studies suggest an indirect effect of CT 
through the anti-protozoal effect. However, the effects of CT on rumen protozoal 
activity are varied in the literature, probably because some of the CTs have a direct 
effect on rumen methanogenic archaea, which are not associated with the protozoa. 
Tannins also can indirectly inhibit CH4 per unit of the animal product through 
tannin–protein or organic matter complexes under ruminal conditions, while pro-
tein from these complexes is released post ruminally, making it available for gastric 
digestion at abomasum and small intestine conditions, leading to enhancing the 
animal productivity [43]. Another theory is that tannins can act as H2 sink reducing 
the availability of H2 for CO2 reduction to CH4, implying that 1.2 mol CH4 is produced 
per mol of catechin [44].

Tree foliages are good feed resources for the small ruminants, which are rich in 
protein and perform catalytic functions in improving ruminal fermentation, espe-
cially in low-quality forage-based diets in developing countries [45]. The nutritionists 
have paid great attention to the tanniferous legumes and tree foliages as alterna-
tive cheap feed resources (especially in drought conditions and arid and semi-arid 
regions) and to achieve CH4 mitigation goals in the developing countries [46]. Many 
plants were investigated in the literature; however, the results are highly variable 
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among studies. Soltan et al. [43] studied various tanniniferous browsers and found 
that some plants (i.e., Prosopis and Leucaena) similarly modulate ruminal fermenta-
tion as ionophores perform by decreasing the acetate to propionate ratio, CH4 and 
NH3-N, while Acacia reduced CH4 through decreasing fiber degradation although it 
had similar CT concentration as Leucaena. Thus, it seems that not only does tannin 
concentration play a role in the modulation of the ruminal fermentation process, but 
also types, molecular weights are important in determining tannin potency in modu-
lating rumen fermentation patterns. The presence of HT and other plant secondary 
metabolites (mimosine in Leucaena) together with CT can interact with the action of 
CT [44, 47].

3.2.3 Saponins

Saponins are a group of plant secondary metabolites with high molecular weight 
glycosides in which a sugar is linked to a hydrophobic aglycone. It can be generally 
classified as steroidal and triterpenoid [48, 49]. The effects of saponins on rumen 
fermentation modulation have been reviewed extensively [49]. The main biological 
effect of saponins is on the cell membranes of bacteria and protozoa. Saponins are 
highly toxic to protozoa compared with bacteria because saponins can form com-
plexes with sterols present in the protozoal membrane surface, disrupting the mem-
brane function [49]. Thus, it can indirectly affect the methanogenic archaea through 
their symbiotic relationship with rumen protozoa [38]. However, some literature 
assumed that the effects of saponins on rumen protozoa could be transient due to 
the ability of ruminal bacteria to degrade saponins into sapogenins. The sapogenin 
compound cannot affect protozoa [50].

3.2.4 Essential oils

Essential oils (EO) are volatile aromatic complexes obtained from different plant 
volatile fractions by steam distillation. They can be obtained from various plant parts 
including leaf, stem, fruit, root, seed, flower, bark, and petal. EO contains numerous 
bioactive substances; the most important ones are terpenoids (monoterpenoids and 
sesquiterpenoids) and phenylpropanoids. Due to the lipophilic properties of these 
components, EO act against various rumen bacteria through interacting with the cell 
membrane [3].

Several EO compounds, either in pure form or in mixtures, had antioxidant and 
anti-bacterial properties; therefore, they can modulate the ruminal fermentation 
pathways [51]. The EO, unlike ionophores, does not alter the ruminal microbial activi-
ties through a specific mode of action. Therefore, EO may have more potent mecha-
nisms of action that may not likely lose their effectiveness over time. Soltan et al. 
[40] suggested two mechanisms in explaining how combination of phenylpropanes 
and terpene hydrocarbons components in EO mixtures work together to enhance 
additive antimicrobial activity—1) phenolic compounds may increase cell membrane 
permeability through the action of hydroxyl group, thus facilitating the transport of 
terpene hydrocarbons into the microbial cells, which then combine with proteins and 
enzymes inside the cells; 2) phenolic compounds could increase the size, number or 
duration of the existence of the pores created by the binding of terpene hydrocarbons 
with proteins in cell membranes.

The effects of EO on rumen fermentation are variable depending on concentrations, 
types, diet and adaptation period, but most EO are found to have anti-methanogenic 
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properties [35, 52]. Patra and Yu [52] studied various EO with different chemical struc-
tures (clove, eucalyptus, origanum, peppermint, and garlic oil) in vitro at three different 
concentrations (0.25, 0.50, and 1.0 g/L) for their effect on CH4 production and archaeal 
abundance and diversity and they found that all these EO suppressed CH4 production, 
but the extent of CH4 inhibition and ruminal fermentation differed among the EO. 
Further studies are needed to understand the interactions of the active compounds with 
the dietary ingredients and their activity against specific methanogens should be identi-
fied without adverse effects on fermentation patterns and rumen fiber degradability, as 
well as the different doses for each EO. Also, attention needs to be paid to the palatability 
as some EO may adversely affect palatability and dry matter intake due to the aroma 
they add to the ration. Therefore, many products of encapsulated EO are available in 
commercial forms, but this raises the question of the suitability of these products as feed 
additives at the farm level in developing countries.

3.2.5 Propolis

Propolis is a mixture of resinous substances collected from buds of deciduous 
trees and crevices in the bark of coniferous and deciduous trees and secretions by 
honeybees [53, 54]. The bees use propolis to fill cracks, cover hive walls and embalm 
invading intruder insects or small animals [55, 56]. The literature reported that 
the chemical composition of propolis is highly variable by bee collection site since 
geographical location plays an important role [54]. The most bioactive components 
are belonging to groups of isoflavones, flavonoids, and fatty acids that have been 
reported to be biologically active [53]. Recently, bee propolis has been recognized as 
a natural alternative feed additive to antibiotics in ruminant diets [54]. Compared to 
ionophores (e.g., monensin), different propolis sources can reduce CH4 production 
while improving the organic matter digestibility and total SCFAs in vitro and in vivo 
[53, 57]. Morsy et al. [58] reported that CH4 reduction caused by propolis supplemen-
tation is accompanied by increasing urinary allantoin, total purine derivatives, and 
enhancements of individual and total SCFAs. Thus, they suggested that propolis can 
help in the redirection of ruminal organic matter degradation from CH4 production 
to microbial synthesis and SCFAs. From a practical view, propolis can be a promis-
ing feed additive in the vegetation places where it is produced in a large amount such 
as Brazil.

3.3 Plant oils

Fats are usually used as energy sources for dairy cattle. The addition of fats is a 
promising approach for modulating rumen microbial communities and the fermenta-
tion process. Fats are known to inhibit microbial activity; however, supplementing 
fats up to 6% of dry matter has shown no adverse effects on total nutrient digestibility 
and total SCFAs [59]. A meta-analysis study suggests that methane emissions can be 
declined by 0.66 g/kg DM intake with each percentage increase in dietary fats, within 
dietary fat concentrations of 1.24–11.4% [59]. Fats containing high levels of C12:0, 
C18:3, and polyunsaturated fatty acids up to 6% of the dietary diet may be considered 
for CH4 mitigation without compromising the productivity in dairy cattle [59].

Plant oil supplements can modulate CH4 directly by inhibiting rumen protozoa 
and methanogens while enhancing biohydrogenation of polyunsaturated fatty acids 
(PUFA) to act as ruminal hydrogen sink for hydrogen produced by rumen microor-
ganisms and reducing fiber degradation with less H2 production in the rumen [60]. 
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The literature showed variable effects of plant oils on CH4 emission and rumen 
fermentation; this might be related to the oil type (free oil or whole seed), diet 
composition (forage to-concentrate ratio), and fatty acid type (short-chain or PUFA) 
present in diets [59]. Generally, consideration of vegetable oils supplementation 
to lower CH4 emission may depend upon the cost and expected outcome effect on 
animal productivity.

3.4 Chitosan

Chitosan is a natural polycationic polymer, nontoxic, biocompatible, biodegrad-
able; thus, it is safe for human as well as animal consumption [61]. It is a linear 
polysaccharide composed of two repeated units—D-glucosamine and N-acetyl-D-
glucosamine linked by β-(1–4)-linkages [61]. It can be found in the structural exoskel-
eton of insects, crustaceans, mollusks, cell walls of fungi, and certain algae, but it is 
mainly obtained from marine crustaceans [62]. It is characterized by anti-inflamma-
tory, antitumor, antioxidative, anticholesterolemic, hemostatic, and analgesic effects. 
Moreover, it has a high antimicrobial affinity against a wide range of bacteria, fungi, 
and protozoa; therefore, it has been recently tested as a rumen fermentation modula-
tor and considered as a promising natural agent with CH4 mitigating effects [61]. The 
antimicrobial mechanism of chitosan can include interactions at the cell surface and 
outer membranes through electrostatic forces, the replacement of Ca+2 and Mg+2 ions, 
the destabilization of the cell membrane, and leakage of intracellular substances, and 
cell death. The antimicrobial properties of chitosan can also include chelating capac-
ity for various metal ions and the inhibition of mRNA and protein synthesis [61].

It seems chitosan activity depends on the diet type as well as the ruminal pH. The 
literature reports suggest that the maximum effect of chitosan is noted when grain 
(starch) is incorporated in the ration at low pH values, shifting the fermentation 
pattern to a more propionate production pathway, which could be explained by the 
higher sensitivity of Gram-positive bacteria than Gram-negative bacteria against 
chitosan [61, 63]. This type of change in ruminal fermentation by chitosan results 
in reductions in CH4 production. Moreover, supplementation of chitosan alters 
the rumen bacterial communities related to fatty acids biohydrogenation, that is, 
Butyrivibrio group and Butyrivibrio proteoclasticus that lead to increases in concentra-
tions of milk unsaturated fatty acids and cis-9,trans-11 conjugated linoleic acid [64].

3.5 Chemical feed additives

Numerous chemical additives were used to modulate the rumen microbial activity 
for optimizing animal productivity, namely, defaunating agents, and anti-methano-
genic agents to reduce CH4 emission. Patra et al. [4] reported the most promising anti-
methanogenic agents that effectively lower CH4 without adverse effects on rumen 
degradability or producing SCFAs and each of which works through different modes 
of action when added together to additively decrease CH4 production. These include 
halogenated sulfonated compounds (e.g., 2-bromoethanesulfonate, 2-chloroethane-
sulfonate, and 3-bromopropanesulfonate), 3-nitrooxypropanol (3NOP), nitrate, and 
ethyl-3NOP are used to inhibit methyl-CoM reductase activity, the final limiting step 
to complete the methanogenesis pathways. Halogenated aliphatic compounds with 
1 or 2 carbons can impair the corrinoid enzymes function and inhibit cobamide-
dependent methyl group transfer in methanogenesis or may serve as terminal electron 
(e−) acceptors. Some agents, namely, lovastatin and mevastatin were found to inhibit 
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3-hydroxy-3-methylglutaryl coenzyme, which is essential in the mevalonate pathway 
to form isoprenoid alcohols of methanogen cell membranes [4]. The addition of 
nitrate has two benefits—it can inhibit methanogenesis and acts as a nonprotein 
nitrogen source, which could be useful in low-quality base diets [65].

4. Control of acidosis

Diets containing high amounts of rapidly fermenting soluble carbohydrate result in 
pH drop due to excessive production of lactate or VFA or a combination of both, which 
may be of subacute ruminal acidosis (pH between 5.0 to 5.5) or acute acidosis (<5.0) 
type with acute or chronic in duration [66]. The consequences of acidosis range widely 
along with death and more importantly lower productivity, especially in subacute 
ruminal acidosis [66, 67]. Decreasing the ruminal pH leads to inhibition of rumen 
cellulolytic bacteria. Therefore, maintaining ruminal pH at the average level (5.8–7.2) is 
an essential factor to balance the rumen microorganisms between acid producers and 
consumers. In this context, buffering reagents and alkalizer (e.g., sodium bicarbon-
ate, magnesium oxide, and calcium magnesium carbonate), direct-fed microbials, 
and malate supplementation may increase pH in the rumen and production when 
ruminants are fed with high-grain based diets [66, 68]. Malate supplementation can 
stimulate Selenomonas ruminantium that converts lactate to VFA [69]. Marden et al. 
[70] reported that the inclusion of 150 g of sodium bicarbonate increased total ruminal 
VFA concentration by 11.7% compared to the control diet fed to lactating cows. The 
addition of sodium bicarbonate, magnesium oxide, and calcium magnesium carbonate 
reduced the duration of time ruminal pH persisted below 5.8 in lactating dairy cows 
fed a high-starch (342 g/kg DM) containing diet and increased milk and fat yield, and 
milk fat concentration, but reduced milk trans-fatty acids isomers [71]. The efficacy 
of the acid-neutralizing capacity of the alkalizers depends upon physical and chemical 
properties that influence the solubility in the ruminal conditions. However, in develop-
ing country conditions, the acidosis problems are usually less severe as ruminants are 
mostly fed with roughage-based diets.

5. Enhancing ruminal microbial protein synthesis

Microbial protein in the rumen (RMP) accounts for between 50 and 90% of the 
protein entering into the duodenum and supplies the majority of the amino acids 
required for growth and milk protein synthesis [72]. Therefore, increasing RMP 
synthesis is important for improving animal productivity. Moreover, increasing the 
RMPS is an effective strategy to decrease protein (i.e., nitrogen) excretion in live-
stock since the dietary protein unless utilized properly by ruminal microorganisms 
is degraded to ammonia in the rumen, and ammonia is absorbed from the rumen, 
metabolized to urea in the liver, and excreted in urine causing environmental nitrogen 
pollution [10, 73].

There are many factors affecting RMP synthesis including dry matter intake, type 
of the ration fed (forage to concentrate ratio), the flow rate of digesta in the rumen, 
the sources, and synchronization of nitrogen and energy sources [74]. Among these, 
the amount of energy supplied to rumen microbes was found to be the main factor 
affecting the amount of nitrogen incorporated into RMP. Phosphorylation at the 
substrate level and electron transport level are two significant mechanisms of energy 
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generation within microbial cells [75]. Based on 10 reconstructed pathways associated 
with the energy metabolism in the ruminal microbiome, Lu et al. [75] found that the 
energy-rich diet increased the total abundance of substrate-level phosphorylation 
enzymes in the glucose fermentation and F-type ATPase of the electron transporter 
chain more than the protein-rich diet. Therefore, they concluded that energy intake 
induces higher RMP yield more than protein intake. In this context, any factor affect-
ing the available amount of soluble carbohydrates to rumen microbes will affect the 
efficiencies of RMP synthesis. Therefore, most of the previously mentioned rumen 
modifiers (e.g., plant secondary metabolites, dietary oil) may affect the RMP synthe-
sis; however, most of the studies have ignored the determination of RMP.

Maximizing RMP synthesis seems to be the most effective approach for the small 
livestock holders in most developing countries since microbial protein sometimes 
becomes the only protein source for the animals fed on poor quality forage diets with low 
or without concentrate supplementations. Balancing the diets of these animals by supple-
menting of leaves of legumes, urea-molasses multinutrient blocks, urea in the form of 
slow ammonia release, and other nonprotein nitrogen resources found to be favorable 
for RMP synthesis [8, 10, 29, 73]. It has been recognized that feeding high true proteins 
(the most expensive ingredients in the ruminant diet) can be utilized by ruminal bac-
teria in about the same way as the ammonia from nonprotein nitrogen (e.g., urea). The 
optimum concentrations of ammonia in the rumen for maximal RMP synthesis are about 
50–60 mg/L and 27–133 mg/L from the in vitro and in vivo studies, respectively [73].

Reduction in CH4 production can enhance the RMP synthesis. Soltan et al. [10, 29] 
observed that inclusion of Leucaena in sheep diet up to 35% with or without polyeth-
ylene glycol enhanced the RMP and the body nitrogen retention while reducingCH4 
emission; they suggested that optimizing microbial growth efficiency might help to 
redirect organic matter degraded from CH4 formation to RMP synthesis. Plants or feed 
additives containing phytochemicals with high antioxidant activity can promote more 
nutrients for microbial uptake, enhancing RMP synthesis, while reducing CH4 emission 
due to lessening the ruminal oxidative stress [36, 53].

6. Reduction of ruminal protein degradation and ammonia production

From an economic view, dietary protein concentrates increase production costs, 
especially for developing countries. Furthermore, the microbial population in the 
rumen has a high proteolytic capacity to degrade the dietary protein. Therefore, 
nutritionists are interested in formulating diets with ruminal undegradable protein 
sources. The protein degradation in rumen depends mainly on three processes—pro-
teolysis, peptidolysis, and deamination. Many protein-degrading bacteria are natu-
rally found under ruminal conditions, that is, Ruminobacter amylophilus, P. ruminicola, 
Butyrivibrio fibrisolvens, S. ruminantium, Streptococcus bovis, and P. bryantii. There 
are many amino acid-fermenting bacteria, that is, Clostridium sticklandii, Clostridium 
aminophilum, M. elsdenii, B. fibrisolvens, P. ruminicola, S. bovis, and S. ruminantium 
[73]. Increased ruminal ammonia concentration is an indicator of the high degrada-
tion of dietary protein. Many factors can affect ruminal protein degradation and 
ammonia concentration, such as the type of dietary protein, the energy sources, the 
predominant microbial population, the rumen passage rate, rumen pH [35]. The 
ruminal bacteria can utilize ammonia for the synthesis of amino acids required for 
their growth. The optimal ammonia concentration needed to maximize the RMP 
synthesis ranges from 88 to 133 mg/L [76].
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Several inhibitors of ruminal microbial protein degradation and ammonia 
production were reported in the literature. Condensed tannins, slow-release urea 
products, encapsulated nitrate, clays (e.g., bentonite and zeolite that acts through 
cation exchange capacity), and biochar were found to reduce the rapid increase in 
ammonia production and maintained the ruminal pH. Urea pool in the rumen is 
contributed from urea in the diet and recycling of urea through saliva and ruminal 
wall. The urease enzyme produced by the ruminal microbiota rapidly degrades urea 
to ammonia causing ammonia toxicity and inefficient urea utilization when used in 
excessive amounts [73]. Inhibitors of urease may reduce the risk of ammonia toxicity 
and efficient utilization of urea and other nonprotein nitrogen compounds [77].

7. Enhancing functional values of milk and meat

Ruminant-derived foods (milk and meat) contain a high amount of saturated 
fatty acids, which are associated with human health concerns. Therefore, improving 
the functional value of ruminants’ products by increasing the content of beneficial 
fatty acids (FAs) and decreasing detrimental ones, specifically, decreasing the 
content of saturated FAs and increasing n-3 FAs and conjugated linoleic acids (e.g., 
cis-9, trans-11 C18:2, also called rumenic acid) have been great interests among the 
researchers [78]. Manipulating ruminal biohydrogenation of polyunsaturated fatty 
acids (PUFAs) has been the target to increase meat and milk content of rumenic acid 
and vaccenic acid, as both compounds are major intermediates in the biohydrogena-
tion. To elevate rumenic acid content in products, inhibiting the last step of biohy-
drogenation needs to be attempted without affecting lipolysis and isomerization 
and reduction of linoleic acid and linolenic acid to rumenic acid and vaccenic acid. 
Alternatively, to elevate PUFAs in meat and milk, in particular n-3FAs, inhibition of 
early steps of biohydogenation should be targeted. Secondary compounds such as 
tannins, saponins, or essential oils rich in terpenes present in plants and forages or 
supplementation of vegetable oil can improve some aspects of meat and milk quality 
including n-3 FAs, conjugated linoleic acids, antioxidant properties [73, 79–81].

8. Conclusions

The ruminal fermentation end products are typically the outputs of several inter-
active reactions among the rumen microbial populations. Manipulations of rumen 
microbial fermentation toward enhancing fiber digestibility, SCFAs production, and 
outflow of microbial biomass, while reducing ammonia and CH4 emission are the 
most probable ways to improve animal productivity. Numerous rumen fermentation 
modifiers have been studied during the last few decades; however, their positive 
effects are sometimes associated with undesirable effects or highly significant costs 
(e.g., ionophore antibiotics, anti-methanogenic chemical feed additives, or essential 
oils). Moreover, most of these modifiers exhibited inconsistent efficacy in the litera-
ture mainly because of the variability in animal age, breed, diet formulation, physi-
ological status, rumen microbial resistance, and adaptation. Despite the long history 
of studies on the rumen modifiers, most of the measurements are determined through 
the treatment period but knowledge is still limited on animal responses in later life or 
impacts on human health and growth. However, there is unanimous agreement that 
an ample array of drought-tolerant plants containing effective bioactive compounds, 
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DFM, fibrolytic enzymes, and nonprotein nitrogen sources would cost-effectively 
modify the ruminal fermentation. Therefore, a combination of two or more of these 
rumen modifiers with complementary modes of action may be a promising approach 
to optimize the productivity of ruminants in developing countries.
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