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Chapter

Perspective Chapter:  
Alzheimer - A Complex Genetic 
Background
Marco Calabrò and Concetta Crisafulli

Abstract

Alzheimer is a complex, multifactorial disease with an ever increasing impact 
in modern medicine. Research in this area has revealed a lot about the biological 
and environmental underpinnings of this disease, especially its correlation with 
Β-Amyloid and Tau related mechanics; however, the precise biological pathways 
behind the disease are yet to be discovered. Recent studies evidenced how several 
mechanisms, including neuroinflammation, oxidative stress, autophagy failure and 
energy production impairments in the brain, −--- have been proposed to contribute 
to this pathology. In this section we will focus on the role of these molecular path-
ways and their potential link with Alzheimer Disease.

Keywords: molecular pathways, genetics, Alzheimer

1. Introduction

Alzheimer’s disease (AD, MIM: 104300) is the most common neurodegenerative 
disorder worldwide, accounting for 60% up to 80% of Dementia causes [1]. This 
disease is one of the fastest rising diseases among the 50 leading causes affecting of 
life expectancy [2]; according to this trend, the number of AD subjects is destined 
to rise over 150 million by 2050 [3, 4].

AD worsen with time and as it progresses, patients usually develop short-term to 
long-term memory loss, accompanied by confusion, irritability and aggression, [5], 
followed by language impairments and mood swings [6].

Despite its prominence in modern society and the thriving research around it, 
a lot of its intricate pathophysiology is yet to be discovered. Furthermore, grade 
and type of symptoms may vary greatly from person to person [7], adding to the 
complexity of AD. Nevertheless, post mortem observations on AD subjects’ Central 
Nervous System (CNS) evidenced some central histopathological features, mainly 
focused on amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) [8–11].

Aβ plaques are the extracellular deposit of Aβ, which are produced by the cleav-
age of amyloid precursor protein (APP) [12], while the NFTs consist of abnormal 
filaments of hyper-phosphorylated Tau by GSK-3β [13]. They are thought to have a 
significant impact in memory and cognitive function, by triggering synaptic loss or 
dysfunction and neuronal death [14].

Interestingly, although not all of the causes have been located, AD cases seem-
ingly converge to these hallmarks, providing a steady starting point for trying to 
understand the biological processes behind this disease.
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1.1 Genetics

Indeed, among the cases of AD genetic studies individuated a form, known 
as Familial AD (FAD), that runs in families and is transmitted with an autosomic 
dominant model [15]. FAD is the best described type of AD: it is associated with 
mutations in three major genes: APP (chromosome 21), PSEN1 (chromosome 14) 
and PSEN2 (chromosome 1) [16]. Alterations within these genes affect amyloid 

Familial AD (FAD) OMIM ID

An Alzheimer’s disease that has_material_basis_in mutation in the gene 

encoding the amyloid precursor protein on chromosome 21q.

OMIM:104300

An Alzheimer’s disease that has_material_basis_in mutation in the 

presenilin-1 gene (PSEN1) on chromosome 14q24.

OMIM:607822

An Alzheimer’s disease that has_material_basis_in a mutation in the 

presenilin-2 gene (PSEN2) on chromosome 1q42.

OMIM:606889

Sporadic AD (SAD)

An Alzheimer’s disease that is characterized by an association of the 

apolipoprotein E E4 allele.

OMIM:104310

An Alzheimer’s disease that is characterized by an associated with variation in 

the region 12p11.23-q13.12.

OMIM:602096

An Alzheimer’s disease that is characterized by an associated with variation in 

the region 10q24.

OMIM:605526

An Alzheimer’s disease that is characterized by an associated with variation in 

the region 10p13.

OMIM:606187

An Alzheimer’s disease that is characterized by an associated with variation in 

the region 20p12.2-q11.21.

OMIM:607116

An Alzheimer’s disease that has_material_basis_in heterozygous mutation in 

ABCA7 on chromosome 19p13.3.

OMIM:608907

An Alzheimer’s disease that is characterized by an associated with variation in 

the region 7q36.

OMIM:609636

An Alzheimer’s disease that is characterized by an associated with variation in 

the region 9p22.1.

OMIM:609790

An Alzheimer’s disease that is characterized by an associated with variation in 

the region 8p12-q22.

OMIM:611073

An Alzheimer’s disease that is characterized by an associated with variation in 

the region 1q21.

OMIM:611152

An Alzheimer’s disease that is characterized by an associated with variation in 

the region 1q25.

OMIM:611154

An Alzheimer’s disease that is characterized by an associated with variations 

in the region 3q22-q24.

OMIM:604154

An Alzheimer’s disease that is characterized by an associated with a risk allele 

in in the PCDH11X gene on chromosome Xq21.3.

OMIM:300756

An Alzheimer’s disease that is characterized by an associated with mutations 

in the gene TREM2.

OMIM:615080

An Alzheimer’s disease that has_material_basis_in a mutation in the ADAM10 

gene on chromosome 15q21.

OMIM:615590

An Alzheimer’s disease that is characterized by associated variants of the gene 

PLD3.

OMIM:615711

Table 1. 
Alzheimer sub-types according to genetics [30407550].
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cleavage, directly promoting plaques formation. Several studies demonstrated that 
alterations in APP or PSEN1 genes are guaranteed to cause AD, while PSEN2 muta-
tions have a 95 percent chance of causing the disease [17]. Unfortunately, only up to 
5% of all AD cases are of this type [18].

Other cases usually go under the name of sporadic AD (SAD) which encloses the 
largest part of AD cases. SAD cases have a more cryptic and heterogenic genetic back-
ground [18]: More than 500 candidate genes were correlated with SAD [15, 19, 20]. 
Of them, inherited polymorphic APOe (chromosome 19) E4 allele is the major risk 
factor. APOe is the gene encoding for the Apolipoprotein E, whose function is to bind 
lipids and sterols and transport them through the lymphatic and circulatory systems. 
APOe4 is thought to produce a more instable form and is related to the formation of 
neurofibrillary tangles [21, 22] and amyloid clearance processes [23, 24], through a 
still not well understood mechanism.

1.1.1 Apolipoprotein E (APOe)

APOe is in charge of cholesterol transport in the brain [25, 26]. As said before, 
the e4 isoform of this protein is associated to increased AD-risk [27–30]. The 
fine molecular mechanisms behind the risk increase operated by APOe4 are not 
completely characterized, however data obtained from cell cultures evidenced how 
APOe4 promotes oxidative stress and the generation of neurotoxic fragments which 
impairs mitochondrial activity [31–33]. In particular, APOe4 isoform seems corre-
lated to an increased α-synuclein (αSyn) accumulation accompanied with synaptic 
loss, lipid droplet accumulation and dysregulation of intracellular organelles [34]. 
αSyn is a presynaptic membrane-bound protein abundantly expressed in the brain 
and is involved in synaptic signaling and membrane trafficking [34]. Further, over 
other 50 loci/genes have been implicated in SAD [15, 35, 36], underlining AD’s 
complexity and the possibility of it being triggered by different alterations. Indeed, 
up to date, literature (OMIM and GO) reports 19 different AD subtypes based on 
different associated loci. Table 1 reports a summary of such subtypes.

2. The pathways of Alzheimer disease

The number of genetic factors described is important contributors to AD. 
However, neither APOE4 nor the other correlated genes are entirely sufficient to 
explain (and promote) the totality of AD cases [37].

In such a complex environment represented by multicellular organisms a gene 
and its product/s is not a stand-alone entity. Each protein interacts with and influ-
ences many other elements in a synergic orchestra that regulates an organism.

As such, a single alteration propagates (indirectly) its effects to its interactors 
following pathways and molecular cascades.

Indeed, rather than single genes, a better approach would be investigating AD 
as an event related to alterations affecting entire biological pathways. Within this 
chapter, we will focus on molecular cascades potentially involved in AD. A plethora 
of mechanisms, including neuroinflammation [38], oxidative stress [39, 40], 
defects in mitochondrial dynamics and function [41], synaptic and cholinergic 
malfunctions [42], cholesterol and fatty acid metabolism as well as glucose ener-
getic pathways impairments in the brain [43, 44], autophagy failure [45], apoptosis 
with multiple cell signaling cascades [42, 46] and other less studied mechanisms 
have been proposed to contribute to AD. It should be stressed that while they are 
discussed separately, these pathways are all interlinked and changes in one may very 
well result in changes in the others.
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2.1 Hallmarks of AD: Aβ and tau related pathways

Aβ is 4 kDa fragment derived by two subsequent proteolytic cleavages of 
amyloid precursor protein (APP) by β and γ secretases [47]. As evidenced in studies 
focused on FAD, genetic alterations of APP, PSEN1 and PSEN2 may negatively 
influence cleavage promoting Aβ production. Interestingly, contrary to what was 
once believed, low concentrations of Aβ are seemingly needed to short and long 
term memory processes [48, 49], and Aβ homeostasis is a lot finer regulated process 
than once expected, consisting of highly conserved feedback loops and interactions 
between multiple processes [50].

Potentially risk genes may be found among the ones regulating the biological 
networks involved in Aβ expression and APP cleavage (including APP, PSEN1, 
PSEN2, ADAM10, BACE1), its localization and transport (like APOE, CLU, SORL1) 
and its degradation and clearance (including ABCA7, BIN1, CD2AP, CD33, PICALM, 
PTK2B and RIN3) [50, 51]. Interestingly, the same elements are interlinked with 
other important pathways (see later in the text). Aβ accumulation also impairs the 
structure and function of microglia, astrocytes, and vascular endothelial cells of the 
brain [52, 53].

The neurotoxic function of Aβ is linked to Tau, a microtubule-associated protein 
that provides structural assembly and stability of cytoskeletons [54, 55]. The 
expression of tau is critical during Aβ-mediated synaptotoxic processes where Aβ 
peptides target phosphorylation-based pathways [55] which hyper-phosphorylate 
Tau protein through glycogen synthase kinase 3 beta (GSK-3β) and other kinases 
activated by Aβ peptides [56], and promote their release from microtubules. The 
removal of Tau from microtubules favors the formation of NFTs composed by aber-
rantly folded form of hyper-phosphorylated tau and alter the structure of neuritis, 
giving rise to synaptic malfunction and neuronal death [52].

2.2 Oxidative stress

Oxidative stress (OS) has been widely recognized as a prodromal factor associ-
ated to AD [57]. According to the current knowledge, increased OS is a sign often 
observed in the brain of early-stage AD subjects [58]. In particular, OS may act 
as indicator of changes within the brain. Regarding its correlation with Aβ accu-
mulation, it is known that Aβ is both a cause and the result of OS, as Aβ structure 
facilitates OS induction [59] and represents a source of radical oxygen and nitrogen 
species (ROS, RNS) [57]. Through proteic mediators, including NOX, TGF-β, 
NF-κB and NRF2 genes ‘products [60], Aβ increases OS levels and triggers several 
molecular events that are strictly linked with AD development [61]: OS promotes 
Tau phosphorylation [62] and also exerts its effect on the choline recycling from 
the synapse processes, leading to ACh deficiency [63]. It also causes deficit in the 
energy metabolism (through impairment of mitochondria function and Blood Brain 
Barrier (BBB) permeability) and leads to apoptosis and then neurodegeneration 
[64–66]. Of particular relevance, excessive ROS inevitably lead to lipid peroxida-
tion [67], which has been proposed as early biomarker of AD [68]. OS cause dam-
age to all biomolecules. In particular, unsaturated lipids are very sensitive to their 
action. It should be noted that the brain gray matter and white matter are both very 
rich in polyunsaturated fatty acids (e.g. docosahexanoic acid, adreinic acid which 
are brain tissue specific) [69], making the nervous system very sensible to lipid per-
oxidation [69]. The action of OS in AD through lipid peroxidation is supported by 
histological evidences showing the co-localization of lipid peroxidation metabolites 
and Aβ plaques in the brain [70]. Further, it was demonstrated (in culture studies) 
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that the lipids usually found in AD brain lesions produce neurotoxic effects in 
presence of increased OS levels [71]. Indeed, the chemical reactions following lipid 
peroxidation often results in the production of isoprostanes and malondialdehyde, 
which causes DNA damage and toxic stress in cells [72]. Interestingly, the products 
of lipids peroxidation can be found in bio-fluids such as blood and urines, support-
ing their potential for diagnosis of AD. As AD potential biomarkers, some of these 
metabolites were investigated in literature [73]. However, their effective use in clinic 
is still debated as they showed some promising but contradictory results [68].

2.3 Inflammation

Inflammation is a physiological acute event, which is essential to defend the 
body against toxins and pathogens and for tissue repair. However, if inflammation 
becomes chronic, it causes detrimental effects with severe consequences. Among 
the processes involved with AD, the persistent over-activation of the inflamma-
tory cascade represents one of the main biological mechanisms through which AD 
progresses: indeed, neuroinflammation is not typically associated to AD onset, but 
it plays a key role in increasing the severity of the disease by exacerbating Aβ and 
Tau nefarious effects [74–76].

The main players behind cytokines production are the non-neuronal cells that 
populate the brain, such as microglia, astrocytes, and oligodendrocytes [77–79].

Literature data evidenced that Aβ up-regulates cytokines production by these 
cells. Further, the presence of Aβ stimulate microglia toward the chronicization 
of pro-inflammatory state by activating the NF-κB cascade [80–82] or promoting 
Aβ interaction with FPR2 [83]. Under such conditions, microglia generates a wide 
range of cytotoxic factors, including interleukins, TNF-α, superoxide, nitric oxide, 
ROS, prostaglandins and Cathepsin B, which damage extracellular matrix and cause 
neuronal dysfunction [75, 84]. The increase of cytokines triggers several poten-
tially harmful effects: it induces mitochondrial stress in neurons, either directly or 
indirectly, including via Aβ signaling. It also increases OS [85, 86] and Blood–Brain 
Barrier (BBB) permeability which likely influence AD progression [87].

Similar to microglia, astrocytes also produce and/or release an array of inflam-
matory mediators. Activated or “reactive” astrocytes can be roughly classified in 
two groups: the “A1” neurotoxic phenotype and the “A2” neuroprotective phenotype 
based on distinct transcriptional profiles [88]. The A1 group is likely involved with 
AD through mechanisms similar to microglia.

From a molecular point of view, cytokines like IL-1 and TNF-α promote Aβ 
production by up-regulating APP and the amyloidogenic secretases [81, 89], while 
IL-6 and IL-18 promote Tau hyper-phosphorylation [90, 91].

Ultimately, a cycle is established in which inflammation increases Aβ produc-
tion (and triggers other negative processes increasing protein accumulation and 
OS), which in turn stimulate microglia to maintain its pro-inflammatory state. The 
uncontrolled cytokines production then causes neuronal death [38] as it damages 
synapses (please refer to Section 2.4), myelin sheaths and axons, promote comple-
ment-mediated damage and/or triggers apoptotic or necroptotic mechanisms [92]. 
This link between AD and microglia is also supported by Genome wide association 
studies, which evidenced how several genes (TREM2, CLU, CR1, EPHA1, ABCA7, 
MS4A4A/MS4A6E, CD33, CD2AP) related with an increased AD risk regulate glial 
inflammatory reaction [75]. Additionally, it has been observed that astrocyte-based 
inflammatory cascade could recruit peripheral macrophages, white blood cells, and 
lymphocytes that infiltrate brain parenchyma thanks to BBB increased permeability 
and vascular alterations [93].
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2.4 Neurodevelopment and neurotransmission associated processes

Neurodevelopmental/Neuroplasticity and Neurotransmission related pathways 
are likely associated with AD development and in particular with its cognitive 
symptoms [94]. Physiologically, these processes consist in the proliferation, dif-
ferentiation and maturation of neural stem cells (NSC) and the modulation of their 
interactions through synapse- and neurotransmission- related processes.

Regarding neurodevelopment processes, it has been observed that the synaptic 
pruning pathway becomes aberrantly up regulated in the first stages of AD. This 
aberrant activation, which leads to synaptic loss [95], seems to be triggered by Aβ, 
through PANX1, ryanodine receptor (RyR) function [96, 97] other than several 
inflammatory signals [98].

PANX1 is a protein involved in the modulation of neurotransmission, neurogen-
esis and synaptic plasticity [99]. An increase of this protein under inflammatory 
conditions contributes to neuronal death [100].

RyR is Ca2+ channel which modulates different processes including neuronal 
development and plasticity [101].

The anomalous RyR channel function is triggered by Aβ and OS through Ca2+ 
increased concentrations [96] and are interlinked to mitochondrial and NOX2-
mediated ROS generation [102] and glial activation [103].

Regarding the inflammatory elements, it has been observed that many cytokines 
directly interact with receptors located on neuronal membranes. Here they activate 
or modulate pathways involved in synaptic function and plasticity (e.g. p38 MAPK 
and NFκB pathways). Further, synapse function and stability are also heavily regu-
lated by microglia and astrocytes. In particular, the former is seemingly implicated 
in pruning mechanics [95], while the latter appear to have an heavy involvement 
in regulating synapse formation, stability, and turnover [104]. Astrocytes physi-
cally wrap synapses. The synapse/astrocyte interface is fairly active as astrocytes 
release numerous proteins capable of modulating synaptic function, sprouting and 
remodeling.

Regarding neurotransmission, several reports have indicated a significant 
reduction of Serotonin (5-HT) [105], Dopamine (DA) [106] and Norepinephrine 
(NE) [107] levels as well as their receptors in AD brain. In AD, loss of 5-HT results 
in depression, anxiety and agitation [108], dysregulation of DA release leads to 
reward-mediated memory formation deficits [109] and low level of NE impairs 
spatial memory function [110]. Glutamatergic and cholinergic abnormalities in par-
ticular, were pointed as one of the principal causes of cognitive deterioration in AD.

2.4.1 Cholinergic neurotransmission

The cholinergic system regulates attention processing [111], cognition [111], 
memory function and behavior via the release of the neurotransmitter acetylcholine 
(ACh) [112].

Several studies evidenced how ACh production and reuptake are impaired in 
AD brains [113]. Further, accumulation of intraneuronal Aβ degenerates basal 
forebrain cholinergic neurons and reduces ACh levels [114], which in turn leads 
to memory deficits [115]. A potential candidate through which Aβ exerts its 
effect is α7nAChRs. Studies on α7nAChRs KO models evidenced how the lack of 
this receptor could induce AD-like pathology, including Aβ increase. In addition, 
its depletion is linked to an increased age-dependent expression of phosphory-
lated Tau [116, 117].

About the mechanisms underlying α7nAChR regulation of Aβ production, it 
seems that physiologically this receptor activations shifts APP processing toward 
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the non-amyloidogenic pathway [118], enhancing the production of the neuro-
protective APPα (soluble form) which is able to counteract Aβ neurotoxicity [119]. 
Interestingly, α7nAChRs mediate the intake of pre-synaptic Ca2+ levels during 
neuronal activity, indirectly modulating all biological processes dependent on this 
ion, glutamate release, synaptic transmission, and cognitive function [120]. When 
α7nAChRs is reduced, a negative feedback mechanism is triggered which increase 
Aβ production with the aim of maintaining Ca2+ influx in the cells [121]. Aβ in 
turn, further decrease its expression. This reduction ultimately exerts its effect on 
the N-methyl-D-aspartate receptor (NMDAR), which is removed from membrane, 
and on nicotinic and MAPK signaling, resulting in the development of cognitive 
deficits [122].

2.4.2 Glutamatergic neurotransmission

The most common excitatory neurotransmitter, glutamate, and its receptors 
are required for neuronal cell differentiation, migration, survival, and synaptic 
plasticity. There are two types of glutamate receptors: ionotropic glutamate recep-
tors (iGluRs), such as N-methyl-D-aspartate (NMDA), α-Ammino-3-idrossi-5-
Metil-4-isossazol-Propionic Acid (AMPA) and Kainate receptors; and metabotropic 
glutamate receptors (mGluRs).

Over-activation of these receptors causes neuronal excitotoxicity as well as 
neuronal death, and this is thought to be one of the mechanism causing neu-
rodegeneration in AD [123]. Indeed, in patients with AD, available evidence 
points to a disruption in the glutamatergic neurotransmission cycle at the 
point of glial cell reuptake of free glutamate from the synapse: Aβ can interfere 
with glutamate receptors and transporters [96]. The binding of such receptors 
triggers neuronal susceptibility to glutamate excitotoxicity, dyshomeostasis and 
defective plasticity [124]. The biological mechanism is still not well understood, 
but likely needs the function of a tyrosine-protein kinase, Fyn, which alter 
NMDARs function through phosphorylation [125]. Interestingly, Astrocytes 
may also play a role in the impaired glutamate clearance from the synaptic cleft. 
As said before, astrocytes wrap synapses. In the synaptic interface, these cells 
present a high concentration of excitatory amino acid transporters (EAATs), 
including EAAT1 and EAAT2. Physiologically, over 80% of extracellular gluta-
mate is taken by astrocytes through these transportes [126]. It has been observed 
that Aβ peptides and pro-inflammatory elements down regulate the expression 
of EAATs, impairing glutamate clearance [127]. As such, free glutamate accu-
mulates out of synapses while the vesicular glutamate uptake is reduced. The 
consequence of this condition is a chronic low-level activation of glutamatergic 
receptors on postsynaptic neurons and reduced sensibility to glutamate during 
neuronal firing (due to the low concentration of the neurotransmitter within 
vesicles) [128], leading to suboptimal neurotransmission and impairment of 
long-term potentiation (LTP) [128].

2.5 Energy metabolism

Energy is of high importance to maintain the physiological function of the 
brain. Processes related to energy production (Glucose intake, ATP production) 
are disrupted in AD brains [129]: Indeed, several brain areas in AD patients show a 
significant decrease of glucose metabolism [130]. Additionally, the first AD-related 
intracellular lesions usually develop in neurons with a higher energy consumption 
[131] and often involve enzymes related to tricarboxylic acid cycle, which lead 
neurons to a hypo-metabolic state [63].
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Interestingly, an excess of an important energy substrate, glucose, may also lead 
to the exacerbation of AD symptomatology. A high glucose concentration is also the 
main characteristic of diabetes. Other than being a risk factor for the development 
of diabetic complications, it seems to play a role in the development of AD cognitive 
symptoms [132].

Indeed, high levels of glucose are harmful for the brain, as they lead to Aβ accu-
mulation on brain lesions. It also exacerbates OS and promotes neuroinflammation 
[133, 134], with the consequences already described in the previous sections.

Glucose levels are affected by numerous elements, such as pro-inflammatory 
cytokines [135, 136]. However, the main control is exerted by the antagonistic func-
tion of insulin and glucagon.

Insulin signaling has been the focus of multiple AD studies [137–139] were it was 
shown that both Aβ deposition and tau hyperphosphorylation are correlated with 
the impairment of Insulin signaling cascade [140, 141], and insulin resistance in 
particular.

According to these observations, insulin resistance is a feature of both type 2 
diabetes mellitus (T2DM) and AD, supporting a biological overlapping between the 
two pathologies. As said before, the high glucose condition increases Aβ production. 
On a molecular level this increase is linked to the inhibition of APP degradation 
pathways [142].

Chronic hyperinsulinemia in brain also leads to cognitive dysfunctions [143], 
Insulin receptor is present in hippocampus [144], the main area responsible for 
memory. A chronic exposition to insulin favors a resistance mechanism, making 
neurons less responsive to this hormone. Further, Aβ can interact with insulin 
receptors causing their internalization and thus inhibiting their function [145]. 
Additionally, Aβ seizing insulin receptor, increases insulin levels in the brain micro-
environment, which in turn promote inflammation increasing TNFα, interleukin 1β 
and 6 (IL1β and IL6) [146].

Through a still not completely understood mechanic, the alteration of insulin 
signaling (or an increased resistance to insulin) ultimately triggers neuroinflam-
mation and neurodegeneration, increasing Aβ concentrations and Tau hyper-
phosphorylation [145, 147].

2.6 Autophagy impairments

Autophagy is an intracellular process mediated by vesicles and lysosomes that 
consists of several sequential steps which ultimately lead to the degradation of dam-
aged/misfolded proteins and dysfunctional organelles, thereby sustaining cellular 
homeostasis [148].

Physiologically, this process is especially important for neuronal and glial cells 
health [149, 150]. Although it is still not clear whether dysfunction of autophagy 
is the cause or result of AD [151], it has been observed that the dysregulation of 
autophagy may occur in early stage of the disease. In particular, this process is 
believed to be a major pathway for Aβ clearance/accumulation [152] and is also 
involved in the pathological mechanisms of neurodegeneration [149, 150]. Studies 
on animal models also reported that restoring the physiological autophagosomes 
clearance ameliorate/prevents AD cognitive symptoms [153].

Studies on AD brains revealed a significantly higher presence of autophagosomal 
and pre-lysosomal vacuoles in neuronal dendrites and axons [154–156]. These 
vacuoles were shown to be enriched in APP, γ-secretase components, PSEN1 and 
nicastrin, which are required to generate Aβ [157, 158]. According to the autophagic 
hypothesis, the block of autophagy and the consequent accumulation of autophago-
somes trigger neuronal degeneration [156] and leads to the release of these vesicles 
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in the extracellular space where they form the characteristic AD plaques [159, 160]. 
Autophagy is also essential for Tau clearance [161]. Usually, Tau is transported in 
vacuole for degradation, however certain mutations of Tau, cause the block of this 
protein in the membrane of lysosome. The accumulation in the membrane impairs 
and disrupts lysosomes function and structure, which ultimately lead to the release 
of lysosomal enzymes in the cytoplasm [161].

Recent studies have proven that autophagy could be influenced by diverse 
factors, such as Aβ [162] and OS [163]. In addition, ApoE4 and Aβ influence of 
lysosomal membranes stability [164].

From a biological point of view, autophagy is mainly regulated according to the 
physiological condition of cells through several elements:

ATG7 is a key gene regulating autophagy process [150]. It is involved in degrada-
tion of tau [165] and mediates the transport of Aβ peptides [166]. Alterations of its 
function have been correlated with AD [167].

Beclin 1 (BECN1/ATG6) protein mediates the initiation of autophagy [150]. 
BECN1 is involved in the pathophysiology of AD. The expression of BECN1 is 
decreased in brains of AD patients when compared with healthy individuals [168]. 
Decreasing of Becn1 expression leads to increased levels of Aβ [168] and also 
increases microglia inflammatory response [169].

The down-regulation of this protein is believed to be caused by caspase-3 up-
regulation [170]. Further, BCL2 Apoptosis Regulator (BCL2) is an anti-apoptotic 
factor that regulate autophagy through BECN1 [171]. The overexpression of Bcl2 has 
protective effects against Aβ-driven neuronal death [170]. The overexpression of 
Bcl2 affects also tau processing, reducing the number of NFTs [170].

Cyclin Dependent Kinase 5 (CDK5) is an autophagy-regulating kinase [150], 
which influences the metabolism and effects of Aβ. CDK5 likely act through regula-
tion of β-secretase, which is a crucial enzyme involved in APP metabolism [172]. 
This kinase also mediates Aβ peptide-induced dendritic spine loss [173], providing 
a pathway linking Aβ with cognitive dysfunction. Similarly, CDK5 is similarly 
involved in tau phosphorylation [174], although it seems to not be sufficient to trig-
ger NFT formation [174].

Clusterin (CLU/APOJ) is a chaperone protein implicated in autophagosomes 
biogenesis via interaction with ATG8E (MAP1LC3A) [150]. According to meta-
analyses data on AD subjects, this protein is one of the top AD candidate genes 
[37, 175, 176]. Its alterations have been suggested to affect neuron connectivity in 
several brain regions [177, 178]. Physiologically, CLU interacts with Aβ, preventing 
its aggregation [179, 180].

Cathepsin D (CTSD) is a lysosomal protease [150] involved in APP and Aβ 
degradation [181]. Its role and correlation in AD is still under debate as literature 
produced controversial results [182–185].

Alpha-Synuclein (SNCA/PARK1/NACP) is another protein found to be associ-
ated with AD risk [150]. SNCA is an important component of Aβ plaques [186] and 
can influence the expression of/be regulated by Aβ peptides [187, 188]. Similarly, to 
interaction of SNCA with Aβ peptides, SNCA and tau also induce each other fibril-
lization [189]. SNCA binds, phosphorylates, and inhibits microtubule assembly 
activity of tau [190].

PINK1 and PRKN genes products are important elements behind autophago-
some-mediated mitochondrial degradation [191]. In AD, high levels of Aβ inhibit 
the expression of those proteins, leading to increased dysfunctional lysosomes and 
neurodegeneration [192, 193].

Ubiquilin 1 (UBQLN1) is involved in autophagosome–lysosome fusion 
[150], likely through ATG8E (MAP1LC3A) [194]. Meta-analyses studies correlate 
UBQLN1 with an increased risk for AD [195, 196]. It has been observed that the 
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expression of UBQLN1 is reduced in AD patients [197, 198]. This decrease, in 
turn, up-regulates APP processing [198].

Ubiquitin C-Terminal Hydrolase L1 (UCHL1) influences autophagy by interac-
tion with LAMP2 which modulates autophagosome-lysosome fusion [150]. Uchl1 
interacts with App [199]. Its over expression decreases Aβ and NFT production 
[199] and lower levels of UCHL1 have been found in AD patients [200]. Regarding 
its autophagic role, it has been observed that UCHL1 is involved in lysosomal 
degradation of BACE1 [200].

Of all the described autophagic regulators potentially linked with AD, the 
mammalian target of rapamycin (mTOR) has been studied most investigated and 
is considered to play a key role in autophagy biogenesis. The mTOR protein acts as 
inhibitor in autophagy regulation through different pathways, including AMPK 
and PI3-Akt [201, 202]. In neurons and glial cells, mTOR is highly expressed an 
play an important role for synaptic plasticity and memory [202]. In neurons and 
glial cells, mTOR proteins are highly expressed, and their modulatory activities 
are fundamental in brain development. In the adult brain, mTOR signaling plays a 
crucial role in the translational initiation of protein synthesis required for synaptic 
plasticity and memory formation. However, uncontrolled mTOR activity leads to 
impairment of such processes. Numerous studies on AD brains and AD mice models 
revealed mTOR hyper-activation in AD brain [203]: Aβ accumulation seems to pro-
mote the activation mTOR pathway through phosphorylation of the mTOR inhibi-
tor PRAS40 [204]. Further, hypo-energetic states may also activate mTOR [146].

Interestingly, a defective autophagy in other cells, including Astrocytes, microg-
lia, and oligodendrocytes has also been linked to AD. In particular, disturbing 
basal autophagy processes in glia trigger neuroinflammation, which, as previously 
described, is an important pathway leading to the progression of AD [205].

2.7 Cerebrovascular abnormalities

In patients with AD, cerebrovascular abnormalities are a common comorbidity 
[206, 207]. These may contribute to the onset of cognitive impairment and demen-
tia. Altered cerebral blood flow and pressure at the level of the brain are induced 
vascular dysfunction [208]. These events are injurious to normal brain function that 
would result in disturbed homeostasis, but also in blood–brain barrier (BBB) dam-
age and micro-fractures in cerebral vases [209]. It has also been observed that the 
permeability of BBB to immune cells and molecules increases with aging. As said 
in the previous sections, the infiltration of immune cells in the brain parenchyma 
favors neuroinflammation [210] and ROS production [206], thus increasing the risk 
of AD [81].

These events are linked to the formation of Aβ plaques [211]. In particular, ROS 
production is related to the increase of the Advanced Glycation Endproducts (AGE) 
proteins and their receptors (RAGE) in the vascular system [212, 213]. A chronic 
hypo-perfusion state favors the formation of Aβ through the activation of the adap-
tive response to hypoxia and reduced clearance via perivascular draining [214, 215]. 
Furthermore, Aβ accumulation seems to be mainly localized in brain areas with 
reduced cerebral blood flow [216]. Finally, as said before, AD brains are in a pro-
inflammatory state; in these conditions Notch signaling is up regulated [217]. Notch 
signaling has an essential role in vascular development and angiogenesis in brain 
through the modulation of VEGFR2 [218]. It has been observed that chronic activa-
tion of Notch1 negatively affect the brain microenvironment, in particular the delicate 
connection of the brain with cardiovascular system. Indeed, Notch signaling, in 
association with VEGF, has been demonstrated to cause impaired blood flow, further 
reducing the nutrients intake by neurons (worsening the already weak energetic 
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state). Notch also induces BBB leakages, which has severe impact on the brain and 
may accelerate Aβ accumulation [217]. BBB homeostasis also depends on the role 
of astrocytes as the act as bridge between the vascular and neuronal compartment. 
Several studies have observed that astrocytes go through morphological changes in 
proximity of vascular Aβ deposits [219]. These alterations likely occur during early 
stages of the disease and evidence a neurovascular uncoupling, which ultimately lead 
to a dysfunction of BBB barrier. It has been observed that the alteration of astrocytes 
induces an age-dependent accumulation of amyloid [220].

2.8 Signal transduction

2.8.1 Alteration in PKC signaling

Protein kinase C (PKC) family in mammalian is divided in three subfamily: a) 
calcium-dependent PKC (cPKC), necessity of DAG and Ca2+ presence for trigger-
ing; b) calcium-independent isoforms (nPKC), that requires DAG presence; c) an 
atypical isoform of PKC (aPKC) [221]. PKC isoforms are involved in several neural 
processes, including the ones related to cognitive function. The cPKC and nPKC 
isoforms could have impact on synaptic formation and plasticity, spatial memory 
organization or dendritic loss [221], while aPKC isoform is involved in long-term 
memory [222]. A deficiency in PKC isoforms signaling is thought to be involved in 
AD [223]. Indeed, deficiency of bPKC is correlated with Tau hyper-phosphorylation 
(through GSK-3b) while lack cPKC and nPKC activation down-regulates α-secretase 
activity [222, 224]. Furthermore, Aβ contributes to inhibit PKC isozymes [223, 224].

2.8.2 Wnt signaling pathway

The Wnt signaling pathways play a crucial role in the central nervous system 
during all phases of neuronal growth and development and remain significant in 
the adult nervous system [225]. In adults, this process is particularly important 
since it manages memory creation, maintenance, and behavior. Alteration of 
this process is strongly linked to neurodegeneration [225]. Altered function of 
Wnt signaling components was detected in AD brain, including down regulation 
of b-catenin translocation into the nucleus [226]. The reduction of b-catenin in 
neurons nuclei triggers the overexpression of the Wnt antagonist GSK-3b and Dkk-1 
[225, 227]. GSK-3b, as discussed before, is the main enzyme in charge of tau hyper-
phosphorylation. Furthermore, it participates in OS generation, which ultimately 
disrupts neuronal function [227].

2.8.3 Calcium role

Cellular Ca2+ is a key ion involved in the regulation several processes in neurons 
[228, 229]. Its dyshomeostasis may play a key role in the pathogenesis of AD [230] 
and may even precede the formation of Aβ plaques and NFTs [228].

Intracellular Ca2+ is usually stored in the Endoplasmatic Reticulum. Its release in 
the cytosol is finely controlled by multiple pathways, including RyRs and inositol 
1,4,5-trisphosphate receptors (InsP3R) -related ones [231]. Even its intake from the 
extracellular environment is tightly regulated by multiple processes, such as the 
store-operated Ca2+ entry (SOCE) pathway and the voltage-gated Ca2+ channels 
(VGCC) [232].

As discussed before in the neurotransmission section, the physiological Ca2+ 
influx stimulates the processing of APP by α-secretase [230], thus protecting from 
Aβ accumulation. Imbalanced cellular Ca2+ contributes to pathophysiological 
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conditions such as accumulation of Aβ plaques and neurofibrillary tangles, protein 
misfolding, necrosis, apoptosis, autophagy deficits, and degeneration [230, 233].

Finally, excess cytosolic Ca2+ concur in mitochondria dysfunction and dysregu-
lates KIF5-Miro-Trak-mediated mitochondrial transport to synapses [63].

High OS states and the presence of Aβ can interfere with Ca2+ homeostasis, 
releasing it from ER stores through the InsP3R and RyR [230, 234]. In addition, the 
increased intracellular Ca2+ levels in the cells interfere with the physiological func-
tion of VGCCs, thus impairing neurotransmission [230, 233].

2.9 Balance of phosphorylation: Kinases and phosphatases

Protein phosphorylation and dephosphorylation are two essential cellular 
mechanisms through which a wide-range of receptors and trasduction cascades are 
regulated. Numerous kinases and phosphatases are encoded in our genome; these 
two class of enzymes works balancing each other, maintaining an equilibrium phos-
phorylation and dephosphorylation. Impairment of such finely regulated process 
has been correlated with AD. As said before in this chapter, one of the trademarks 
of AD is the hyperphosphorylation of Tau protein, which triggers in a prion-like 
manner the formation of NFTs. It has been observed that Tau protein has over 85 
potential phosphorylation sites [235].

There are several protein kinases that could phosphorylate Tau [236], some of 
them involved in the pathways discussed so far, including gsk-3β, cdk5, microtubule 
affinity regulated kinases (mark), tau-tubulin kinases (ttbk), Tyrosine-protein 
kinase Fyn (Fyn) or Tyrosine-protein kinase Abl1 (Abl1), protein kinase A (pka), 
Calcium/calmodulin-dependent protein kinase (CaMKII) [236, 237]. All of these 
kinases have been correlated with an increased risk of AD and are capable of phos-
phorylate tau at multiple sites [237]. In particular, it appears that phosphorylation 
of Thr231 and Ser262 residues are critical for NFTs formation.

Hyperphosphorylation of Tau can also be reached and maintained through 
inhibition of phosphatases. Protein phosphatase 2A (PP2A) is the major enzyme 
that accounts for ~ 71% of the total tau dephosphorylation activity [238]. This 
enzyme co-localizes with tau and microtubules in the brain [239]. In AD, the 
activity of PP2A is decreased [240]. Interestingly, its down-regulation not only 
decrease the dephosphorylating activity but also activates CaM-KII and PKA 
pathways, favoring hyperphosphorylation, as it has been observed in some in vitro 
and in vivo studies [241, 242].

Other phosphatases have also a role in AD, including Striatal-Enriched protein 
tyrosine Phosphatase is an intracellular phosphatase (STEP), protein phosphatase 
1 (PP1), protein phosphatase 5 (PP5), Calcineurin (PP2B), PP2C [243], through 
complex feedback mechanisms.

In particular, recent evidences pointed to STEP as one of the targets via which 
Aβ exerts its deleterious effects in AD. Elevated levels of Aβ seems to be involved in 
the activation of Step through the activation of α7nAChRs [244, 245] and the sub-
sequent increase of calcium influx [245]. This triggers a cascade of molecular events 
(in which PP2B and PP1 are also involved) that ultimately activate STEP. STEP 
mediates the Aβ-induced cognitive impairment by dephosphorylation of important 
elements involved in synaptic plasticity and dendritic density (such as SPIN90, 
PSD-95 and Shank), eventually causing the collapse of synapses [246, 247].

Interestingly, the regulation of kinases and phosphatases is strictly linked to 
glucose metabolism, through the protein kinase AMPK (Ampk). Moreover, Aβ tran-
siently inhibit AMPK potentially providing a link between Aβ and metabolic defects 
in the AD brain [248]. The activation of AMPK is correlated with glucose metabo-
lism and is related to gluconeogenesis, IR and insulin deficiency. AMPK mediates 
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phosphorylation and signal transduction through GSK-3β [249], PP2A [250], 
beta-secretase 1 (BACE1) and sirtuin1 (SIRT1). In addition, through SIRT1, AMPK 
promotes autophagy. Physiologically AMPK cascade inhibits hyperphosphorylation 
of tau and can reduce Aβ production. Impairments of this cascade potentially lead 
to AD progression.

3. Conclusions

AD is one of the main causes of disability and decreased quality of life world-
wide. Despite the ever-increasing number of studies, many fundamental questions 
remain regarding the molecular background of this disease.

The evidences derived from the recent data on AD stress its “multifactorial 
nature” and clearly indicate the necessity to consider wider approaches while trying 
to understand its biological mechanics. This chapter wanted to contribute toward 
and stress this new ‘pathway-like’ perspective on AD. A much deeper discussion 
would be needed to explore the cascades potentially linked with the disease and 
surely, a lot is still to be discovered. Research activity in this area is very fervid a new 
data is accumulating daily in the scientific community. As a final but very important 
note, our genes and pathways (altered or not) do respond, interacts and adapt 
‘continuously’ to external stimuli. Although they were not discussed here, these 
environmental factors should always be considered as they can greatly influence 
the biological mechanisms behind multifactorial pathologies such as AD [1, 251]. 
Further, Epigenetic dysregulation also seems to be involved in AD as methylation 
mechanics [252, 253] and miRNAs signaling [254] have been found to be altered in 
AD brain. The key to further deepen the studies of AD would be to understand how 
all these processes interact and influence with each other and act in concert toward 
this disease progression.
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Nomenclature

5-HT Serotonin
ABCA7 ATP Binding Cassette Subfamily A Member 7
ACh Acetylcholine
AD Alzheimer’s disease
ADAM10 ADAM Metallopeptidase Domain 10
AGE Advanced Glycation Endproducts
AMPA α-Ammino-3-idrossi-5-Metil-4-isossazol-Propionic Acid
AMPK 5′ adenosine monophosphate-activated protein kinase
aPKC atypical isoform of PKC
APOe Apolipoprotein E gene
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APP Amyloid precursor protein
Aβ Amyloid beta
BACE1 Beta-Secretase 1
BBB Blood Brain Barrier
BIN1 Bridging Integrator 1
CD2AP CD2 Associated Protein
CD33 CD33 Molecule
CLU Clusterin
CNS Central Nervous System
cPKC calcium-dipendent PKC
DA Dopamine
DAG diacylglycerol
DKK1 Dickkopf-1
ER Endoplasmatic Reticulum
FAD Familiar AD
FPR2 formyl peptide receptor type 2
GBA
GSK-3b glycogen synthase kinase 3 beta
iGluRs Ionotropic glutamate receptors
IL-1 Interleukin-1
IL-18 Interleukin-18
IL1β interleukin 1β

IL-6 Interleukin-6
InsP3R inositol 1,4,5-trisphosphate receptors
KIF5a kinesin family member 5a
LTP long-term potentiation
MAPK mitogen-activated protein kinase
mGluRs metabotropic glutamate receptors
Miro mitochondrial Rho GTPases
mTOR Mammalian target of rapamycin
NE Norepinephrine
NFTs neurofibrillary tangles
NF-κB nuclear factor kappa light chain enhancer of activated B cells
NMDA N-methyl-D-aspartate
NMDAR N-methyl-D-aspartate receptor
NOX NADPH oxidase
NOX2 NADPH oxidase-2
nPKC calcium-indipendent PKC
Nrf2 nuclear factor erythroid 2–related factor 2
NSC neural stem cells
OS Oxidative Stress
PANX1 Pannexin 1
PI3-Akt phosphoinositide-3-kinase - protein kinase B
PICALM Phosphatidylinositol Binding Clathrin Assembly Protein
PINK1 PTEN-induced kinase 1
PKC Protein kinase C
PRAS40 AKT1 Substrate 1
PSEN1 presenilin-1
PSEN2 presenilin-2
PTK2B Protein Tyrosine Kinase 2 Beta
RAGE Advanced Glycation Endproducts Receptors
RIN3 Ras And Rab Interactor 3
RNS Radical nitrogen species
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