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1. Introduction    

The most important single linear integrated circuit is the operational amplifier. Operational 
amplifiers (op-amp) are available as inexpensive circuit modules, and they are capable of 
performing a wide variety of linear and nonlinear signal processing functions (Stanley, 
1994). 
In simple cases, where the interest is the configuration gain, the ideal op-amp in linear 
circuits, is used. However, the frequency response and transient response of operational 
amplifiers using a dynamic model can be obtained. 
The bond graph methodology is a way to get an op-amp model with important parameters 
to know the performance. A bond graph is an abstract representation of a system where a 
collection of components interact with each other through energy ports and are place in the 
system where energy is exchanged (Karnopp & Rosenberg, 1975). 
Bond graph modelling is largely employed nowadays, and new techniques for structural 
analysis, model reduction as well as a certain number of software packages using bond 
graph have been developed. 
In (Gawthrop & Lorcan, 1996) an ideal operational amplifier model using the bond graph 
technique has been given. This model only considers the open loop voltage gain and show 
an application of active bonds. 
In (Gawthrop & Palmer, 2003), the `virtual earth' concept has a natural bicausal bond graph 
interpretation, leading to simplified and intuitive models of systems containing active 
analogue electronic circuits. However, this approach does not take account the type of the 
op-amp to consider their internal parameters. 
In this work, a bond graph model of an op-amp to obtain the time and frequency responses 
is proposed. The input and output resistances, the open loop voltage gain, the slew rate and 
the supply voltages of the operational amplifier are the internal parameters of the proposed 
bond graph model. 
In the develop of this work, the Bond Graph model in an Integral causality assignment (BGI) 
to determine the properties of the state variables of a system is used (Wellstead, 1979; Sueur 
& Dauphin-Tanguy, 1991). Also, the symbolic determination of the steady state of the 
variables of a system based on the Bond Graph model in a Derivative causality assignment 
(BGD) is applied (Gonzalez et al., 2005). Finally, the simulations of the systems represented 
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by bond graph models using the software 20-Sim by Controllab Products are realized 
(Controllab Products, 2007). 
Therefore, the main result of this work is to present a bond graph model of an op-amp 
considering the internal parameters of a type of linear integrated circuit and external 
elements connected to the op-amp, for example, the feedback circuit and the load. 
The outline of the paper is as follows. Section 2 and 3 summarizes the background of bond 
graph modelling with an integral and derivative causality assignment. Section 4 the bond 
graph model of an operational amplifier is proposed. Also, the frequency responses of the 
some linear integrated circuits that represent operational amplifier using the proposed bond 
graph model are obtained. Section 5 gives a comparator circuit using a bond graph model 
and obtaining the time response. Section 6 presents the proposed bond graph model of an 
feedback op-amp; the input and output resistances, bandwidth, slew rate and supply 
voltages of a non-inverting amplifier using BGI and BGD are determined. Section 7 gives the 
filters using a bond graph model of an op-amp. In this section, we apply the filters for a 
complex signal in the physical domain. The bond graph model of an op-amp to design a 
Proportional and Integral (PI) controller and to control the velocity of a DC motor in a 
closed loop system is applied in section 8. Finally, the conclusions are given in section 9.  

2. Bond graph model 

Consider the following scheme of a Bond Graph model with an Integral causality 
assignment (BGI) for a multiport Linear Time Invariant (LTI) system which includes the key 
vectors of Fig. 1 (Wellstead, 1979; Sueur & Dauphin-Tanguy, 1991). 
 

 

Fig. 1. Key vectors of a bond graph. 

In fig. 1, ( ),
e f

MS MS , ( ),C I  and ( )R  denote the source, the energy storage and the 

energy dissipation fields, ( )D  the detector and ( )0,1, ,TF GY  the junction structure with 

transformers, TF , and gyrators, GY . 

The state ( )∈ℜn
x t  and ( )∈ℜm

d
x t  are composed of energy variables ( )p t  and ( )q t  

associated with I andC elements in integral causality and derivative causality, respectively, 

( )∈ℜ p
u t denotes the plant input, ( )∈ℜq

y t the plant output, ( )∈ℜn
z t the co-energy 

vector, ( )∈ℜm

d
z t  the derivative co-energy and ( )∈ℜr

in
D t  and ( )∈ℜr

out
D t  are a mixture 
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of ( )e t  and ( )f t  showing the energy exchanges between the dissipation field and the 

junction structure (Wellstead, 1979; Sueur & Dauphin-Tanguy, 1991). 
The relations of the storage and dissipation fields are, 

 ( ) ( )=z t Fx t  (1) 

 ( ) ( )=
d d d
z t F x t  (2) 

 
( ) ( )=

out in
D t LD t

 (3) 
The relations of the junction structure are, 

 

( )
( )
( )

( )
( )
( )
( )

11 12 13 14

21 22 23

31 32 33

0

0

=

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎣ ⎦

&

&

out

in

d

x t
x t S S S S

D t
D t S S S

u t
y t S S S

x t

 (4) 

 
( ) ( )14

= − T

d
z t S z t

 (5) 

The entries of S  take values inside the set { }0, 1, ,± ± ±m n  where m  and n  are 

transformer and gyrator modules; 
11
S  and 

22
S  are square skew-symmetric matrices and 

12
S  and 

21
S  are matrices each other negative transpose. The state equation is (Wellstead, 

1979; Sueur & Dauphin-Tanguy, 1991), 

 ( ) ( ) ( )= +&
p p

x t A x t B u t  (6) 

 
( ) ( ) ( )= +

p p
y t C x t D u t

 (7) 
where 

 ( )1

11 12 21

−= +
p
A E S S MS F  (8) 

 ( )1

13 12 23

−= +
p
B E S S MS  (9) 

 ( )31 32 21
= +

p
C S S MS F  (10) 

 
33 32 23

= +
p
D S S MS  (11) 

being 

                                               
1

14 14

−= + T

n d
E I S F S F                   (12) 
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 ( ) 1

22

−
= −

n
M I LS L  (13) 

3. Bond graph in derivative causality assignment 

We can use the Bond Graph in Derivative causality assignment (BGD) to solve directly the 

problem to get 
1−

p
A .  Suppose that 

p
A  is invertible and a derivative causality assignment is 

performed on the bond graph model (Gonzalez et al., 2005). From (4) the junction structure 
is given by, 

 

( )
( )
( )

( )
( )

( )

11 12 13

21 22 23

31 32 33

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

=
&

ind outd

d

z t x tJ J J

D t J J J D t

J J Jy t u t

 (14) 

where the entries of J  have the same properties that S  and the storage elements in (14) 

have a derivative causality. Also, 
ind
D  and 

outd
D  are defined by 

 ( ) ( )=
outd d ind
D t L D t  (15) 

and they depend of the causality assignment for the storage elements and that junctions 
have a correct causality assignment. 
From (6) to (13) and (14) we obtain, 

 ( ) ( ) ( )* *

p pz t A x t B u t= +&  (16) 

 
( ) ( ) ( )* *

d p py t C x t D u t= +&
 (17) 

where 

 
*

11 12 21pA J J NJ= +  (18) 

 
*

13 12 23pB J J NJ= +  (19) 

 
*

31 32 21pC J J NJ= +  (20) 

 
*

33 32 23pD J J NJ= +  (21) 

being 

                                               ( ) 1

22n d dN I L J L
−= −                   (22) 

The state output equations of this system in integral causality are given by (6) and (7). It 
follows, from (1), (6), (7), (16) and (17) that, 
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* 1

p pA FA−=  (23) 

 
* 1

p p pB FA B−= −  (24) 

 
* 1

p p pC C A−=  (25) 

 
* 1

p p p p pD D C A B−= −  (26) 

Considering ( ) 0x t =& , the steady state of a LTI MIMO system defined by 

 
1

ss p p ssx A B u−= −  (27) 

 ( )1

ss p p p p ssy D C A B u−= −  (28) 

where ssx  and ssy are the steady state of the state variables and the output, respectively. 

In an approach of the BGD, the steady state is determined by 

 
1 *

ss p ssx F B u−=  (29) 

 
*

ss p ssy D u=  (30) 

4. A bond graph model of an operational amplifier 

The standard operational amplifier (op-amp) symbol is shown in Fig. 2. It has two input 
terminals, the inverting (-) input and the noninverting (+) input, and one output terminal. 
The typical op-amp operates with two Direct Current (DC) supply voltages, one positive 
and the other negative (Stanley, 1994). 
 

 

Fig. 2. Operational amplifier symbol. 

The complex action of the op-amp results in the amplification of the difference between the 

voltages at the noninverting, V+ , and the inverting, V− , inputs by a large gain factor, K , 

designed open loop gain. The output voltage is, 

 ( )outV K V V+ −= −  (31) 
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The assumptions of the ideal op-amp are (Barna & Porat, 1989): 1) The input impedance is 
infinite. 2) The output impedance is zero. 3) The open loop gain is infinite. 4) Infinite 
bandwidth so that any frequency signal from 0 to ∞ Hz can be amplified without 
attenuation. 5) Infinite slew rate so that output voltage charges simultaneously with input 
voltage charges. 
The implications of the assumptions are: no current will flow either into or out of either 
input terminal of the op-amp, also, the voltage at the output terminal does not charge as the 

loading is varied and finally, from 3H , 
+ −
− = out

V
V V

K
, if we take the limit when K→∞, note 

that V V+ −= , which indicates that the voltages at the two input terminals are forced to be 

equal in the limit. 
The assumptions of an op-amp are not completely true in practice, and to be fully competent 
in the analysis and design of op-amps circuits, one must be aware of the limitations. 
Therefore, we propose a more realistic model applicable to DC and low frequencies based 
on Bond Graph with Intregral causality assignment (BGI), since an op-amp is a multistage 
amplifier, it can be represented by Fig. 3. 
 

 

Fig. 3. Bond graph model of an operational amplifier. 

The individual stages used in op-amp are separately chosen to develop different amplifier 
characteristics. Those amplifier characteristics which are determined by a given stage 
depend on whether it functions as an input stage, intermediate stage or output stage. So, the 
bond graph model of the op-amp is composed by 3 stages, which are: 

• Characteristics of the differential input stage of an operational amplifier are the most 
critical factors which affect the accuracy of an op-amp in providing voltage gain. Errors 
effects of following stages are reduced in significance by the gain isolation provided by 
the first stage. This input stage considers the two input terminals of op-amp, the 

differential input resistance, denoted as iR , which is the resistance between the 

inverting and non-inverting inputs and K is the open loop gain. 

• The intermediate stage introduces the frequency compensation of the op-amp using a 

lag network. Also, using a MTF , the slew rate of the op-amp is considered. 

• Following the input and intermediate voltage gain stages of an op-amp, it is desirable to 
provide impedance isolation from loads. In this way the characteristics of the gain 
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stages are preserved under load, and adequate signal current is made available to the 
load. In addition, the output stage provides isolation to the preceding stage and a low 
output impedance to the load. This stage is formed by the output terminal, the output 

resistance of the op-amp denoted as 
o
R  and the adjustment of supply voltages, positive 

voltage cV  and negative voltage eV , are applied using a  MTF  element. 

The usefulness of the bond graph model of an operational amplifier can be shown, applying 
this model to 741μA  op-amp by Fairchild Semiconductor Corporation (Stanley, 1994; 

Gayakward, 2000) and, 084TL  and 27OP  by Texas Instruments (Stanley, 1994; 
Gayakward, 2000) whose data sheets are shown in Table 1. 
 

Op-amp 741μA  084TL  27OP  

( )Ω
i
R  6

2 10×  
12

10  
6

6 10×  

( )Ω
o
R  75  75  70  

K  
5

2 10×  
5

2 10×  
6

1.8 10×  

( )μSR V s  0.5  13  2.8  

( ),
c e
V V V  15±  18±  22±  

Table 1. Data sheets of 741μA , 084TL  and 27OP . 

Using the data sheets of an op-amp, the high cutoff frequency of the open loop voltage gain, 

of , is determined. Moreover, the compensation parameters of the bond graph model are 

defined by  

 
1

2
o

c c

f
R Cπ

=  (32) 

From (32) and the data sheets of the 741μA , 084TL  and 27OP op-amps, the parameters to 

obtain the frequency response are given in Table 2. 
 

Op-amp 741μA  084TL  27OP  

( )Ω
h
R  3

10  
3

10  
3

10  

( )
h
C F  6

3.06652 10
−×  

6
5.3051 10

−×  
5

1.9894 10
−×  

Table 2. Parameters of frequency response. 

Substituting the parameters of Tables 1 and 2 to bond graph model of each op-amp, the 
frequency responses of 741μA , 084TL  and 27OP op-amps are shown in Fig. 4, 5 and 6, 

respectively. 
Note that, the frequency responses of the 741μA , 084TL  and 27OP  op-amps are very 

close respect to the data sheets of these op-amps (Stanley, 1994; Gayakward, 2000). Also, 

decibel gain is ( )20=
dB
K Log K . The next section an application of the bond graph model 

of an op-amp to prove the time response is presented. 
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Fig. 4. Frequency response of 741μA  op-amp. 

 

 

Fig. 5. Frequency response of 084TL  op-amp. 

 

 

Fig. 6. Frequency response of 27OP  op-amp. 

5. Comparator circuit 

Comparator circuits represent to the first class of circuits we have considered that are 

basically nonlinear in operation. Specifically, comparator circuits produce two or more 

discrete outputs, each of which is dependent on the input level (Floyd & Buchla, 1999). In 

this application, the op-amp is used in the open loop configuration with the input voltage on 

one input and a reference voltage on the other, which is shown in Fig. 7. 
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Fig. 7. Bond graph model of a comparator op-amp. 

Applying a voltage ( ) ( )3sin 2π
+ +

=v t f t V to the noninverting input, where 0.15
+
=f Hz  

and 1
−
=v V  to the inverting input of the bond graph model of Fig. 7. Also, the supply 

voltages are 12=
c
V V  and 12= −

e
V V , the time response of the comparator circuit using 

the 741μA  op-amp is shown in Fig. 8. 
 

 

Fig. 8. Time response of the comparator op-amp. 

In according with the objective of the comparator circuit, the time response of the Fig. 8 is 

satisfactory (Stanley, 1994; Gayakward, 2000; Floyd & Buchla, 1999). However, if the 

frequency of the input signal increases, we have to consider the response of phase shift 

versus frequency, which is obtained using the proposed bond graph model and is shown in 

Fig. 9 for 741μA  op-amp phase shift between the input and output signals. 

If the noninverting input voltage is ( ) ( )0.1sin 2π
+ +

=v t f t V  where 100
+
=f Hz , the 

inverting input voltage is ( ) 0
−

=v t V  and, the supply voltages are 12=
c
V V  and 
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12= −
e
V V , then the time response of the comparator circuit using 741μA  op-amp is a 

square waveform of magnitude 12± V  and a phase shift of 
0

86.8θ = −  respect the input 

signal, which is shown in Fig. 10. 
 

 

Fig. 9. Phase shift versus frequency of 741μA  op-amp. 

 

Fig. 10. Time response of comparator with ( ) ( )20 sin 200π
+

=V t t . 

The phase shift of the output signal of Fig. 10 can be verified from the following equation, 
calculating the lag time of the output signal, 

 
360

θ
=t

f
 (33) 

where θ  is the phase shift of the bode plot for 741μA  op-amp is the Fig. 8, and f is the 

frequency of the input signal. In this case 2.41=t ms . 

In next section op-amp configurations with negative feedback in the physical domain are 
proposed. 
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6. Feedback operational amplifier 

An op-amp that uses feedback is called a feedback is called a feedback amplifier. A feedback 
amplifier is sometimes referred to as a closed loop amplifier because the feedback forms a 
closed loop between the input and the output. A feedback amplifier essentially consists of 
two parts: an op-amp and a feedback circuit. The feedback circuit can take any form 
whatsoever, depending on the intended application of the amplifier. This means that the 
feedback circuit may be made up of either passive components, active components, or 
combinations of both (Gayakward, 2000). 
A closed loop amplifier can be represented by using two blocks, one for an op-amp and 
another for a feedback circuit. There are four ways to connect theses two blocks. These 
connections are classified according to whether the voltage or current is fed back to the 
input in series or in parallel, as follows: 1) Voltage series feedback, 2) Voltage shunt 
feedback, 3) Current series feedback and 4) Current shunt feedback (Gayakward, 2000) and 
(Floyd & Buchla, 1999). 
The voltage series feedback configuration is one of the most important because this is 
commonly used. An in depth analysis of this configuration in the physical domain is 
presented in this section, computing voltage gain, input resistance, output resistance and the 
bandwidth. 

6.1 A bond graph model of a noninverting amplifier 

An op-amp connected in a closed loop configuration as a noninverting amplifier is shown in 
Fig. 11. The input signal is applied to the noninverting input. A portion of the output is 
applied back to the inverting input through the feedback network in the physical domain. 
The BGI and the Bond Graph in a Derivative causality assignment (BGD) are shown in Fig. 
11, in order to get the symbolic expressions of the closed loop system in steady state 
applying the methodology given in section 1. 
 

 

Fig. 11. Bond graph models of a noninverting amplifier. 

The closed loop gain, CLA , can be determined using the BGD approach, from (30) we have, 

 
*ss

CL p

ss

y
A D

u
= =  (34) 

where ssy  and ssu  are the steady state values of the output and input, respectively. 
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We now derive the closed loop gain of the noninverting amplifier using the BGD. The key 
vectors of BGD are given by, 

 
[ ]
[ ]

17 17 17

1 9

4 7 9 11 13 14

4 7 9 11 13 14

( ) ( ); ( ) ( ); ( ) ( )

( ) ( ); ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

= = =

= =

=

=

&

ind

outd

x t q t x t f t z t e t

u t e t y t e t

D t e t e t e t f t f t f t

D t f t f t f t e t e t e t

 (35) 

the constitutive relations are, 

 
1

=
h

F
C

 (36) 

 
1 1

, , , ,=
⎧ ⎫
⎨ ⎬
⎩ ⎭

d F h

i o

L diag R R R
R R

 (37) 

and the junction structure is, 

 [ ]

2 2

1 1 1

21 22 23

2

12 32

1 1

13 11 31 33

1

0 0 0 0 1 0 10

10
0 0 0

0

0 0 0 1 1 0 0; ;0

0 1 0 0 0 00

1 1 0 0 0 01

0 0 0 0 0 0 0

1
0 0 0 0 ; 0 0 0 1 1 0

;

−

− −
−

−= = =

−

−

− −
= = −

= = = =

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

K K
m m

m m m

J J J

m

m

m

K
J J

m m

K
J J J J

m
0

 (38) 

From (21), (22), (34), (36), (37) and (38), the closed loop gain of the noninverting amplifier is, 

 
( )

( )
2 1

2

1 2 2 1

+ +
=

Δ + + + +

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

L i f o

CL

o L i L f i i

R m R K R R m RR
A

m R KRm R R R m m R R R RR
 (39) 

where ( )( )Δ = + + +
i L f i

R R R R RR  
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Note that the closed loop gain (39) takes account the internal parameters and the external 
elements connected to op-amp. 
A normal operation of the op-amp using the bond graph model indicates the modules of 

´MTF s  are
1

1=m , the slew rate is sufficient of the op-amp, and
2

1=m , the supply voltages 

allow to obtain the output voltage depending the input voltage and the gain of the op-amp. 

Considering, 
1

1=m , 
2

1=m  and 0=
o
R , we obtain 

 ( )
1

1

+
=

+ + +
⎛ ⎞
⎜ ⎟
⎝ ⎠

f

CL

f

f i

i

R R
A

R R
R R RR

K R

 (40) 

Applying the ( )
1→∞

→∞

i

CL
R

K

Lim A , the ideal closed loop gain of this amplifier, ( )
CL i
A , is determined, 

 ( ) 1
f

CL i

R
A

R
= +  (41) 

The time response of the noninverting amplifier using 741μA  op-amp, 10= ΩR K , 

190= ΩR K  and the input signal is ( ) ( )0.5sin 2π=
i i
v t f t V  where 1=

i
f KHz , is shown 

in Fig. 12. 
 

 

Fig. 12. Time response of the noninverting amplifier. 

6.1.1 Input resistance of the noninverting amplifier  

The input resistance of the noninverting amplifier can be determined using the BGD of Fig. 

11. Considering  the output ( )
1
f t , the submatrices

31
J ,

32
J  and

33
J  from (38) are changed 

by 
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 [ ]23 13 33
1 0 0 0 0 0 ; 0= = =J J J  (42) 

From (21), (22), (37) and (38) the input resistance is determined by,  

 
( )( ) ( )

( )( )
+ + + + + + +

=
+ + +

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦o i L f i L i L f i i

iF

f o L o L

R R R R R RR KRR R R R R R RR
R

R R R R R R
 (43) 

where ( )1 ss
e and ( )1 ss

f are the steady state values of the input
1
e and output

1
f , respectively. 

If 0=
o
R  we reduce, 

 ( )
1

1= + +
+ +

⎛ ⎞
⎜ ⎟
⎝ ⎠

f

iF i

f f

RRKR
R R

R R R R
 (44) 

finally, the term 
+ +


f

i

f f

R R KR
R

R R R R
 hence the ideal input resistance of the noninverting 

amplifier ( )iF i
R  is defined by, 

 ( ) 1= +
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

iF ii

f

KR
R R

R R
 (45) 

 

The result of (45) indicates that the ideal input resistance of the op-amp with feedback is 

( )1+ +
f

KR R R  times that without feedback. In addition, the equation (43) allows to 

determine the input resistance of the op-amp considering the internal parameters and 

external elements for this configuration. Equation (45) can be verified in (Stanley, 1994; 

Gayakward, 2000). 

6.1.2 Output resistance of the noninverting amplifier  

Output resistance is the resistance determined looking back into the feedback amplifier from 

the output terminal. A BGD that allows to obtain the output resistance of a noninverting 

amplifier is shown in Fig. 13. 

The key vectors of the BGD of Fig. 13 are, 

 
[ ]
[ ]

16 16 16

1 1

4 7 10 12 13

4 7 10 12 13

( ) ( ); ( ) ( ); ( ) ( )

( ) ( ); ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= = =

= =

=

=

&

ind

outd

x t q t x t f t z t e t

u t e t y t f t

D t e t e t e t f t e t

D t f t f t f t e t f t

 (46) 
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Fig. 13. Derivation of output resistance of a bond graph model of a noninverting amplifier. 

the constitutive relations are, 

 
1 1 1 1

, , , ,=
⎧ ⎫
⎨ ⎬
⎩ ⎭i o f h

L diag R
R R R R

 (47) 

 
1

=
h

F
C

 (48) 

and the junction structure of the BGD is, 

 

[ ]

22 21 21 32

12 11 13 31 33

0 0 0 1 0 0 0

0 0 0 1 0 1

; ;0 0 0 1 0 0 1

1 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 ; 0

−

− −

= = = = −

−

= − − = = = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T

K

J J J J

J K J J J J

 (49) 

Substituting (22), (47), (49) into (21) the output resistance of a noninverting amplifier is 
obtained, 

 
( )
( )

( ) ( )[ ]
( ) ( )

1
*1

1

− + +
= = =

+ + + + +
o i f fss

oF p

i f f o iss

R R R R RRe
R D

f R R R KR RR R R R
 (50) 

Calculating ( )
1

lim
→∞

=
i

oF oF
R

R R  we have, 

                                                 ( ) ( )
1

+
=

+ + +
o f

oF

f o

R R R
R

R R KR R
                 (51) 
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finally, + + + + +
o f f
R R R KR R R KR , the ideal output resistance ( )

oF i
R of the 

noninverting amplifier is given by, 

 ( )
1

=
+

+

o

oF i

f

R
R

KR

R R

 (52) 

This result shows that the ideal output resistance of the noninverting amplifier is 

( )
1

1+ +
f

KR R R
 times the output resistance 

o
R  of the op-amp. That is , the output 

resistance of the op-amp with feedback is much smaller than the output resistance without 
feedback. In addition (52) can be verified in (Stanley, 1994; Gayakward, 2000). 

6.1.3 Bandwidth of the noninverting amplifier 
The bandwidth of an amplifier is defined as the band (range) of frequency for which the 
gain remains constant. Manufacturers generally specify either the gain-bandwidth product 
or supply open loop gain versus frequency curve for the op-amp (Gayakward, 2000). 
Fig. 4 shows the open loop gain versus frequency curve of the 741μA  op-amp. From this 

curve for a gain of 200,000, the bandwidth is approximately 5Hz ; or the gain-bandwidth 

product is 1MHz . On the other extreme, the bandwidth is approximately 1MHzwhen the 
gain is 1. Hence, the frequency at which the gain equals 1 is known as the unity gain 
bandwidth (UGB). 

Since for an op-amp with a single break frequency of , the gain-bandwidth product is 

constant, and equal to UGB, we can write, 

 ( )( ) ( )( )= =
o CL F

UGB K f A f  (53) 

where Ff bandwidth with feedback. 

Therefore, the bandwidth of an feedback op-amp is, 

 
( )( )o

F

CL

K f
f

A
=  (54) 

 
Fig. 14. Frequency response of the noninverting amplifier. 
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The frequency response of the noninverting amplifier based on BGI of Fig. 11, using 741μA  

op-amp, 1= ΩR K , 5= Ω
f
R K  and the input signal is ( ) ( )1.0 sin 2π=

i i
v t f t V where 

30=
i
f KHz , is shown in Fig. 14. 

Note that the frequency response of this amplifier indicates that the closed loop gain is 

6 15.56= =
CL
A dB  until approximately 166KHz , which is verified from (54). 

6.1.4 Slew rate 

Another important frequency related parameter of an op-amp is the slew rate. The slew rate 
is the maximum rate of change of output voltage with respect to time, usually specified in 

μV s . Ideally, we would like an infinity slew rate so that the op-amp's output voltage 

would change simultaneously with the input. Practical op-amps are available with slew 

rates from 0.1 μV s  to well above 1000 μV s . The slew rate ( )SR  can be obtained by, 

 
6

2
/

10

π
μ= p

fV
SR V s  (55) 

where f  is the input frequency and pV  is the peak value of the output sine wave. 

 In order to show the effect of the slew rate of an op-amp, the time responses of the 
noninverting amplifier based on BGI of Fig. 11, using 741μA  and 27OP  op-amps, 

1= ΩR K , 5= Ω
f
R K  and the input signal is ( ) 1.0 sin(2 )π=

i i
v t f t V  where 30=

i
f KHz , 

are shown in Fig. 15. The ideal closed gain is then ( ) 6=
CL i
A . 

 

 

Fig.15. Effect of the slew rate of the noninverting amplifier using 741μA  and 27OP  op-

amps. 
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From (55), the minimum slew rate of an op-amp with the previous conditions is 

1.13 μ=SR V s . Therefore, the slew rate of the 27OP  op-amp, which is 2.8 μV s  is 

enough for the input signal with the given conditions. Fig. 15, shows the output signal of the 

741μA  op-amp has distortion because of the slew rate is 0.5 μV s . 

6.1.5 Supply volages 

The most linear integrated circuits, particularly op-amps, use one or more differential 

amplifier stages, and differential amplifiers require both a positive ( )cV  and negative ( )eV  

power supply for proper operation of the circuit. 
The supply voltages of the proposed bond graph model of an op-amp can be tested 

applying an input signal ( ) 3sin(2 )π=
i i
v t f t , 30=

i
f KHz , 1= ΩR K , 5= Ω

f
R K  and 

12=
c
V V  and 12= −

e
V V  to 741μA op-amp, the time response is shown in Fig. 16. 

The ideal closed loop gain is ( ) 6=
CL i
A , of this form the ideal output signal would be 

( ) 18sin(2 )π=
out i
V t f t . However, the supply voltages of the op-amp are 12± V , limiting the 

output signal to this rank of voltage. 
Next section, the op-amp integrator that is one the most interesting configurations on a bond 
graph model is designed. 
 

 

Fig.16. Time response with slew rate and supply voltages using 741μA  op-amp. 

6.2 The operational amplifier integrator 

An op-amp integrator simulates mathematical integration, which is basically a summing 

process that determines the total area under the curve of a function (Floyd & Buchla, 1999). 

A basic integrator on a BGD model is shown in Fig. 17. Notice that the feedback element is a 

capacitor that forms an RC  circuit with the input. 
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Fig. 17. Bond graphs of an operational amplifier integrator. 

In order to determine the transfer function of the op-amp integrator based on bond graph 
model of Fig. 17, the methodology given in Section 1 is applied. The key vectors are, 

 [ ]
[ ]

11 11 11 1

18 18 18 9

4 7 9 13 15

4 7 9 13 15

( ) ( ) ( ) ( ) ( )
( ) ; ( ) ; ( ) ;

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

=
= = =

=

=

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

T

in

T

out

q t f t e t u t e t
x t x t z t

q t f t e t y t e t

D t e t e t e t f t e t

D t f t f t f t e t f t

 (56) 

the constitutive relations are, 

 
1 1

,=
⎧ ⎫
⎨ ⎬
⎩ ⎭h

F diag
C C

 (57) 

 
1 1 1 1

, , , ,=
⎧ ⎫
⎨ ⎬
⎩ ⎭i o L h

L diag R
R R R R

 (58) 

and the junction structure matrix is, 

 

[ ]
[ ]

22 2

22 23 21

2

2

32 33

12

31 11 131

0 00 0 0 1 0 1

10 0 0 0

; ; 1 00 0 0 1 0 1
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;
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−
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= − =−
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⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

mm m

S S S

m

mK K

S Sm
S

S S Sm

 (59) 
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From (8), (13), (57), (58) and (59) the pA  matrix is, 

 

( )( ) ( )

( ) ( )

2

2 2

2 1

2 1 2

1 1

1

− −
+ + +

=
−−

+ Δ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

o L i i L

h

p

o L i i L

h h

R m R R R R R m R
C C

A
m

R m R m KRR m KRR R
C C R

 (60) 

where ( )[ ] 2

2
Δ = + + +

o L i i L i
R R R R RR m RR R  

Substituting (13), (58) (59) into (9), 
p
B  is determined by, 

 

( )
( )

2

2

1

1
1

+

= −
Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

i o L

p

o i L

h

R R m R

B
m KR R R

R

 (61) 

From (10), (13), (57), (58) and (59) the 
p
C  matrix is, 

 ( )
2

1 1 1−
= +
Δ

⎡ ⎤
⎢ ⎥
⎣ ⎦

p i o L i L

h

C R R R R m RR R
C C

 (62) 

Finally, substituting (13), (58) and (59) into (11), 
p
D  is given by, 

 
1

=
Δ

p o i L
D R R R  (63) 

The transfer function of a system represented in space state can be calculated by, 

 ( ) 1

( )
−

= − +
p n p p p

G s C sI A B D  (64) 

Substituting (60), (61), (62) and (63) into (64), the transfer function of the op-amp integrator 
of Fig. 17 is, 

 
( )

( )
2 2

1 1 2

2 2 2

1 2 1 1

( )
+ −

=
Δ + Δ + + Δ + Λ

h h o o L i

h h h h L i

s CC R R sCR m Km m R R
G s

s CC R s C R CRR R Km m Cm m
 (65) 

where ( )( )2

2
Λ = + +

i o L
R R R m R . 

Considering a normal operation of the op-amp, 
1 2

1= =m m  and 0=
o
R , we have, 

 

     
1

2

1
( )

1
1 1

−
=

+ + + + + +
⎡ ⎛ ⎞ ⎤ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎦ ⎝ ⎠
h h h h

i i

G s
CC R R C R R CR R

s s CR
K K R K K R

                (66) 
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In addition, applying 
1

lim ( )
→∞

→∞

i
R

K

G s , the ideal transfer function, ( )
i
G s , is determined by, 

                                             
1

( )iG s
sRC

−
=                   (67) 

 

Note that, (67) is the typical transfer function of a integral controller. However, the equation 
(65) is the transfer function of a integral controller based on op-amp and considering their 
internal parameters and external elements. 
The time response of the integrator circuit using 741μA op-amp and 10= ΩR , 100μ=C F  

and ( ) sin(2 )π=
i i
v t f t V where 1=

i
f KHz shows in Fig. 18. The output signal proves that the 

bond graph model of Fig. 18, is an integrator of the input signal. 
 

 

Fig. 18. Time response of the integrator. 

The frequency response of the integrator circuit of Fig. 17 is shown in Fig. 19. Note that (67) 
is represented by Fig. 19. 
 

 

Fig. 19. Frequency response of the integrator circuit. 

Next section an important application of the op-amp that is an active filter in the physical 
domain is proposed. 
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7. Active filters using bond graph models 

An electric filter is often a frequency selective circuit that passes a specified band of 
frequencies and blocks or attenuates signals of frequencies outside this band. Filters may be 
classified in a number of ways (Gayakward, 2000): 
1. Analog or digital. Analog filters are designed to process analog signals, while digital 

filters process analog signals using digital techniques. 
2. Passive or active. Passive filters use resistors, capacitors and inductors in their 

construction and the active filters employ transistor or op-amps in addition to resistors 
and capacitors. 

An active filter offers the following advantages over a passive filter: a) Gain and frequency 
adjustment flexibility. b) No loading problem. c) Cost. 
A filter will usually conform to one of four basic response types: low-pass, high-pass, band-
pass and band-reject. 

7.1 Low-pass filter 

A low-pass filter allows only low frequency signals to pass through, while suppressing 
high-frequency components. The bond graph model of a low-pass filter is shown in Fig. 20. 
 

 

Fig. 20. Bond graph model of a low-pass filter. 

The key vectors of the bond graph of Fig. 20 are, 

 [ ]
[ ]
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 (68) 

The constitutive relations of the elements are, 

 
1 1

,=
⎧ ⎫
⎨ ⎬
⎩ ⎭h e

F diag
C C

 (69) 
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1 1 1 1 1

, , , , , ,=
⎧ ⎫
⎨ ⎬
⎩ ⎭

f

i o L h c

L diag R R
R R R R R

 (70) 

and the junction structure is 
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 (71) 

where 

 
1 2 2 2

0 1
0

;
0 0

1 1

−
−

= − =

−

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

K
P m m P  (72) 

From (8), (13), (69), (70) and (71), the pA  matrix of the low-pass filter is, 

 

( )

( )( )

2

21 21 1 1
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22
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1 1

− −
− − + +

Δ Δ
=

−
− + + +

Δ Δ

⎡ ⎤
⎡ ⎤⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦
⎣ ⎦

L i

o L f L f

h h h h h h

p

L

f o L o L

h c c h

m m KRR Rm m K m RK
R R R m R R

R C C R C C
A

m RR
R R R m R R R

C R C C

 (73) 

 

where ( )( )[ ] ( )[ ]2

2
Δ = + + + + + +

o L f i i L f i L f i
R R R R R RR m RR R R R R R  

Substituting (70) and (71) into (13), the 
pB  matrix is obtained 

 
1

0=
⎡ ⎤
⎢ ⎥
⎣ ⎦

T

p

c

B
R

 (74) 

Finally, from (10), (13), (69), (70) and (71), the pC matrix is 
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 ( )2= + +
Δ Δ

⎡ ⎤
⎡ ⎤⎢ ⎥⎣ ⎦

⎣ ⎦
L oL

p i f i f

h h

RR Rm R
C R R R R R

C C
 (75) 

and 0=
p
D  

From (73) to (75), and (64), and considering ideal characteristics of the op-amp, 0=
o
R , 

= ∞
i
R , = ∞K  and = ∞

L
R , the ideal transfer function of the low-pass filter, denoted by 

( )
i
G s  is obtained ( )

1
=

+
CL C C

i

c C

A R C
G s

s R C
 where 1= + f

CL

R
A

R
. 

The ideal transfer function of the low-pass filter indicates that on the pass band the gain is 

almost CLA  and the pole of the system is located at the high cutoff frequency hf  defined 

by 
1

2π
=

h

C C

f
C R

. 

The frequency response of the low-pass filter based on bond graph model using the μA741 
op-amp and considering the numerical values of the Table 3 is shown in Fig 21. 
 

R  f
R  

L
R  

c
R  

C
C  

10 ΩK  10 ΩK  1 ΩK  15.9 ΩK  8
1 10

−× F  

Table 3. Numerical values of the low-pass filter. 

 

 

Fig. 21. Frequency response of the low-pass filter. 

The Fig 21 shows that 1=
h
f KHz . Also, we have a first order filter, because the filter has a 

pole and the rolloff rate of the filter is 20 dB per decade. 

7.2 High-pass filter 

A high pass filter allows only frequencies above a certain break point to pass through. In 
other words, it attenuates low frequency components. A first order high-pass filter on bond 
graph model is shown in Fig. 22. 
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Fig. 22. Bond graph model of a high-pass filter. 

The mathematical model of the filter can be determined in the same manner that the low-
pass filter. However, for all the remaining filters of this paper, we use the software 20-sim to 
know the performance of the filter on the physical domain, considering the internal 
characteristics of the op-amp and the external components connected to the op-amp in order 
to get the filter type. 
Using the same numerical values that the low-pass filter, the frequency response of the filter 
shows in Fig. 23. 
 

 

Fig. 23. Frequency response of the high-pass filter. 

The Fig. 23 indicates that we have a first order filter and the low cutoff frequency 
L
f  is 

1KHz . 

7.3 Band-pass filter 

The band-pass filter can be thought of as a combination of high and low pass filters. It 

allows only frequencies within a specified rang to pass through. In Fig. 24 a band-pass filter 

on bond graph model is proposed. The characteristic of this filter is a narrow band-pass 

using multiple feedback . 

In order to get the performance of this filter, we use the internal parameters of the 741μA  

op-amp given in Tables 1 and 2, and the external components are shown in Table 4. 
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Fig. 24. Bond graph model of a band-pass filter. 

 

c
R  f

R  
L
R  

2c
R  

c
C  

2c
C  

4.77 ΩK  100 ΩK  10 ΩK  0.2 ΩK  0.01μF  0.01μF  

Table 4. Numerical values of the external components 

The frequency response of the band-pass filter is shown in Fig. 25. 
 

 

Fig. 25. Frequency response of the band-pass filter. 

Note that, the response of the filter allows to pass the frequency component of 1KHz  with 

a closed loop gain of 10 and the low and high frequencies respect to 1KHz  have a small 
magnitude. 

7.4 Band-reject filter 
The band-reject filter allows everything to pass through with the exception of a specific 
range of frequencies. The band-reject filter is often called notch filter, because it is commonly 
used for the rejection of a single frequency. The Fig. 26 shows this filter on a bond graph 
model. 
Using the parameters of the 741μA  op-amp given on Tables 1 and 2, and the external 

elements of the op-amp of Fig. 26 are gotten in Table 5, the frequency response of the filter is 
shown in Fig. 27. 
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Fig. 26. Bond graph model of a band-reject filter. 

 

1
R  2R  

3
R  

L
R  

1 3
=C C  

2
C  

39 ΩK  19.5 ΩK  39 ΩK  1 ΩK  0.068μF  0.136μF  

Table 5. External elements of the band-reject filter. 
 

 

Fig. 27. Frequency response of the band-reject filter. 

In Fig. 27, we show that 60Hz  power line frequency can be attenuated using this filter in 

the physical domain. 

7.5 Applying active filters 

A filter is a circuit which inhibits the transfer of a specific range of frequencies. So, we can 

apply active filters to select a frequency component of a complex signal. An interesting 

application of filters on bond graph models is shown in Fig. 28 where we have an input 

signal given by, 

 ( )[ ] ( )[ ] ( )[ ]0.1sin 2 10 0.1sin 2 500 0.1sin 2 20π π π= + +
i
V Hz t Hz t KHz t  (76) 

In Fig. 28, the input is applied to low-pass filter denoted by opamp1, to high-pass filter 

denoted by opamp2 and to band-pass filter denoted by opamp3. 
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Also, the external elements of Fig. 28 are obtained on Table 6 and using the parameters of 

the 741μA  op-amp given on Tables 1 and 2, the frequency responses are shown in Fig. 29. 

 

 

 

Fig. 28. Compose signal applied to bond graph filters. 

 

1
=R R  2

=
f f
R R  

in
C  pot

R  

1 ΩM  1Ω  1μF  15.9 ΩK  

3
R  3f

R  
1 4 2
= =

in
C C C  

2
R  

95.5 ΩK  191 ΩK  0.01μF  5.6 ΩK  
 

Table 6. External elements of the compose system. 

In Fig. 29, the high cutoff frequency is 10=
H
f Hz  for the low-pass filter, the low cutoff 

frequency is 20=
L
f KHz  for the high-pass filter and the center frequency is 500=

c
f Hz . 

Finally, the time response of each filter is shown in Fig. 30 and we note that the objective of 

the filters is successful. 
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Fig. 29. Frequency response of a complete system. 

 

 
 

Fig. 30. Time response of the complete system. 

Note that the bond graph model of the op-amp to design controllers, analog computers and 

general linear applications can be applied. 

8. Controller based on bond graph model of an operational amplifier 

Another important application of operational amplifiers is to implement controllers and can 

be used to improve the performance of a closed loop system. A proportional and integral 

(PI) controller designed in the physical domain to control the velocity of a DC motor is 

applied (Barna & Porat, 1989). 
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The noninverting and integrator configurations of an op-amp are used to derive the PI 

controller. Also, the input reference of the system is voltage 
nV  and on the feedback a 

element GY  to connect the output with the summing junction is applied. The BGI of the 

closed loop system is shown in Fig. 31. 

 

 
 

Fig. 31. PI Controller of DC motor on a bond graph model. 

The BGI of Fig. 31 can be used to determine the state space representation or the transfer 
function of the closed loop system. However, in this case we only show the simulation with 
the objective to test the PI controller connected to DC motor in a closed loop system. 
 

 
 

Fig. 32. Time response of the output of the DC motor using a PI controller. 
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The time response of the output using a 741μA  op-amp, 10= ΩR K , 90= Ω
f
R K , 

2= Ω
a
R , 0.01=

a
L mH , 

2
0.001=J Kgm  and 1 / /=b Nm rad s , is shown in Fig. 32. 

Note that the PI Controller yields a steady state output equal to input reference of the 

system and the transient response depends of the parameters of the system and controller. 

9. Conclusions 

 

In this work an operational amplifier is shown in a bond graph model. The proposed bond 

graph takes account the input and output resistances, open loop gain, supply voltages, slew 

rate and frequency compensation of an operational amplifier. Therefore, an advantage of 

this model is to determine the performance of applications based on operational amplifiers 

considering the type of linear integrated circuit to obtain the internal parameters from the 

data sheets. Finally, open loop and closed loop configurations of the operational amplifier in 

the physical domain have been shown. 
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