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Chapter

Clairaut Submersion
Sanjay Kumar Singh and Punam Gupta

Abstract

In this chapter, we give the detailed study about the Clairaut submersion. The
fundamental notations are given. Clairaut submersion is one of the most interesting
topics in differential geometry. Depending on the condition on distribution of
submersion, we have different classes of submersion such as anti-invariant, semi-
invariant submersions etc. We describe the geometric properties of Clairaut anti-
invariant submersions and Clairaut semi-invariant submersions whose total space is
a Kähler, nearly Kähler manifold. We give condition for Clairaut anti-invariant
submersion to be a totally geodesic map and also study Clairaut anti-invariant
submersions with totally umbilical fibers. We also give the conditions for the
semi-invariant submersions to be Clairaut map and also for Clairaut semi-invariant
submersion to be a totally geodesic map. We also give some illustrative example of
Clairaut anti-invariant and semi-invariant submersion.

Keywords: Riemannian submersion, nearly Kähler manifolds, Kähler manifolds,
anti-invariant submersion, semi-invariant submersion, clairaut submersion, totally
geodesic maps

1. Introduction

Riemannian submersion between two Riemannian manifolds was first intro-
duced by O’Neill [1] and Gray [2]. After that Watson [3] introduced almost
Hermitian submersions. Later, the notion of anti-invariant submersions and
Lagrangian submersion from almost Hermitian manifolds onto Riemannian mani-
folds were introduced by Sahin [4] and studied by Taştan [5, 6], Gündüzalp [7],
Beri et al. [8], Ali and Fatima [9], in which the fibers of submersion are anti-
invariant with respect to the almost complex structure of total manifold. After that
several new types of Riemannian submersions were defined and studied such as
semi-invariant submersion [10, 11], slant submersion [12, 13], generic submersion
[14–17], hemi-slant submersion [18], semi-slant submersion [19], pointwise slant
submersion [20–22] and conformal semi-slant submersion [23]. Also, these kinds of
submersions were considered in different kinds of structures such as nearly Kähler,
Kähler, almost product, para-contact, Sasakian, Kenmotsu, cosymplectic and etc. In
book [24], we find the recent developments in this field.

In 1735, A.C. Clairaut [25] obtained the very important result in the theory of
surfaces, which is Clairaut’s theorem and stated that for any geodesic α on a
surface of revolution S, the function r sin θ is constant along α, where r is the
distant from a point on the surface to the rotation axis and θ is the angle between
α and the meridian through α. Bishop [26] introduced the idea of Riemannian
submersions and gave a necessary and sufficient conditions for a Riemannian sub-
mersion to be Clairaut. Allison [27] considered Clairaut semi-Riemannian
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submersions and showed that such submersions have interesting applications in the
static space-times.

In [28], Tastan and Gerdan gave new Clairaut conditions for anti-invariant sub-
mersions whose total manifolds are Sasakian and Kenmotsu and got many interest-
ing results. In [29], Tastan and Aydin studied Clairaut anti-invariant submersions
whose total manifolds are cosymplectic. Gündüzalp [30] introduced Clairaut anti-
invariant submersions from a paracosymplectic manifold and gave characterization
theorems. In [31], Lee et al. studied Clairaut anti-invariant submersions whose total
manifolds are Kähler.

Kähler manifolds [32, 33] have an especially rich geometric and topological
structure because of Kähler identity. Kähler manifolds are very important in differ-
ential geometry, which has applications in several different fields such as super-
symmetric gauge theory and superstring theory in theoretical physics, signal
processing in information geometry. The simplest example of Kähler manifold is a
complex Euclidean space ℂn with the standard Hermitian metric.

NearlyKählermanifolds introduced byGray andHervella [32], are the geometrically
interesting class among the sixteen classes of almost Hermitianmanifolds. The geomet-
rical meaning of nearly Kähler condition is that the geodesics on themanifolds are
holomorphically planar curves. Gray [2] studied nearly Kählermanifolds broadly and
gave example of a non-KähleriannearlyKählermanifold,which is 6-dimensional sphere.

Motivated by this, the authors [34] studied Clairaut anti-invariant submersions
from nearly Kähler manifolds onto Riemannian manifolds with some examples and
obtained conditions for Clairaut Riemannian submersion to be totally geodesic map.
The authors investigated conditions for the Clairaut anti-invariant submersions to
be a totally umbilical map. The authors [34] studied Clairaut semi-invariant sub-
mersions from Kähler manifolds onto Riemannian manifolds with some examples.
The authors also obtained conditions for Clairaut semi-invariant Riemannian
submersion to be totally geodesic map and investigated conditions for the
semi-invariant submersion to be a Clairaut map.

2. Almost complex manifold

An almost complex structure on a smooth manifold M is a smooth tensor field φ

of type 1, 1ð Þ such that φ2 ¼ �I. A smooth manifold equipped with such an almost
complex structure is called an almost complex manifold. An almost complex mani-
fold M,φð Þ endowed with a chosen Riemannian metric g satisfying

g φX,φYð Þ ¼ g X,Yð Þ (1)

for all X,Y ∈TM, is called an almost Hermitian manifold.
An almost Hermitian manifold M is called a nearly Kähler manifold [2] if

∇Xφð ÞY þ ∇Yφð ÞX ¼ 0 (2)

for all X,Y ∈TM. If ∇Xφð ÞY ¼ 0 for all X,Y ∈TM, thenM is known as Kähler
manifold [33]. Every Kähler manifold is nearly Kähler but converse need not be true.

3. Riemannian submersion

Definition 1.1 [1, 35] Let M, gm
� �

and N, gn
� �

be Riemannian manifolds, where
dim Mð Þ ¼ m, dim Nð Þ ¼ n and m> n. A Riemannian submersion π : M ! N is a
map of M onto N satisfying the following axioms:
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i. π has maximal rank.

ii. The differential π ∗ preserves the lengths of horizontal vectors.

For each q∈N, π�1 qð Þ is an m� nð Þ-dimensional Riemannian submanifold ofM.
The submanifolds π�1 qð Þ, q∈N, are called fibers. A vector field on M is called
vertical if it is always tangent to fibers. A vector field onM is called horizontal if it is
always orthogonal to fibers. A vector field X on M is called basic if X is horizontal
and π-related to a vector field X0 on N, that is, π ∗Xp ¼ X0

π ∗ pð Þ for all p∈M: We

denote the projection morphisms on the distributions kerπ ∗ and kerπ ∗ð Þ⊥ by V and
H, respectively. The sections of V and H are called the vertical vector fields and
horizontal vector fields, respectively. So

Vp ¼ Tp π�1 qð Þ
� �

, Hp ¼ Tp π�1 qð Þ
� �⊥

:

The second fundamental tensors of all fibers π�1 qð Þ, q∈N gives rise to tensor
field T and A inM defined by O’Neill [1] for arbitrary vector field E and F, which is

TEF ¼ H∇
M
VEVF þ V∇

M
VEHF, (3)

AEF ¼ H∇
M
HEVF þ V∇

M
HEHF, (4)

where V and H are the vertical and horizontal projections.
To discuss geodesics, we need a linear connection. We denote the Levi-Civita

connection on M by ∇̂ and the adapted connection of the submersion by ∇. From
Eqs. (3) and (4), we have

∇VW ¼ TVW þ ∇̂VW, (5)

∇VX ¼ H∇VX þ TVX, (6)

∇XV ¼ AXV þ V∇XV, (7)

∇XY ¼ H∇XY þ AXY, (8)

for all V,W ∈Γ kerπ ∗ð Þ and X,Y ∈Γ kerπ ∗ð Þ⊥, where V∇VW ¼ ∇̂VW: If X is
basic, then AXV ¼ H∇VX:

It is easily seen that for p∈M, U ∈Vp and X ∈Hp the linear operators

TU,AX : TpM ! TpM

are skew-symmetric, that is,

g AXE, Fð Þ ¼ �g E,AXFð Þand g TUE, Fð Þ ¼ �g E,TUFð Þ, (9)

for all E, F∈ TpM: We also see that the restriction of T to the vertical distribu-
tion Tjkerπ ∗�kerπ ∗

is exactly the second fundamental form of the fibers of π. Since TU

is skew-symmetric, therefore π has totally geodesic fibers if and only if T � 0.
Let π : M, gm

� �

! N, gn
� �

be a smooth map between Riemannian manifolds.
Then the differential π ∗ of π can be observed as a section of the bundle
Hom TM, π�1TNð Þ ! M, where π�1TN is the bundle which has fibers π�1TNð Þx ¼
T f xð ÞN. Hom TM, π�1TNð Þ has a connection ∇ induced from the Riemannian con-
nection ∇M and the pullback connection ∇N [36, 37]. Then the second fundamental
form of π is given by
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∇π ∗ð Þ E, Fð Þ ¼ ∇
N
E π ∗ F � π ∗ ∇

M
E F

� �

, forallE,F∈Γ TMð Þ: (10)

We also know that π is said to be totally geodesic map [36] if ∇π ∗ð Þ E, Fð Þ ¼ 0,
for all E, F∈Γ TMð Þ.

4. Clairaut submersion from Riemannian manifold

Let S be a revolution surface in 
3 with rotation axis L. For any p∈ S, we denote

by r pð Þ the distance from p to L. Given a geodesic α : J ⊂ ! S on S, let θ tð Þ be the
angle between α tð Þ and the meridian curve through α tð Þ, t∈ I. A well-known
Clairaut’s theorem [25] named after Alexis Claude de Clairaut, says that for any
geodesic on S, the product r sin θ is constant along α, i.e., it is independent of t. For
proof, see [38, p.183]. In the theory of Riemannian submersions, Bishop [26] intro-
duced the notion of Clairaut submersion in the following way:

Definition 1.2 [26] A Riemannian submersion π : M, gð Þ ! N, gn
� �

is called a
Clairaut submersion if there exists a positive function r onM, which is known as the
girth of the submersion, such that, for any geodesic α on M, the function r ∘ αð Þ sin θ
is constant, where, for any t, θ tð Þ is the angle between _α tð Þ and the horizontal space
at α tð Þ.

For further use, we are stating one important result of Bishop.
Theorem 1.1 [26] A curve h inM is a geodesic if and only if _X þ 2AXU þ TUU ¼ 0

and ∇EU þ TUX ¼ 0, where _h tð Þ ¼ E ¼ X þU, X is horizontal and U is vertical.
Bishop also gave the following necessary and sufficient condition for a

Riemannian submersion to be a Clairaut submersion, which is
Theorem 1.2 [26] Let π : M, gð Þ ! N, gn

� �

be a Riemannian submersion with
connected fibers. Then, π is a Clairaut submersion with r ¼ e f if and only if each
fiber is totally umbilical and has the mean curvature vector field H ¼ �gradf , where
gradf is the gradient of the function f with respect to g.

Proof: Let π : M ! N be a Riemannian submersion. For a geodesic h in M, we

use _h sð Þ ¼ E ¼ X þ U, where X is horizontal and U is vertical. and ℓ ¼ _h sð Þ
�

�

�

�

�

�

2
. Let

θ sð Þ be the angle between _h sð Þ and the horizontal space at h sð Þ. Then

g X sð Þ,X sð Þð Þ ¼ ℓ cos 2θ sð Þ, (11)

g U sð Þ,U sð Þð Þ ¼ ℓ sin 2θ sð Þ: (12)

Differentiating (12), we get

g ∇ _h sð ÞU sð Þ,U sð Þ
� �

¼ ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

: (13)

Using Theorem 1.1, (13) becomes

�g TU sð ÞX sð Þ,U sð Þ
� �

¼ ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

: (14)

Since TU is skew-symmetric, so form above equation, we have

g TU sð ÞU sð Þ,X sð Þ
� �

¼ ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

: (15)
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Now, π is a Clairaut submersion with r ¼ e f if and only if d
ds e f ∘ hsinθ
� �

¼ 0:
Using (12, 15) in d

ds e f ∘ hsinθ
� �

¼ 0, we have

g U sð Þ,U sð Þð Þ d
ds

f ∘ hð Þ sð Þ þ g TU sð ÞU sð Þ,X sð Þ
� �

¼ 0, (16)

g U sð Þ,U sð Þð Þg gradf ,E sð Þð Þ þ g TU sð ÞU sð Þ,X sð Þ
� �

¼ 0: (17)

Consider any geodesic h on M with initial vertical tangent vector, so gradf turns
out to be horizontal. Therefore, the function f is constant on any fiber, the fibers
being connected. Therefore (17) reduces to

g U sð Þ,U sð Þð Þg gradf ,X sð Þð Þ þ g TU sð ÞU sð Þ,X sð Þ
� �

¼ 0, (18)

g U sð Þ,U sð Þð Þgradf þ TU sð ÞU sð Þ ¼ 0: (19)

Setting U ¼ U1 þU2, where U1,U2 are vertical vector fields and using the fact
that T is symmetric for vertical vector fields, we obtain

g U1,U2ð Þgradf þ TU1U2 ¼ 0 (20)

holds for all vertical vector fields U1,U2:.
Since the restriction of T to the vertical distribution Tjkerπ ∗�kerπ ∗

is exactly the
second fundamental form of the fibers of π: It means that any fiber is totally
umbilical with mean curvature vector field H ¼ �gradf :

Conversely, suppose the fibers are totally umbilic with normal curvature vector
field H ¼ �gradf so that we have

g U,Uð ÞH þ TUU ¼ 0: (21)

Since gradf is orthogonal to fibers, so

g U,Uð Þg gradf ,Eð Þ ¼ �g U,Uð Þg H,Xð Þ ¼ �g TUU,Xð Þ: (22)

Since (18) holds. so r ∘ hð Þsinθ is constant along any geodesic h.
Example 1.1 [24] Consider the warped product manifoldM1� fM2 of Riemannian

manifolds M1, g1
� �

and M2, g2
� �

, where f : M1 ! 0,∞ð Þ. The fibers of the first
projection p1 : M1� fM2 ! M1 are totally umbilical with mean curvature vector field

H ¼ �grad logf 1=2
� �

. Thus, ifM2 is connected, p1 is a Clairaut submersionwith r ¼ f 1=2.

5. Anti-invariant Riemannian submersion

Definition 1.3 [39] Let M,φ, gð Þ be an almost Hermitian manifold and N be a
Riemannian manifold with Riemannian metric gn. Suppose that there exists a
Riemannian submersion π : M ! N, such that the vertical distribution kerπ ∗ is
anti-invariant with respect to φ, i.e., φkerπ ∗ ⊆ kerπ⊥

∗
. Then, the Riemannian sub-

mersion π is called an anti-invariant Riemannian submersion. We will briefly call
such submersions as anti-invariant submersions.

Let π be an anti-invariant Riemannian submersion from nearly Kähler manifold
M,φ, gm
� �

onto Riemannian manifold N, gn
� �

. For any arbitrary tangent vector
fields U and V on M, we set
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∇Uφð ÞV ¼ PUV þQUV (23)

where PUV,QUV denote the horizontal and vertical part of ∇Uφð ÞV,
respectively. Clearly, if M is a Kähler manifold then P ¼ Q ¼ 0.

If M is a nearly Kähler manifold then P and Q satisfy

PUV ¼ �PVU, QUV ¼ �QVU: (24)

Consider

kerπ ∗ð Þ⊥ ¼ φkerπ ∗ ⊕ μ,

where μ is the complementary distribution to φkerπ ∗ in kerπ ∗ð Þ⊥ and φμ⊂ μ.
For X ∈Γ kerπ ∗ð Þ⊥, we have

φX ¼ αX þ βX, (25)

where αX ∈Γ kerπ ∗ð Þ and βX ∈Γ μð Þ. If μ ¼ 0, then an anti-invariant submersion
is known as Lagrangian submersion.

5.1 Anti-invariant Clairaut submersions from nearly Kähler manifolds

In this section, we give new Clairaut conditions for anti-invariant submersions
from nearly Kähler manifolds after giving some auxiliary results.

Theorem 1.3 [34] Let π be an anti-invariant submersion from a nearly Kähler
manifold M,φ, gð Þ onto a Riemannian manifold N, gn

� �

. If h : J ⊂ ! M is a regular
curve and U sð Þ and X sð Þ are the vertical and horizontal parts of the tangent vector
field _h sð Þ ¼ W of h sð Þ, respectively, then h is a geodesic if and only if along h

AXφU þ AXβX þ TUβX þ V∇XαX þ TUφU þ ∇̂UαX ¼ 0, (26)

H ∇ _hφU þ ∇ _hβX
� �

þ AXαX þ TUαX ¼ 0: (27)

Proof: Let π be an anti-invariant submersion from a nearly Kähler manifold
M,φ, gð Þ onto a Riemannian manifold N, gn

� �

. Since φ2 _h ¼ � _h. Taking the covariant
derivative of this and using (2), we have

∇ _hφ
� �

φ _hþ φ ∇ _hφ
_h

� �

¼ �∇ _h
_h: (28)

Since U sð Þ and X sð Þ are the vertical and horizontal parts of the tangent vector
field _h sð Þ ¼ W of h sð Þ, that is, _h ¼ U þ X. So (28) becomes

�∇ _h
_h ¼ φ ∇UþXφ U þ Xð Þð Þ þ P _hφ

_hþ Q _hφ
_h

¼ φ ∇UφU þ ∇XφU þ ∇UφX þ ∇XφXð Þ þ P _hφ
_hþ Q _hφ

_h

¼ φ ∇UφU þ ∇XφU þ ∇U αX þ βXð Þ þ ∇X αX þ βXð Þð Þ

þP _hφ
_hþQ _hφ

_h:

(29)

Using (5)–(8) in (29), we get
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�∇ _h
_h ¼ φ H ∇ _hφU þ ∇ _hβX

� �

þ AXαX þ AXβX þ AXφU
�

þTUβX þ TUαX þ V∇XαX þ TUφU þ ∇̂UαX
�

þ P _hφ
_hþQ _hφ

_h:
(30)

Let Y,Z ∈TM. Since φ2Z ¼ �Z, on differentiation, we have

φ ∇YφZð Þ þ ∇Yφð ÞφZ ¼ �∇YZ,

φ2
∇YZð Þ þ φ ∇Yφð ÞZ þ ∇Yφð ÞφZ ¼ �∇YZ,

using (23) in above, we obtain

φ PYZ þQYZð Þ ¼ �PYφZ � QYφZ: (31)

By (31), we have

φ P _hφ
_hþQ _hφ

_h
� �

¼ P _h
_hþQ _h

_h,

since P and Q are skew-symmetric, so

φ P _hφ
_hþQ _hφ

_h
� �

¼ 0: (32)

Using (32) and equating the vertical and horizontal part of (30), we obtain

Vφ∇ _h
_h ¼ AXφU þ AXβX þ TUβX þ V∇XαX þ TUφU þ ∇̂UαX,

Hφ∇ _h
_h ¼ H ∇ _hφU þ ∇ _hβX

� �

þ AXαX þ TUαX:

By using above equations, we can say that h is geodesic if and only if (26, 27) hold.
Theorem 1.4 [34] Let π be an anti-invariant submersion from a nearly Kähler

manifold M,φ, gð Þ onto a Riemannian manifold N, gn
� �

. Also, let h : J ⊂ ! M be a
regular curve and U sð Þ and X sð Þ are the vertical and horizontal parts of the tangent
vector field _h sð Þ ¼ W of h sð Þ. Then π is a Clairaut submersion with r ¼ e f if and only
if along h

g gradf ,Xð Þg U,Uð Þ ¼ g H∇ _hβX þ AXαX þ TUαX þ P _h sð ÞU,φU
� �

:

Proof: Let h : J ⊂ ! M be a geodesic on M and ℓ ¼ _h sð Þ
�

�

�

�

�

�

2
. Let θ sð Þ be the

angle between _h sð Þ and the horizontal space at h sð Þ. Then

g X sð Þ,X sð Þð Þ ¼ ℓ cos 2θ sð Þ, (33)

g U sð Þ,U sð Þð Þ ¼ ℓ sin 2θ sð Þ: (34)

Differentiating (34), we get

2g ∇ _h sð ÞU sð Þ,U sð Þ
� �

¼ 2ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

: (35)

Using (1) in (35), we have

g H∇ _h sð ÞφU sð Þ,φU sð Þ
� �

� g ∇ _h sð Þφ
� �

U sð Þ,φU sð Þ
� �

¼ ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

:
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Now by use of (23), we have

g H∇ _h sð ÞφU sð Þ,φU sð Þ
� �

� g P _h sð ÞU þ Q _h sð ÞU,φU sð Þ
� �

¼ ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

:

Along the curve h, using Theorem 1.3, we obtain

�g H∇ _hβX þ AXαX þ TUαX þ P _h sð ÞU,φU sð Þ
� �

¼ ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

:

Now, π is a Clairaut submersion with r ¼ e f if and only if d
ds e f sin θ
� �

¼ 0.
Therefore

e f
df

ds
sin θ þ cos θ

dθ

ds

� �

¼ 0,

e f
df

ds
ℓ sin 2θ þ ℓ sin θ cos θ

dθ

ds

� �

¼ 0:

So, we obtain

df

ds
h sð Þð Þg U sð Þ,U sð Þð Þ ¼ g H∇ _hβX þ AXαX þ TUαX þ P _h sð ÞU,φU sð Þ

� �

: (36)

Since df
ds h sð Þð Þ ¼ g gradf , _h sð Þ

� �

¼ g gradf ,Xð Þ. Therefore by using (36), we get

the result.
Theorem 1.5 [34] Let π be an Clairaut anti-invariant submersion from a nearly

Kähler manifold M,φ, gð Þ onto a Riemannian manifold N, gn
� �

with r ¼ e f . Then

AφWφX þQWφX ¼ X fð ÞW

for X ∈ kerπ ∗ð Þ⊥, W ∈ kerπ ∗ and φW is basic.
Proof: Let π be an anti-invariant submersion from a nearly Kähler manifold

M,φ, gð Þ onto a Riemannian manifold N, gn
� �

with r ¼ e f . We know that any fiber
of Riemannian submersion π is totally umbilical if and only if

TVW ¼ g V,Wð ÞH, (37)

for all V,W ∈Γ kerπ ∗ð Þ, where H denotes the mean curvature vector field of any
fiber in M. By using Theorem 1.2 and (37), we have

TVW ¼ �g V,Wð Þgradf : (38)

Let X ∈ μ and V,W ∈Γ kerπ ∗ð Þ, then by using (1) and (2), we have

g ∇VφW,φXð Þ ¼ g φ∇VW þ ∇Vφð ÞW,φXð Þ ¼ g ∇VW,Xð Þ þ g PVW þQVW,φXð Þ:
(39)

By using (1), we have

g φY,Zð Þ ¼ �g Y,φZð Þ,

where Y,Z ∈TM. Taking covariant derivative of above, we get
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g ∇Xφð ÞY,Zð Þ ¼ �g Y, ∇Xφð ÞZð Þ,

using (23), we get

g PXY þQXY,Zð Þ ¼ �g Y,PXZ þ QXZð Þ

¼ g Y,PZX þQZXð Þ:
(40)

Using (40), we have

g PWφX þ QWφX,Vð Þ ¼ g φX,PVW þ QVWð Þ: (41)

Using (5), (38), (41) in (39), we have

g ∇VφW,φXð Þ ¼ �g V,Wð Þ gradf ,Xð Þ þ g V,QWφXð Þ:

Since φW is basic, so H∇VφW ¼ AφWV, therefore we have

g AφWV,φX
� �

¼ �g V,Wð Þ gradf ,Xð Þ þ g V,QWφXð Þ,

g V,AφWφX
� �

þ g V,QWφXð Þ ¼ g V,Wð Þ gradf ,Xð Þ (42)

because A is skew-symmetric. By using (42), we get the result.
Theorem 1.6 [34] Let π be a Clairaut anti-invariant submersion from a nearly

Kähler manifold M,φ, gð Þ onto a Riemannian manifold N, gn
� �

with r ¼ e f and
gradf ∈φkerπ ∗ . Then either f is constant on φkerπ ∗ or the fibers of π are
1-dimensional.

Proof: Using (5) and (38), we have

g ∇VW,φUð Þ ¼ �g V,Wð Þg gradf ,φUð Þ,

where U,V,W ∈Γ kerπ ∗ð Þ. Since g W,φUð Þ ¼ 0. therefore we have

g W,∇VφUð Þ ¼ g V,Wð Þg gradf ,φUð Þ: (43)

By use of (1) and (23) in (43), we get

g W,QVUð Þ � g φW,∇VUð Þ ¼ g V,Wð Þg gradf ,φUð Þ:

By using (5), we obtain

g W,QVUð Þ � g φW,TVUð Þ ¼ g V,Wð Þg gradf ,φUð Þ:

Now, using (38), we get

g W,QVUð Þ þ g V,Uð Þg gradf ,φWð Þ ¼ g V,Wð Þg gradf ,φUð Þ (44)

Take V ¼ U in (44), we have

g V,Vð Þg gradf ,φWð Þ ¼ g V,Wð Þg gradf ,φVð Þ: (45)

Interchange V with W in (45), we have

g W,Wð Þg gradf ,φVð Þ ¼ g V,Wð Þg gradf ,φWð Þ: (46)
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By (45) and (46), we have

g2 V,Wð Þg gradf ,φVð Þ ¼ g V,Vð Þg W,Wð Þg gradf ,φVð Þ:

Therefore either f is constant on φkerπ ∗ or V ¼ aW, where a is constant (by
using Schwarz’s Inequality for equality case).

Corollary 1.1 [34] Let π be a Clairaut anti-invariant submersion from a nearly
Kähler manifold M,φ, gð Þ onto a Riemannian manifold N, gn

� �

with r ¼ e f and
gradf ∈φkerπ ∗ . If dim kerπ ∗ð Þ> 1, then the fibers of π are totally geodesic if and
only if AφWφX þQWφX ¼ 0 for W ∈ kerπ ∗ such that φW is basic and X ∈ μ.

Proof: By Theorem 1.5 and Theorem 1.6, we get the result.
Corollary 1.2 [34] Let π be an Clairaut Lagrangian submersion from a nearly

Kähler manifold M,φ, gð Þ onto a Riemannian manifold N, gn
� �

with r ¼ e f . Then
either the fibers of π are 1-dimensional or they are totally geodesic.

Proof: Let π be an Clairaut Lagrangian submersion from a Kähler manifold
M,φ, gð Þ onto a Riemannian manifold N, gn

� �

with r ¼ e f . Then μ ¼ 0f g, so
AφWφX þQWφX ¼ 0 always.

Now, we discuss some examples for Clairaut anti-invariant submersions from a
nearly Kähler manifold.

Example 1.2 [34] Let 
4,φ, g

� �

be a nearly Kähler manifold endowed with
Euclidean metric g on 

4 given by

g ¼
X

4

i¼1

dx2i

and canonical complex structure

φ x j

� �

¼
�x jþ1 j ¼ 1, 3

x j�1 j ¼ 2, 4

(

:

The φ-basis is ei ¼ ∂

∂xi
ji ¼ 1, 2, 3, 4

n o

. Let 
3, g1

� �

be a Riemannian manifold

endowed with metric g1 ¼
P3

i¼1dy
2
i .

i. Consider a map π : 
4,φ, g

� �

! 
3, g1

� �

defined by

π x1, x2, x3, x4ð Þ ¼ x1 þ x2
ffiffiffi

2
p , x3, x4

� �

:

Then by direct calculations, we have

kerπ ∗ ¼ span X1 ¼
∂

∂x1
� ∂

∂x2

� �
 �

,

kerπ ∗ð Þ⊥ ¼ span X2 ¼
∂

∂x1
þ ∂

∂x2

� �

,X3 ¼
∂

∂x3
,X4 ¼ ∂

∂x4


 �

and φX1 ¼ �X2, therefore φ kerπ ∗ð Þ⊂ kerπ ∗ð Þ⊥. Thus, we can say that π is an
anti-invariant Riemannian submersion. Since the fibers of π are 1-dimensional,
therefore fibers are totally umbilical.

Consider the Koszul formula for Levi-Civita connection ∇ for 4
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2g ∇XY,Zð Þ ¼ Xg Y,Zð Þ þ Yg Z,Xð Þ � Zg X,Yð Þ � g Y,Z½ �,Xð Þ � g X,Z½ �,Yð Þ þ g X,Y½ �,Zð Þ

for all X,Y,Z ∈
4. By simple calculations, we obtain

∇eie j ¼ 0 forall i, j ¼ 1, 2, 3, 4:

Hence TXY ¼ TYX ¼ TXX ¼ 0 for all X,Y ∈Γ kerπ ∗ð Þ. Therefore fibers of π are
totally geodesic. Thus π is Clairaut trivially.

ii. Consider a map π : 
4,φ, g

� �

! 
3, g1

� �

defined by

π x1, x2, x3, x4ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22

q

, x3, x4

� �

:

Then by direct calculations, we have

kerπ ∗ ¼ span X1 ¼
x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

∂

∂x1
� x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

∂

∂x2

 !( )

,

kerπ ∗ð Þ⊥ ¼ span X2 ¼
x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

∂

∂x1
þ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

∂

∂x2

 !

,X3 ¼
∂

∂x3
,X4 ¼ ∂

∂x4

( )

and φX1 ¼ �X2, therefore φ kerπ ∗ð Þ⊂ kerπ ∗ð Þ⊥. Thus, we can say that π is an
anti-invariant Riemannian submersion. Since the fibers of π are 1-dimensional,
therefore fibers are totally umbilical. By using Koszul formula, we obtain

∇eie j ¼ 0 forall i, j ¼ 1, 2, 3, 4:

Hence

TX1X1 ¼ � x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

∂

∂x1
þ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

∂

∂x2

 !

:

Now, for the function f ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

� �

on 
4,φ, g

� �

, the gradient of f with

respect to g is given by

gradf ¼
X

4

i, j¼1

gij
∂f

∂xi

∂

∂x j
¼ x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

∂

∂x1
þ x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

∂

∂x2
:

Therefore for X1 ∈Γ kerπ ∗ð Þ, TX1X1 ¼ �gradf . Since X1k k ¼ 1, so
TX1X1 ¼ � X1k k2gradf . By using Theorem 1.2, we can say that π is an proper Clairaut

anti-invariant submersion with r ¼ e f for f ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
p

� �

.

Remark: From all results of this section, we can easily find conditions for
anti-invariant Clairaut Submersions from Kähler manifolds.

6. Semi-invariant Riemannian submersion

Definition 1.4 Let M,φ, gð Þ be an almost Hermitian manifold and N be a
Riemannian manifold with Riemannian metric gn. A Riemannian submersion
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π : M ! N is called a semi-invariant Riemannian submersion [11] if there is a
distribution D1 ⊆ kerπ ∗ such that

kerπ ∗ ¼ D1 ⊕D2 and φ D1ð Þ ¼ D1, φ D2ð Þ⊆ kerπ ∗ð Þ⊥,

where D2 is orthogonal complementary to D1 in kerπ ∗ . For V ∈Γ kerπ ∗ð Þ, we
have

φV ¼ ϕV þ ωV, (47)

where ϕV ∈Γ D1ð Þ and ωV ∈Γ φD2ð Þ.
Definition 1.5 A semi-invariant Riemannian submersion π is said to be a

Lagrangian Riemannian submersion [4] if φ kerπ ∗ð Þ ¼ kerπ ∗ð Þ⊥. Hence, if π is a
Lagrangian Riemannian submersion then for any V ∈Γ kerπ ∗ð Þ, φV ¼ ωV, ϕV ¼ 0
and for X ∈Γ kerπ ∗ð Þ⊥, φX ¼ αX, βX ¼ 0.

6.1 Semi-invariant Clairaut submersions from Kähler manifolds

In this section, we give new Clairaut conditions for semi-invariant submersions
from Kähler manifolds after giving some auxiliary results.

Theorem 1.7 [40] Let π be a semi-invariant submersion from a Kähler manifold
M,φ, gð Þ onto a Riemannian manifold N, gn

� �

. If h : J ⊂ ! M is a regular curve
and U sð Þ and X sð Þ are the vertical and horizontal parts of the tangent vector field
_h sð Þ ¼ W of h sð Þ, respectively, then h is a geodesic if and only if along h

V∇XϕU þ V∇XαX þ AXωU þ AXβX þ ∇̂UϕU þ TUβX þ TUωU þ ∇̂UαX ¼ 0,

(48)

AXϕU þ AXαX þH ∇ _hωU þ ∇ _hβX
� �

þ TUϕU þ TUαX ¼ 0: (49)

Proof: Let π be a semi-invariant submersion from a Kähler manifold M,φ, gð Þ
onto a Riemannian manifold N, gn

� �

. Since φ2 _h ¼ � _h. Taking the covariant deriva-
tive of this and using (2), we have

φ ∇ _hφ
_h

� �

¼ �∇ _h
_h: (50)

Since U sð Þ and X sð Þ are the vertical and horizontal parts of the tangent vector
field _h sð Þ ¼ W of h sð Þ, that is, _h ¼ U þ X. So (50) becomes

�∇ _h
_h ¼ φ ∇UþXφ U þ Xð Þð Þ

¼ φ ∇UφU þ ∇XφU þ ∇UφX þ ∇XφXð Þ

¼ φ ∇U ϕU þ ωUð Þ þ ∇X ϕU þ ωUð Þ þ ∇U αX þ βXð Þ þ ∇X αX þ βXð Þð Þ:
(51)

Using (5)–(8) in (51), we get

�∇ _h
_h ¼ φ H ∇ _hφU þ ∇ _hβX

� �

þ AXαX þ AXβX þ AXφU
�

þTUβX þ TUαX þ V∇XαX þ TUφU þ ∇̂UαX
�

:
(52)
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Equating the vertical and horizontal part of (52), we obtain

Vφ∇ _h
_h ¼ V∇XϕU þ V∇XαX þ AXωU þ AXβX þ ∇̂UϕU þ TUβX þ TUωU þ ∇̂UαX,

Hφ∇ _h
_h ¼ AXϕU þ AXαX þH ∇ _hωU þ ∇ _hβX

� �

þ TUϕU þ TUαX:

By using above equations, we can say that h is geodesic if and only if (48) and
(49) hold.

Theorem 1.8 [40] Let π be a semi-invariant submersion from a Kähler manifold
M,φ, gð Þ onto a Riemannian manifold N, gn

� �

. Also, let h : J ⊂ ! M be a regular
curve. U sð Þ and X sð Þ are the vertical and horizontal parts of the tangent vector field
_h sð Þ ¼ W of h sð Þ. Then π is a Clairaut submersion with r ¼ e f if and only if along h

g gradf ,Xð Þg U,Uð Þ ¼ g H∇ _hβX þ AXαX þ TUαX,ωU
� �

þg V∇XαX þ AXβX þ TUβX þ ∇̂UαX,ϕU
� �

:

Proof: Let h : J ⊂ ! M be a geodesic on M and ℓ ¼ _h sð Þ
�

�

�

�

�

�

2
. Let θ sð Þ be the

angle between _h sð Þ and the horizontal space at h sð Þ. Then

g X sð Þ,X sð Þð Þ ¼ ℓ cos 2θ sð Þ, (53)

g U sð Þ,U sð Þð Þ ¼ ℓ sin 2θ sð Þ: (54)

Differentiating (54), we get

2g ∇ _h sð ÞU sð Þ,U sð Þ
� �

¼ 2ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

: (55)

Using (1) in (55), we have

g ∇ _h sð ÞφU sð Þ,φU sð Þ
� �

Þ ¼ ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

:

Now by use of (47), we have

g ∇ _h sð ÞϕU sð Þ,φU sð Þ
� �

þ g ∇ _h sð ÞωU sð Þ,φU sð Þ
� �

¼ ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

Along the curve h, using Theorem 1.7 and (5)–(8), we obtain

ℓ sin θ sð Þ cos θ sð Þ dθ sð Þ
ds

¼ �g H∇ _hβX þ AXαX þ TUαX,ωU
� �

sð Þ

�g V∇XαX þ AXβX þ TUβX þ ∇̂UαX,ϕU
� �

sð Þ

Now, π is a Clairaut submersion with r ¼ e f if and only if d
ds e f sin θ
� �

¼ 0.
Therefore

e f
df

ds
sin θ þ cos θ

dθ

ds

� �

¼ 0,

e f
df

ds
ℓ sin 2θ þ ℓ sin θ cos θ

dθ

ds

� �

¼ 0:
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So, we obtain

df

ds
h sð Þð Þg U sð Þ,U sð Þð Þ ¼ g H∇ _hβX þ AXαX þ TUαX,ωU

� �

sð Þ

þg V∇XαX þ AXβX þ TUβX þ ∇̂UαX,ϕU
� �

sð Þ,
(56)

Since df
ds h sð Þð Þ ¼ _h g½ � sð Þ ¼ g gradf , _h sð Þ

� �

¼ g gradf ,Xð Þ. Therefore by using (56),

we get the result.
Theorem 1.9 [40] Let π be a Clairaut semi-invariant submersion from a Kähler

manifold M,φ, gð Þ onto a Riemannian manifold N, gn
� �

with r ¼ e f . Then

g AωWV, βXð Þ þ g H∇VϕW, βXð Þ þ g V∇VωW, αXð Þ þ g ∇̂VϕW, αX
� �

¼ �g V,Wð Þ Xfð Þ

for X ∈Γμ, V,W ∈Γ D2ð Þ and ωW is basic.
Proof: Let π be a Clairaut semi-invariant submersion from a Kähler manifold

M,φ, gð Þ onto a Riemannian manifold N, gn
� �

with r ¼ e f . We know that any fiber
of Riemannian submersion π is totally umbilical if and only if

TVW ¼ g V,Wð ÞH, (57)

for all V,W ∈Γ kerπ ∗ð Þ, where H denotes the mean curvature vector field of any
fiber in M. By using Theorem 1.2 and (57), we have

TVW ¼ �g V,Wð Þgradf : (58)

Let X ∈ μ and V,W ∈Γ kerπ ∗ð Þ, then by using (1) and (2), we have

g ∇VφW,φXð Þ ¼ g φ∇VW þ ∇Vφð ÞW,φXð Þ ¼ g ∇VW,Xð Þ: (59)

Using (5), (58) in (59), we have

g ∇VφW,φXð Þ ¼ �g V,Wð Þ gradf ,Xð Þ:

Since ωW is basic, so H∇VωW ¼ AωWV, therefore we have

g AωWV, βXð Þ þ g H∇VϕW, βXð Þ þ g V∇VωW, αXð Þ þ g ∇̂VϕW, αX
� �

¼ �g V,Wð Þ gradf ,Xð Þ: (60)

Theorem 1.10 [40] Let π be a Clairaut semi-invariant submersion from a Kähler
manifold M,φ, gð Þ onto a Riemannian manifold N, gn

� �

with r ¼ e f and
V,W ∈Γ D1ð Þ Then gradf ∈Γ φkerπ ∗ð Þ.

Proof: Let V,W ∈Γ D1ð Þ and X ∈Γ μð Þ. Using (5), (47) and (58) in

∇VφU ¼ φ∇VU þ ∇Vφð ÞU,

we have

TVϕU þ V∇VϕU ¼ αTVU þ βTVU þ ϕV∇VU þ ωV∇VU,

which gives

�g V,ϕUð Þg gradf ,Xð Þ ¼ g V,Uð Þg gradf ,φXð Þ: (61)
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By interchanging U and V in (61) and adding the resulting equation with (61),
we get

g V,Uð Þg gradf ,φXð Þ ¼ 0,

which gives g gradf ,φXð Þ ¼ 0. Therefore gradf ∈Γ φkerπ ∗ð Þ.
Theorem 1.11 [40] Let π be a Clairaut semi-invariant submersion from a Kähler

manifold M,φ, gð Þ onto a Riemannian manifold N, gn
� �

with r ¼ e f and
gradf ∈Γ φkerπ ∗ð Þ. Then either f is constant on φkerπ ∗ or the fibers of π are
1-dimensional.

Proof: Let U,V ∈Γ D2ð Þ. Using (5) and (58), we have

g ∇VU,φUð Þ ¼ �g V,Uð Þg gradf ,φUð Þ,

which gives

g φ∇VU,Uð Þ ¼ g V,Uð Þg gradf ,φUð Þ,

since kerπ ∗ is integrable, so we have

g φ∇UV,Uð Þ ¼ g V,Uð Þg gradf ,φUð Þ,

which equals to

g ∇UφV � ∇Uφð ÞV,Uð Þ ¼ g V,Uð Þg gradf ,φUð Þ:

Since g φV,Uð Þ ¼ 0. therefore we have

g φV,∇UUð Þ ¼ �g V,Uð Þg gradf ,φUð Þ: (62)

By using (5) in (62), we obtain

g φV,TUUð Þ ¼ �g V,Uð Þg gradf ,φUð Þ:

Now, using (58), we get

g U,Uð Þg gradf ,φVð Þ ¼ g V,Uð Þg gradf ,φUð Þ: (63)

Interchanging V and U in (63), we have.

g V,Vð Þg gradf ,φUð Þ ¼ g V,Uð Þg gradf ,φVð Þ: (64)

By (63) and (64), we have

g2 V,Uð Þg gradf ,φUð Þ ¼ g V,Vð Þg U,Uð Þg gradf ,φUð Þ:

Therefore either f is constant on φkerπ ∗ or V ¼ aU, where a is constant (by
using Schwarz’s Inequality for equality case).

Since kerπ ∗ is CR-submanifold of Kähler manifold M,φ, gð Þ, therefore by using
[41], Theorem 6.1, p. 96], we can state that.

Theorem 1.12 [40] Let π be a Clairaut semi-invariant submersion from a Kähler
manifold M,φ, gð Þ onto a Riemannian manifold N, gn

� �

with r ¼ e f . If dim D2 > 1,
then fibers are totally geodesic.
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Corollary 1.3 [40] Let π be a Clairaut Lagrangian submersion from a Kähler
manifold M,φ, gð Þ onto a Riemannian manifold N, gn

� �

with r ¼ e f . Then either the
fibers of π are 1-dimensional or they are totally geodesic.

Lastly, we discuss some examples for Clairaut semi-invariant submersions [40]
from a Kähler manifold.

Example 1.3 Every Clairaut anti-invariant submersion from a Kähler manifold
onto a Riemannian manifold is a Clairaut semi-invariant submersion withD1 ¼ 0f g.

Example 1.4 Let 
6,φ, g

� �

be a Kähler manifold endowed with Euclidean metric
g on 

6 given by

g ¼
X

6

i¼1

dx2i

and canonical complex structure

φ x j

� �

¼
�x jþ1 j ¼ 1, 3, 5

x j�1 j ¼ 2, 4, 6




:

The φ-basis is ei ¼ ∂

∂xi
ji ¼ 1, … , 6

n o

. Let 
3, g1

� �

be a Riemannian manifold

endowed with metric g1 ¼
P

3

i¼1
dy2i .

Consider a map π : 
6,φ, g

� �

! 
3, g1

� �

defined by

π x1, x2, x3, x4, x5, x6ð Þ ¼ x1 þ x2
ffiffiffi

2
p , x3, x4

� �

:

Then by direct calculations, we have

kerπ ∗ ¼ span X1 ¼
∂

∂x1
� ∂

∂x2

� �

,X2 ¼
∂

∂x5
,X3 ¼

∂

∂x6


 �

,

kerπ ∗ð Þ⊥ ¼ span V1 ¼
∂

∂x1
þ ∂

∂x2

� �

,V2 ¼
∂

∂x3
,V3 ¼

∂

∂x4


 �

and φX1 ¼ �V1, φX2 ¼ �X3, φX3 ¼ �X2 therefore D1 ¼ span X2,X3f g and
D2 ¼ span X1f g. Thus, we can say that π is a semi-invariant Riemannian submersion.

Consider the Koszul formula for Levi-Civita connection ∇ for 6

2g ∇XY,Zð Þ ¼ Xg Y,Zð Þ þ Yg Z,Xð Þ � Zg X,Yð Þ � g Y,Z½ �,Xð Þ � g X,Z½ �,Yð Þ þ g X,Y½ �,Zð Þ

for all X,Y,Z ∈
6: By simple calculations, we obtain

∇eie j ¼ 0 forall i, j ¼ 1, … , 6:

Hence TXY ¼ TYX ¼ TXX ¼ 0 for all X,Y ∈Γ kerπ ∗ð Þ. Therefore fibers of π are
totally geodesic. Thus π is Clairaut trivially.

Classification
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