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Chapter

Molecular Informatics of
Trypanothione Reductase of
Leishmania major Reveals Novel
Chromen-2-One Analogues as
Potential Leishmanicides
Samuel K. Kwofie, Gabriel B. Kwarko, Emmanuel Broni,
Michael B. Adinortey and Michael D. Wilson

Abstract

Trypanothione reductase (TR), a flavoprotein oxidoreductase is an important
therapeutic target for leishmaniasis. Ligand-based pharmacophore modelling and
molecular docking were used to predict selective inhibitors against TR. Homology
modelling was employed to generate a three-dimensional structure of Leishmania
major trypanothione reductase (LmTR). A pharmacophore model used to screen a
natural compound library generated 42 hits, which were docked against the LmTR
protein. Compounds with lower binding energies were evaluated via in silico phar-
macological profiling and bioactivity. Four compounds emerged as potential leads
comprising Karatavicinol (7-[(2E,6E,10S)-10,11-dihydroxy-3,7,11-
trimethyldodeca-2,6-dienoxy]chromen-2-one), Marmin (7-[(E,6R)-6,7-dihydroxy-
3,7-dimethyloct-2-enoxy]chromen-2-one), Colladonin (7-[[(4aS)-6-hydroxy-
5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl]
methoxy]chromen-2-one), and Pectachol (7-[(6-hydroxy-5,5,8a-trimethyl-2-
methylidene-3,4,4a,6,7,8-hexahydro-1H-naphthalen-1-yl)methoxy]-6,8-dimethox-
ychromen-2-one) with good binding energies of �9.4, �9.3, 8.8, and�8.5 kcal/mol,
respectively. These compounds bound effectively to the FAD domain of the protein
with some critical residues including Asp35, Thr51, Lys61, Tyr198, and Asp327.
Furthermore, molecular dynamics simulations and molecular mechanics Poisson-
Boltzmann surface area (MMPBSA) computations corroborated their strong
binding. The compounds were also predicted to possess anti-leishmanial activity.
The molecules serves as templates for the design of potential drug candidates and
can be evaluated in vitro with optimistic results in producing plausible attenuating
infectivity in macrophages.

Keywords: Leishmania, trypanothione reductase, oxidative stress, natural product,
pharmacophore modeling, virtual screening, molecular dynamics
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1. Introduction

Leishmaniasis is a disease caused by a single-cell eukaryotic parasite of the
Leishmania species. This protozoan parasite causes a substantial level of morbidity
and mortality. Leishmania has a digenetic life cycle [1]. In mammals, the parasite
colonizes macrophages, transforming into intracellular amastigotes. The parasite
has an adaptive way to life conditions. The amastigotes tolerate low pH and are
hydrolase resistant [2].

Trypanothione is a major product of the trypanothione biosynthesis pathway in
trypanosomes which is crucial in maintaining cellular redox potential and is essen-
tial for the parasite’s survival. This molecule is catalyzed by so many enzymes for
which Leishmania major trypanothione reductase (LmTR, E.C. 1.6.4.8) plays a crit-
ical role in the biosynthetic pathway. TR reduces trypanothione (T[S]2) to dithiol
(T[SH]2). They catalyze the transfer of electrons from NADPH to their specific
substrate via an FAD prosthetic group [3]. The reduced form is critical in regulating
oxidative stress by reacting with reactive oxygen species (ROS) that are produced
by the macrophage. T[SH]2 is not only needed for detoxification of peroxides but
also required for the synthesis of DNA precursors, homeostasis of ascorbate,
sequestration and export of thiol conjugate [4].

Trypanothione reductase is a member of the disulphide oxidoreductase family of
enzymes. It has an analogue in the human body, glutathione reductase (GR) which
also carries out oxidoreductive reactions. But LmTR does not process GSSG and host
GR does not reduce T[S]2 [5, 6]. The ascribed reasons for targeting LmTR include the
following: (i) trypanothione reductase is a key enzyme in regulating a reducing
environment aiding in disease pathogenesis, (ii) this parasite does not depend on the
host for reduced trypanothione, (iii) it has a less close known homologous protein in
humans; (iv) the availability of template homologs for modeling purpose; and (v)
moreover, in vitro trials have proven LmTR to be a good therapeutic target [7].

Several inhibitors have been screened against this enzyme causing a reduction of
infectivity and decreased capacity of the parasite to survive within intracellular
macrophages. Potent compounds, such as 7-chloro-4-nitro-5-quinazolin-4-
ylsulfanyl-2,1,3-benzothiadia-zole (CNQB) and 4-phenyl-5-(4-nitro-cinnamoyl)-
1,3,4-thiadiazolium-2-phenylamine-chloride (PNTPC) with IC50 values 0.58 and
1.63 μM, respectively have already been tested in an in vitro assay against
trypanothione reductase of trypanosomatids [8, 9].

Computer-aided drug designing is an in-silico approach for drug discovery that
combines computational and pharmaceutical research [10]. This application helps
in spanning the drug discovery pipeline and helps to speed up and rationalize the
drug design process while reducing costs [11]. Ehrlich in 1909 first defined the term
pharmacophore as ‘a molecular framework that carries (phoros) the essential fea-
tures responsible for a drug’s (pharmacon) biological activity [12]. These features
are essential functional groups of atoms in a three-dimensional position that interact
with a receptor. Ligand-based drug design can be performed in association with
molecular docking. These methods can be combined to identify a number of new hit
compounds with potent inhibitory activity and to understand the main interactions
at the binding sites. Appropriate use of these methods can improve the ability to
identify and optimize hits and confirm their potential to serve as scaffolds for
producing new therapeutic agents [13].

Drugs currently used for the treatment of human leishmaniasis are toxic, having
severe adverse reactions which limit their use. Aside this includes, increase in
resistance by the parasite, high cost of available drugs, lack of efficacy against VL
\HIV co-infections with standard chemotherapy, and the development of a single
drug or formulation for all forms of leishmaniasis [14–17]. Therefore, the
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development of novel, effective drugs with reduced side effects, is still a major
priority for health researchers, in spite of many compelling research reports
published on antileishmanial agents in the last 10 years [18]. In this study,
in silico method of identifying leads was used incorporating the knowledge of
pharmacophore and virtual screening to arrive at lead molecules. The overall goal
of the study was to predict with high degree potent selective inhibitors of LmTR
from the African Natural Product Database (AfroDb) and North African Natural
Product Database (NANPDB).

2. Materials and methods

2.1 Protein homology modeling

The protein sequence of trypanothione reductase of Leishmania major was
retrieved from the NCBI database with the accession number XP_001687512.1,
having 491 amino acids [19]. Using the Basic Local Alignment Search Tool
(BLAST), the query sequence was compared to known structures which generated
structures similar to LmTR. Modeller 9.20 [20] was used for modeling the structure
of LmTR.

2.2 Active site prediction and quality assessment

To predict the active site, the protein was submitted to CASTp 3.0 [21, 22]. The
predicted active site was corroborated via a blind docking process using AutoDock
Vina within PyRx version 0.9.7 [23, 24]. The active region was confirmed by the
‘Toggle selection of Spheres’ function which highlighted predicted residues from
CASTp 3.0. Binding pocket was also viewed with PyMOL v2.0.0 [25]. The quality of
the modeled protein was assessed by some quality measure tools. This included
PROSA which determines the quality of experimentally solved structures and theo-
retical models in protein engineering by comparing these to that of experimentally
solved protein structures in the PDB database [26]. Verify3D was used to validate the
three-dimensional structure of the model [27]. PROCHECK, a quality assessment tool
was also used to check the stereochemical properties of the model by generating a
Ramachandran plot [28]. ProQ was also used to carry out further validation. ProQ
predicted protein quality based on the LGscore and MaxSub scores [29].

2.3 Energy minimization of protein target

The modeled LmTR was energy minimized using GROMACS 5.1.1 [30, 31].
Simulations were performed with the force field, GROMOS96 43a1. The system was
solvated using an equilibrated SPCE216 water model. The charged protein had a net
charge of �9 which was neutralized with an equal amount of Na+ ions. Energy
minimization of the protein was then carried out.

2.4 Pharmacophore modeling and screening

2.4.1 Pharmacophore generation

Pharmacophore model, virtual screening, and molecular docking studies were
performed to find novel LmTR inhibitors. The ligand-based structural design
incorporates the absence of the macromolecular structure by generating
pharmacophore models from a set of ligands. This method takes advantage of the
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conformational flexibility of the ligands [32]. The active compounds, CNQB and
PNTPC were retrieved with IDs CID1323435 and CHEMBL242165 from PubChem
(https://pubchem.ncbi.nlm.nih.gov)and CHEMBL (https://www.ebi.ac.uk/chembl)
[33, 34], respectively and were used to generate the pharmacophore. These ligands
served as a training set for pharmacophore generation. All customized settings were
kept in default.

2.4.2 Library preparation and pharmacophore validation

LigandScout 4.3 was used for screening a total of 5813 compounds including 885
AfroDb entries found in ZINC database [35] and 4928 NANPDB compounds [36].
The two actives were converted to SMILES format and submitted to the Directory
of useful decoys and enhanced (DUD-E) database to generate decoys for the
screening [37]. A total of 100 decoys were generated and used as a decoy library.
The libraries were then converted into a .ldb file format. The reliability of the
pharmacophore model was validated by the area under the receiver operating
characteristic (ROC) curve (AUC) [38] using two descriptors, selectivity and
sensitivity.

2.4.3 Screening with pharmacophore

LigandScout 4.3 allows in-silico screening of compound libraries using
pharmacophore models as filter criteria. Database of active ligands was selected and
marked in green with decoys marked in red. The screening process was initiated to
generate hits corresponding to the pharmacophore model. These compounds were
saved in an “sdf” file format to be used in the docking process.

2.5 Molecular docking

2.5.1 Docking of LmTR

The generated hit compounds were uploaded into PyRx (Version 0.9.6) [23].
The energy of the ligands was minimized using Universal Force Field (UFF) option
in Open Babel incorporated in PyRx prior to docking. This was done to obtain 3D
ligand structures which constitute atomic elements that have proper bond lengths
between their atoms [39]. Ligands were converted to PDBQT format using
AutoDock Vina embedded in the PyRx. Predicted active site residues were selected
within a grid box of dimensions X: 42.39 Å, Y: 35.47 Å, and Z: 31.05.14 Å; and centre
X: 28.58 Å, Y: 57.09 Å, and Z: �2.24 Å within the AutoDock Vina environment of
PyRx for docking process.

2.5.2 Docking validation with AUC

Validation of the algorithm used for the docking process was carried out by
generating an AUC plot. Decoys of five known inhibitors in complex with
Leishmania trypanothione reductase of several species of Leishmania which
included 2,3,4,6-tetra-O-acetyl-1-thio-beta-beta-D-glucopyranose (Auranofin); 4-
[[1-(4-ethylphenyl)-2-methyl-5-(4-methylsulfonylphenyl)pyrrol-3-yl]methyl]
thiomorpholine (CHEMBL1277380); 6-sec-butoxy-2-[(3-chlorophenyl)sulfanyl]-4-
pyramidinamine (RDS); 2-(diethylamino)ethyl4-((3-(4-nitrophenyl)-3-oxopropyl)
amino)benzoate (ZINC8782981); {N}-(4-azanylbutyl)- � {N}-(2-azanyl-
2-oxidanylidene-ethyl)-7-(3-azanyl-3-oxidanylidene-propyl)-4-(dimethylamino)-
2-(2-naphthal en-2-ylethylamino)pyrrolo[2,3-d]pyrimidine-6-carboxamide (H6H)
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were retrieved from DUD-E to generate an AUC curve. The result was correlated
and plotted using their respective binding energies as the only variable via easyROC
(Ver. 1.3) [40].

2.5.3 Docking validation via superimposition and alignment

Superimposition of the crystallographic ligand and re-docking poses was used as
a means of validating docking. The five crystallographic ligands in complex with
Leishmania trypanothione reductase were removed from the co-crystallized com-
plex and re-docked. The pdb files of the re-docked complex were uploaded into
PyMOL together with the solved complex from the Protein Data Bank. LigAlign
[41] was then used to calculate the root mean square deviation between the
superimposed re-docked and co-crystalized ligands. Superimposition also allowed
the identification of critical overlapping residues via LigPlot+. The FAD molecule
from the template selected for modeling (PDB ID: 2JK6) was also extracted and
docked in LmTR. A comparative study of the original FAD-2JK6 complex and
FAD-LmTR complex was done using LigPlot+.

2.6 Identification of lead compounds

To identify lead compounds the binding energy, molecular bond interactions,
pharmacological, and physiochemical properties were considered. This step helped
to filter generalized hit compounds. These compounds in SMILES format were
submitted to SwissADME [42], which calculates the corresponding ADME
(absorption, distribution, metabolism, and excretion) properties of the compounds.
Hydrogen bond interactions of the ligand–protein complexes were studied using
LigPlot+ and PyMOL.

The hit compounds were physiochemically profiled to identify their drug-
likeness and solubility in water. Lipinski’s rule of 5 was used as a metric to narrow
down druggable compounds [43]. Pharmacokinetic properties of predicted
compounds were determined in silico. This included cytochrome inhibition,
P-glycoprotein (P-gp) substrates, gastrointestinal (GI) absorption, and the blood–
brain barrier (BBB) permeant.

2.7 Prediction of activity spectra for substances (PASS) for leads

PASS assesses the probability that a compound has a suspected biological activity
[44]. It has been well known that each substance has a wide spectrum of biological
activities as evident from some new uses of many old drugs. The SMILES format of
the leads were submitted to Way2Drug.com [45] to predict possible biological
activity.

2.8 Molecular dynamics simulation and MM-PBSA calculation of
protein–ligand complexes

By employing GROMACS 2018 [31], the chain A of LmTR and the LmTR–ligand
complexes were subjected to molecular dynamics simulations. Ligand topologies
were generated via PRODRG which were converted to .gro files. Solvation of each
of the protein–ligand complexes in a dodecahedron box was followed by neutrali-
zation of the output with sodium and chlorine ions. Each complex was minimized
using the steepest descent algorithm coupled with the GROMOS43A force field.
Equilibration protocol was carried out to restrain and relax protein–ligand positions.
The MD production run was carried out for 100 ns. The output file was used in
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downstream processes to generate root mean-square deviation (RMSD), root
mean-square fluctuation (RMSF) and radius of gyration (Rg) plots with Xmgrace
(https://plasma-gate.weizmann.ac.il/Grace/). Molecular mechanics Poisson–
Boltzmann surface area (MM-PBSA) was employed in calculating the free energies
of the complexes. MM-PBSA was carried out using g_mmpbsa, which calculates
binding energy components and the per-residue energy decomposition [46].
Graphs were generated using R-programming showing energy interactions.

3. Results and discussion

3.1 Homology modeling

L. major trypanothione reductase was modeled with an appreciable degree of
accuracy and validated via several bioinformatics tools (Figure 1A). The protein
sequence of L. major with the accession number XP_001687512.1, having 491 amino
acids when searched amongst protein homologs in NCBI resulted in a list of similar
structures with PDB codes 2JK6, 2X50, 6ER5, 1FEA from Leishmania infantum with
their respective percentage identity of 95.72, 95.71, 95.70, and 78.78%, respectively.
The similarity of structure and sequence between LmTR protein sequence and the
template 2JK6 was 95.72%. This favored its selection for the modeling process. The
best model selection was based on the least discrete optimization potential energy
(DOPE) score which informs about the energy of the protein.

3.2 Active site prediction

In predicting the active site of the protein, results obtained showed 73 binding
pockets. Several pockets were identified but the pocket with the largest volume and
surface area of 595.278 Å3 and 924.887 Å2, respectively was selected. Larger pockets
favor conformational rotation during virtual screening. A total of 80 amino acid
active site residues were predicted from CASTp 3.0 (Table A1). The predicted
binding site was visualized using PyMOL (Figure 1B).

Figure 1.
(a) 3D structure of modeled protein in cartoon representation. A monomer of LmTR with alpha helices
represented in red, the beta sheets in yellow and the loops in green. (b) Surface representation of the LmTR.
Active site (in red) is the FAD binding region.

6

Leishmaniasis ‐ General Aspects of a Stigmatized Disease



The predicted active site was finally confirmed to be FAD binding site. TR
has been studied to be a homodimer protein constituting FAD-binding,
NADPH-binding, central, and interface domains [5]. The predicted site was
concluded to be an FAD site in LmTR by comparative studies between the
FAD-2JK6 and FAD-LmTR complexes (Figure A1-A). The study showed
common hydrogen bonding residues including Ser14, Gly15, Arg287, and
Thr335 interacting with FAD. These residues correlate with that which was
predicted by CASTp 3.0 including other several common residues participating in
hydrophobic interactions such as Gly13, Asp35, Ala46, Gly50, Thr51, and Cys52
(Figure A1-A).

3.3 Structural validation and quality prediction

PROSA was used to determine the quality of the structure by comparing it to
protein structures that are experimentally solved in the PDB database. It validated the
model based on the “quality score or z-score” with a value of �11.68. The z-score
shows whether the predicted model is of X-ray or NMR quality with regards to the
amino acid residues length. This z-score value showed that the modeled protein
fell in the range of proteins solved experimentally by X-ray crystallography
(Figure A2-A). Verify3D validated the 3D structure of the model. A good 3D struc-
ture is expected to have at least 80% of its amino acids to have scored greater than or
equal to 0.2 in a 3D/1D profile. This model passed with an appreciable result of
91.65% of residues having a score greater or equal to 0.2 (Figure A2-B). Further
validation with PROCHECK resulted in the generation of a Ramachandran plot
(Figure A3). The plot described the rotations of the polypeptide backbone around the
bonds between N-Cα (Phi, φ) and Cα-C (Psi, ψ). The plot allowed the viewing of the
distribution of these torsional angles taking into consideration the allowed rotations
and rotations that are unfavored which can result in a collision or steric hindrance. A
protein with 90% of its residues in the most favorable region is considered a good
model. ProQ predicted the quality of protein based on the MaxSub and LGscore
scores [29]. The predicted LG score was 6.447 and MaxSub score was 0.520. LGscore
>4 implied that the model was extremely good. Also, a MaxSub score > 0.5 implied
that the model was very good [47].

3.4 Pharmacophore modeling

The active ligands used as training sets to develop a pharmacophore allowed
features similar to the two compounds to be identified and combined into a single
geometric function as the basis for the generation of the pharmacophore (Figure 2).
Pharmacophore generated utilized features that contributed regions of hydropho-
bicity and hydrogen bond acceptors incorporated in the model for selective screen-
ing. The oxygen from nitrogen dioxide contributed to hydrogen bond acceptors
with aromatic and alkene groups contributing to the hydrophobic region
(Figure A4). A number of 10 hypotheses were developed for the model. The best
hypothesis with a similarity of 58.12% had a score of 0.8537 and was selected based
on the AUC score of 0.99 generated by LigandScout (Figure A5-A). The AUC score
was used as a metric to validate how best the pharmacophore model created could
distinguish rightly between active compounds and decoys. This intends to reduce
false positives and negatives during the screening process.

The screening process was successfully completed with the model which identi-
fied 42 compounds that matched the pharmacophore model with a pharmacophore
fit score ranging from 55.32 to 57.98 (Table A2).
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3.5 Docking validation

The docking system was validated using the five inhibitors and 250 decoys
generated with DUD-E and further used their binding energies to plot an AUC with
a value of 0.702 (Figure A5-B). AUC value of 1.0 verifies that the prediction of hits
obtained from the hypothesis is perfect whereas values of 0.5 and less than 0.70
imply average and moderate random selection respectively [48].

Furthermore, the validation of the molecular docking was also undertaken by
aligning the re-docked ligands with their respective co-crystallized complexes taken
from PDB. The RMSD values of the alignment between the re-docked ligands and
the co-crystalized ligands in complexes of 2YAU, 4APN, 5EBK, 6ER5, 6I7N were
1.483, 3.020, 1.920, 2.712, and 2.465 Å, respectively. Only two of the RMSD values
(5EBK and 2YAU) of the alignments were below 2.0 Å, which is considered the
threshold for good alignment.

Superimposition also validated the accuracy of docking at the predicted active
site. The FAD molecule from the template selected for modeling, 2JK6 when
extracted and docked in LmTR, showed similar surrounding residues in the pocket
of FAD-2JK6 and FAD-LmTR complex. Ligand alignment of these two complexes
gave an RMSD of 3.291 Å which is above the expected threshold. Nonetheless, the
FAD-LmTR docking simulated a pose that showed common residues such as Ser14,
Gly15, Arg287, and Thr335 taking part in hydrogen bonding in these complexes
(Figure A1). All these verified that the docking system performed very well in
docking ligands to the active site.

3.6 Virtual screening of pharmacophore hits

When docking validation was verified, molecular docking was carried out.
Molecular docking predicted various conformations of each ligand in the binding
site of the LmTR. Compounds were selected based on their binding energies. The
binding energies gave a theoretical value that relates the affinity of the ligand to the
protein model. The results of the respective pharmacophore fit scores and binding
energies are well documented (Table A2). The 42 compounds obtained were

Figure 2.
2D structure of PNTPC (left) and CNQB (right) showing shared features. PNTPC and CNQB showed two
hydrogen bond acceptors. Both compounds had an aromatic ring as a common feature. These served as active
ligand for the training set.
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narrowed down to 11 by considering their binding energies and pharmacophore fit
scores (Table 1). With respect to these studies to find inhibitors of the FAD binding
site for which FAD is a prosthetic group that already binds tightly to the catalytic
site, it was reasonable to select the compounds with binding energies below
�9.0 kcal/mol or relatively closer to �9.0 kcal/mol which can provide a plausible
binding advantage when acting as inhibitors at the site. The compound
ZINC95486081 had the lowest binding energy of �9.8 kcal/mol and the highest was
observed from evoxine as �6.2 kcal/mol (Table A2).

Predicted ligands Pharmacophore
fit score

Binding energy/
(kcal/mol)

Hydrogen
bond Residues
and length (Å)

Hydrophobic bond
interacting residues

ZINC95486081 55.95 �9.8 Lys60 (2.92)
Ser178 (2.87)

Gly13, Gly15, Asp32,
Ala46, Thr51, Cys52, Val55,
Gly56, Ala159, Thr160,
Tyr198, Arg287, Asp327,
Met333, Leu334, Thr335

MTPA 56.37 �9.4 Thr51 (3.12)
Thr293 (2.89)
Asp327 (3.13)
Ser14 (3.17)

Gly11, Gly13, Gly15,
Asp32, Val36, Ala46,
Gly50, Cys52, Val55,

Gly56, Ala159, Thr160,
Tyr198, Arg287, Met333,

Leu334, Thr335

Karatavicinol 56.5 �9.4 Thr51 (3.28)
Arg287 (3.00)
Thr293 (3.01,

2.97)
Asp327 (2.82)

Ser14, Gly11, Gly13,
Val34, Asp35, Val36,
Gly50, Cys52, Ala46,

Phe126, Gly127, Ala159,
Thr160, Gly161, Tyr198,
Arg290, Met333, Ala338

Taccalin 56.42 �9.4 Ser14 (3.21)
Ala365 (3.25)

Gly13, Thr51, Cys52
Gly56, Cys57, Lys60,
Gly161, Ile199, Thr198,
Gly326, Met333, Leu334,

Thr335, Ala338

Marmin 56.18 �9.3 Val34 (3.17)
Thr51 (2.99,

3.04)
Thr160 (2.83)
Thr335 (2.87)

Leu10, Gly11, Gly13,
Ser14, Asp35, Ala46 Gly50,
Cys52, Gly127, Ala159,
Gly161, Arg290, Leu294,
Ala327, Leu334, Ala338

13-Hydroxyfeselol 55.62 �9.1 Val362 (2.79)
Thr374 (2.85)
Gly376 (3.20,

3.26)

Lys60, Thr198, Gly229,
Phe230, Gly326, Leu334,

Cys364, Ala365

Betaxanthin 57.51 �8.9 Ser14 (2.85)
Cys52 (3.03)
Gly127 (3.03,
3.22, 3.30)
Thr335

Gly11, Gly13, Val34,
Asp35, Val36, Gly50,
Cys52, Ala46, Phe126,
Ala159, Thr160, Gly161,
Tyr198, Arg290, Asp327

Met333, Ala338

Colladonin 55.90 �8.8 Asn330 (2.85) Lys60, Gly197, Tyr198,
Tyr221, Arg287, Phe230,

Leu334, Ala365

Feselol 55.63 �8.8 Asn330 (2.87) Lys60, Gly197, Tyr198,
Tyr221, Arg287, Phe230,

Leu334, Ala365
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3.7 Protein–ligand interaction

Molecular interaction studies are important for understanding the mechanism of
biological regulation at the molecular level and as such also provides a theoretical
basis for drug design and discovery [49, 50]. Hydrogen and hydrophobic interac-
tions are key players in stabilizing energetically favored ligands, in an open confor-
mational environment of protein structures [29]. The intermolecular interaction
and bond lengths of these 11 compounds were observed. The compound which
showed the highest binding affinity, ZINC95486081 formed two hydrogen bonds
with residues Lys60 and Ser178 with respective bond lengths of 2.92 Å and 2.87 Å.
Five compounds including MTPA, Karatavicinol, Marmin, Betaxanthin and
ZINC38658035 had four residues as the highest number of residues partaking in
hydrogen bonding. MTPA formed hydrogen bonds with residues Thr51, Thr293,
Asp327, and Ser14. Karatavicinol on the other hand formed hydrogen bonds with
Thr51, Arg287, Thr293, and Asp327 (Figure A6-A). Marmin formed hydrogen
bonds with Val34, Thr51, Thr160, and Thr335 (Figure A6-B). Betaxanthin also
bonded with Ser14, Cys52, Gly127, and Thr335. Finally, ZINC38658035 formed
hydrogen bonds with Tyr198, Val362, Tyr374, and Gly376. The compound 13-
hydroxyfeselol was the only hit that formed three hydrogen bonds with Val362,
Thr374, and Gly376. Taccalin and Pectachol formed only two hydrogen bonds with
Ser14 and Ala365. On the other hand, Colladonin and Feselol formed the least
hydrogen bond residues with Asn330. The shortest bond length of 2.83 Å was

Predicted ligands Pharmacophore
fit score

Binding energy/
(kcal/mol)

Hydrogen
bond Residues
and length (Å)

Hydrophobic bond
interacting residues

ZINC38658035 55.95 �8.7 Tyr198 (3.31)
Val362 (2.92)
Tyr374 (3.30)
Gly376 (2.86,

3.05)

Ile199, Phe230, Gly286
Arg287, Met333, Leu334,

Cys364, Cys375

Pectachol 57.18 �8.5 Lys60 (2.93)
Gly376 (3.11)

Tyr198, Gly229, Phe230,
Val332, Met333, Leu334,
Ala365, Val362, Cys364,

Val366, Phe367

FAD molecule and inhibitors from 6ER5 and 4APN

ZINC8782981 _ �7.2 Lys60 (3.12)
Arg287 (3.08)

Cys52, Cys57, Tyr198,
Gly229, Phe230, Val332,
Met333, Leu334, Ala365,

Val362, Cys364

CHEMBL1277380 _ �8.2 Lys60 (2.89) Tyr198, Gly229, Phe230,
Val332, Met333, Leu334,
Ala365, Val362, Gly376

FAD _ �9.0 Ser14 (3.11)
Gly15 (2.96)
Ala159 (2.97)
Tyr198 (2.87)
Arg287 (2.75)
Met333 (2.78)

Thr335
(2.88, 3.31)

Gly13, Gly50, Thr51,
Cys52, Ser162, Gly197,
Gly229, Phe230, Asp327,

Leu334, Ala338

Table 1.
The table shows parameters involved in the selection of lead compounds. This included pharmacophore fit score,
the binding energy and the number of hydrogen and hydrophobic bond interacting residues.
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exhibited by Marmin with Thr160. Betaxanthin showed the highest pharmacophore
fit score of 57.51 followed by Pectachol (57.18). 13-Hydroxyfeselol showed the
lowest fit score of 55.62.

3.8 Pharmacological profiling

To identify lead compounds, the binding energy, molecular bond interactions,
pharmacological, and physiochemical properties were considered. This step helped
to filter generalized hit compounds. The top 11 compounds were profiled in silico to
characterize compounds with drug-likeness and good water solubility. Lipinski’s
rule of 5 was used as a metric to narrow down druggable compounds. The rule
factors in the compound’s molecular weight which should not exceed 500 g/mol,
hydrogen bond donors must not be more than 5, log-p value must be less than or
equal to 5 and hydrogen bond acceptors must not be more than 10. All the 11
top hits passed Lipinski’s rule of 5 with a good bioavailability score of 0.55
(Table A3).

3.9 Pharmacokinetic properties

Further filtering analysis subjected all 11 pharmacophore hits to pharmacokinet-
ics profiling taking into consideration parameters such as gastrointestinal (GI)
absorption, blood–brain barrier (BBB) permeation, the permeability of glycoprotein
(Pgp), and cytochrome P450 (CYP). Physical parameters such as drug solubility
may affect oral bioavailability but in most cases, the major determining factors are
likely to be metabolism by CYP and absorption at the intestinal level [51]. CYP3A4
has been known to be responsible for the metabolism of about 50% of all drugs [52]
and therefore inhibition of cytochrome can affect oxidation of substrates in cells.
Absorption of drugs in the intestine if found high favors the efficacy of the com-
pound as a drug. Multi-drug resistance transporters, such as P-glycoproteins, are
essential for many cellular processes that require the transport of substrates across
cell membranes [53]. Compounds that are P-gp substrates may face continual efflux
which can affect the efficacy of drugs. The blood–brain barrier (BBB) prevents the
brain uptake of most pharmaceuticals [54]. This is a disadvantage to neurological
diseases but would be of merit since the disease of study is not related to the brain.
Compounds that cross the blood–brain barrier may elucidate unwanted biological
activities that could be dangerous to health. Therefore, the negative inference would
be good for the compound. ZINC95486081 was predicted to show inhibition to
three CYP isoenzymes. Karatavicinol, ZINC38658035, and Marmin excelled with an
appreciable result (Table A4). For the purpose of narrowing down leads with
potential for further computational analysis, compounds with low gastrointestinal
absorption were side-lined. This included Taccalin and Betaxanthin.

3.10 Prediction activity spectra for substance (PASS)

The biological activity of the selected drug-like candidates was then evaluated
using PASS. It is well known that each substance has a wide spectrum of
biological activities as evident from some new uses of many old drugs. This allows
the tool to utilize this information to predict biological activities based on their
probable activity (Pa) and probable inactivity (Pi). When Pa is greater than Pi
(Pa > Pi), the compound is likely to possess the predicted biological activity
[55, 56]. PASS predicted Karatavicinol, Marmin, Colladonin and Pectachol to be
potential antileishmanial agents (Table A5). Colladonin showed the highest Pa of
0.768 and Pi of 0.006 followed by Taccalin (Pa of 0.711 and Pi of 0.009) and
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Pectachol with a Pa of 0.694 and Pi of 0.009. Betaxanthin had no prediction as an
antileishmanial agent.

3.11 Selection of lead compounds for MD and MM-PBSA analysis

The various lead compounds were considered for selection based on the criteria
above. ZINC95486081 and MTPA compound although had high binding energy
trailed in pharmacokinetic properties and showed Pa less than 0.500. We elimi-
nated Taccalin and Betaxanthin because of their low GI absorption and low Pa
values (Tables A3 and A4). Compounds predicted with good probable activity for
antileishmanial activities included Karatavicinol, Taccalin, Marmin, 13-
hydroxyfeselol, Colladonin, Feselol and Pectachol. A literature search revealed
Feselol to have antiprotozoal activity against Trypanosoma brucei (IC50 8.1 μM),
Trypanosoma cruzi (IC50 8.6 μM), and Leishmania infantum (IC50 6.8 μM). Similarly,
100R-karatavacinol has presented activity against T. brucei (IC50 32.4 μM),T. cruzi
(IC50 9.4 μM), and L. infantum (IC50 32.4 μM) [57]. That of Feselol and
hydroxyfeselol was eliminated because it had been worked on experimentally and
also extracts from Ferula genus which is known to exhibit antiviral, antibacterial,
and antileishmanial properties [58]. Marmin and Pectachol presented optimistic
potential to look into. The high number of hydrogen bonds and binding energy
allowed for the inclusion of Karatavicinol in the MM-PBSA to observe their stabili-
zation with this protein target. Also, the high prediction of Colladonin as a com-
pound with probable activity also increased the chance of this compound for MM-
PBSA analysis. Therefore, Marmin Pectachol, Karatavicinol, and Colladonin were
considered for further analysis in molecular dynamics.

3.12 Molecular dynamic simulation of protein–ligand complex

Molecular dynamics simulation allowed the early view of proteins as relatively rigid
structures to be replaced by a dynamicmodel in which the internal motions and
resulting conformational changes play an essential role in its function [59]. An RMSD
plot generated aftermolecular dynamics simulation showed a deviation of about 0.25 Å
(FigureA7). Further scrutinizedwithmolecular dynamics simulations gave the protein
a dynamic dimension to its 3D structural formproducing a realistic environment for the
ligand interactions that were carried out in the docking process.

Molecular dynamics simulations can also capture a wide variety of important
biomolecular processes, including conformational change, ligand binding, and protein
folding [60]. The stability of docked protein–ligand complexes was determined by
their (RMSD) plots generated from the MD simulation output file. The backbones of
the four complexes were observed to be stable over time (Figure 3). The fluctuations
of the protein–ligand complexes were analyzed within the system to check for move-
ment and structural stability during the course of the simulation. These movements
and stability are significant for the complex functioning inside living systems. The
backbone of the LmTR-ZINC8782981 complex showed the greatest stability with an
average RMSD of 0.25 nm amongst all the complexes. The LmTR-CHEMBL1277380
complex was fairly stable with RMSD of 0.4 nm. Amongst the four leads, Pectachol
was found with the lowest RMSD of 0.3 nm. In terms of stability, the compound
Marmin and Colladonin proved to be very much stable around 0.73 nm over the
production time of 100 ns. The RMSD of Karatavicinol was observed to show stability
from 0 to 60 ns and increased its RMSD to 0.5 nm from 60 to 100 ns.

The flexibility of residues contribution by the LmTR was assessed by the root
mean square fluctuation (RMSF). RMSF indicates the flexibility of different regions
of a protein, which can be related to crystallographic B factors [61]. The results of
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the RMSF plots showed consistency for the docked complexes (Figure A8). The
highest fluctuations exhibited was observed around residue numbers 70–90, with
Karatavicinol and CHEMBL1277380 showing higher fluctuation levels followed by
ZINC8782981 and Marmin complexes. Other regions where good fluctuations were
observed include residues between 395 and 410 and 465–480. Overall, Marmin
showed more fluctuations around most residues with a distinct difference at residue
numbers 260 and 310.

The compactness of the complexes over simulation time is determined by the
Rg. If a protein is folded well, it will likely maintain a relatively steady value of Rg,
whereas its value will change over time if the protein unfolds [62]. Rg values of all
complexes indicated stable complexes over 100 ns (Figure A9). The Rg graph
showed most compounds experienced a fairly stable Rg. Marmin experienced the
lowest Rg value around 2.33 nm compared to other complexes. This was followed by
Colladonin, Pectachol and Karatavicinol with Rg values of 2.37, 2.42, and 2.45 nm,
respectively. Between the known inhibitors, CHEMBL1277380 was observed to
have an average Rg value of 2.46 nm whilst ZINC8782981 showed the average
highest value of around 2.5 nm. Inferring from the Rg graph, the compactness of the
LmTR–Marmin, –Colladonin and –Pectachol complexes were maintained after
complex formation.

3.13 Evaluation of leads using MM-PBSA

MM-PBSA was employed to calculate free binding energies by per-residue
decomposition of the protein complexes. At a quantitative level, simulation-based
methods provide substantially more accurate estimates of ligand binding affinities
(free energies) than other computational approaches such as docking [63]. Residues
contributing binding free energy greater than 5 kJ/mol or less than �5 kJ/mol are
considered critical for binding of a ligand to a protein [64]. MM-PBSA results
showed only Asp327 amongst the hydrogen bonding residues of Karatavicinol to
contribute a per residue decomposition energy of 13.65 kJ/mol. Amino acid residue
Asp35 (21.89 kJ/mol) was observed with such greater contribution (Figure A10).
The complex of LmTR–Marmin also showed surrounding hydrophobic residues
Asp35 (�8.62 kJ/mol), Ala46 (�7.65 kJ/mol), Arg290 (8.83 kJ/mol), and Glu141

Figure 3.
RMSD values of the LmTR-ligand complexes of the four leads (Karatavicinol, Marmin, Pectachol, and
Colladonin) and the two known inhibitors after 100 ns. The complexes in the graph are color coded.
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(�5.12 kJ/mol) with their energy decomposition to be greater than 5 kJ/mol and less
than �5 kJ/mol. The only hydrogen bonding residue that showed a relevant contri-
bution of energy decomposition was Thr51 (�16.36 kJ/mol) (Figure 4). Hydropho-
bic amino acid residues Lys61 (�5.16 kJ/mol), Tyr198 (�11.29 kJ/mol), Asp327
(5.56 kJ/mol), and Arg331 (6.38 kJ/mol) showed relevant contribution to the total
binding energy of the LmTR–Colladonin complex (Figure A11). Moreover, only
hydrogen bonding residue Lys60 (13.32 kJ/mol) in LmTR–Pectachol complex
showed to be a critical residue in binding. Other surrounding residues contributed
substantially to the per residue energy decomposition in the LmTR–Pectachol com-
plex. This included Lys61 (�10.97 kJ/mol), Arg287 (�6.91 kJ/mol), Asp327
(9.30 kJ/mol), Met333 (�6.72 kJ/mol), Leu334 (�8.91 kJ/mol), Lys361 (6.46 kJ/
mol), and Cys364 (�6.07 kJ/mol) (Figure A12). Deducing from the substantial
contribution of energy per decomposition of residues, we propose Asp35, Thr51,
Lys61, Tyr198, and Asp327 to be critical in intermolecular bonding and stabilization
of ligands at the FAD active site.

3.14 Other energy terms

Van der Waals forces, electrostatic and polar solvation energies, and SASA are
relevant energy terms contributing to the overall free binding energy of the com-
plex. The van der Waals energy refers to the weak attraction existing between the
intermolecular forces. The van der Waals energy observed in our study showed
Karatavicinol and CHEMBL1277380 to have the lowest and highest energy of
�228.565 and � 171.823 kJ/mol, respectively. Colladonin, Marmin, and Pectachol
also showed relatively low van der Waals energy of �189.289, �189.229,
and � 209.538 kJ/mol, respectively as compared with ZINC8782981 with
�222.123 kJ/mol. Electrostatic energy refers to the potential energy of a system
consisting of different electric charges [65–67]. The lowest electrostatic energy was
exhibited by Marmin (�386.401 kJ/mol) followed by Pectachol (�286.260 kJ/mol),
and Colladonin (�249.067 kJ/mol). Karatavicinol and the other two inhibitors were
observed with high electrostatic energy (Table 2). Some studies have observed that

Figure 4.
MM-PBSA plot of the binding free energy decomposition contribution per residue of LmTR–Marmin complex.
Coded red lines represent surrounding active site amino acid residues.
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van der Waals and electrostatic forces contribute favorably to the energetics of
binding along with simulations that favor the binding of complexes [66, 68].

Polar solvation energy on the other hand refers to the electrostatic interaction
that exists between the solute and the continuum solvent [69]. The highest polar
solvation energy amongst the leads was exhibited by Marmin (484.074 kJ/mol) and
the lowest by Karatavicinol (227.483 kJ/mol). Solvent accessible surface area
(SASA) energy was calculated after MD. This represents the non-polar solvation
energy [69]. This energy measures the interactions that exist between the complex
and the solvents. Amongst the leads, Karatavicinol obtained the lowest SASA energy
followed by Pectachol, Colladonin, and Marmin (Table 2). Relative to these were
the low SASA energies of the inhibitors ZINC8782981 and CHEMBL1277380.

The total contribution of these energies enabled the final estimation of the free
binding energies in the complexes (Table 2). The lowest free binding energy con-
tributing to more stability of the protein–ligand complex was observed by Marmin
(�109.114 kJ/mol). Next amongst the four complexes was Pectachol (�63.487),
followed by Karatavicinol (�57.644 kJ/mol), and Colladonin (�48.936 kJ/mol). The
low binding energy of Marmin was much closer to that of CHEMBL1277380
(�111.732 kJ/mol) with that of Pectachol higher than ZINC8782981 (�54.399 kJ/
mol). These energies address the potential of Marmin and Pectachol to bind most
effectively at the active site of LmTR. LmTR–Marmin’s free binding energy corre-
lated with the low binding energy (�9.3 kcal/mol) from docking. That of Pectachol
showed a good free binding energy than that obtained from docking. This was
better than that of Karatavicinol and Colladonin (Table 1).

3.15 Exploring possible implications and structure similarities of predicted leads

Karatavicinol and Marmin had lower binding energies of �9.4 and � 9.3 kcal/
mol, respectively, as compared to Colladonin (�8.5 kcal/mol) and Pectachol
(�8.5 kcal/mol). These binding energies are closer to that of FAD (�9.0 kcal/mol)
for which can possibly compete in binding at the FAD domain. These compounds
were concluded to have drug-likeness by satisfying Lipinski’s rule of 5. They also do
not pass the blood–brain barrier which is good. Also, Marmin and Karatavicinol
checked false for p-glycoprotein substrate. This gives the compounds an advantage
to maintain their concentrations in cellular level to maximize efficacy. Pectachol
and Colladonin however were implicated as P-gp substrates. These predicted pref-
erable properties can favor their lead likeness and chances of going a long way in
experimental studies. The four lead compounds were predicted as antileishmanial
compounds. The four leads are confirmed not to be already existing antileishmanial
drugs by structural similarity searches in www.DrugBank.ca but rather observed to
be analogues of chrome 2-one. In regard to this, studies over the years have however
shown some novel compounds such as 7-{[(2R*)-3,3-dimethyloxiran-2-yl]
methoxy}-8-[(2R*,3R*)-3-isopropenyloxiran-2-yl]-2H-chromen-2-one and 7-
methoxy-8-(4-methyl-3-furyl)-2H-chromen-2-one against Leishmania donovani
with EC50 of 9.9 and 10.5 μg/mL, respectively [70]. These tested compounds with
antileishmanial effect tend to be analogues of chromen-2-one. We emphasize that
Karatavicinol is not a unique lead compound since it has already been experimented
on other Leishmania species excluding L. major [57]. But the study identified it via
these computational processes and therefore would report it as a potential com-
pound against L. major. This augments the fact that the computational drug discov-
ery pipeline has an optimistic potential of yielding good candidates for experimental
work. Colladonin on the other hand is an enantiomer of Feselol for which Feselol is
experimented as an antileishmanial agent [57]. Marmin also holds a very good
potential of being an anti-ulcerative agent [71]. This favors it being a good
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Compound Van der Waals energy (kJ/mol) Electrostatic energy (kJ/mol) Polar solvation energy (kJ/mol) SASA energy (kJ/mol) Binding energy (kJ/mol)

ZINC8782981 �222.123 � 14.568 �52.495 � 17.662 245.049 � 33.654 �24.829 � 0.962 �54.399 � 20.084

CHEMBL1277380 �171.823 � 14.173 �2.926 � 5.485 82.884 � 16.706 �19.869 � 1.202 �111.732 � 16.514

Karatavicinol �228.565 � 12.673 �32.345 � 21.415 227.483 � 27.305 �24.217 � 1.100 �57.644 � 24.019

Marmin �189.289 � 16.726 �386.401 � 30.540 484.074 � 28.991 �17.498 � 1.050 �109.114 � 23.461

Pectachol �189.229 � 18.203 �286.260 � 49.152 430.604 � 71.136 �18.602 � 1.308 �63.487 � 33.289`

Colladonin �209.538 � 18.908 �249.067 � 40.851 427.216 � 49.348 �17.548 � 1.122 �48.936 � 24.773

The energy values are presented as mean � standard deviation kJ/mol.

Table 2.
The energy terms obtained after MM-PBSA analysis of the protein–ligand complexes.
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compound for the treatment of cutaneous leishmaniasis. These compounds classi-
fied are coumarins and more other studies have reported good antileishmanial
activities from this class of compounds [72, 73]. This work supports the fact that
Karatavicinol, Marmin, Pectachol and Colladonin may possibly exhibit good
antileishmanial activity if tested in vitro (Table A6).

Further in this study, the interaction of the active site residues with all four lead
compounds showed hydrogen bonding with Val34, Thr51, Lys60, Thr160, Ala159,
Arg287, Thr293, Asp327, Asn330, Thr335, and Gly376 (Table 1). Superimposition
of the docked 2JK6 and co-crystallized revealed common residues such as Ser14,
Gly15, Arg287, and Thr335 (Figure A1). These residues can be observed to be
unique to the FAD domain of LmTR in anchoring the FAD molecule. Comparing
these residues to the hydrogen bonding residues from the four leads shows that
possible interruption of any of these residues can cause conformational changes
which might not favor the selective binding of FAD at its domain. Baiocco et al. in
2009 identified Thr335 of trypanothione reductase at the FAD catalytic site of L.
infantum [74]. They proposed that the FAD molecule binds tightly to the protein
and orients itself towards the hydride transfer region of the active site by hydrogen
bonding with specific residues Lys60, Thr335, and His461. Having observed this,
interrupting one of these residues can potentially inhibit the reduction of T[S]2 by
interfering with the hydride transfer. These compounds can potentially covey a
competitive mode for binding to Thr355 which can affect the hydride transfer
reaction in the active site preventing direct inactivation of trypanothione reductase.
Other studies with quinone derivatives also have identified Thr355 and Ser14 as
unique to the FAD domain of TR [75, 76].

4. Conclusion

Trypanothione reductase has been a well-investigated target essential for
trypanosomatids. Its function in controlling oxidative stress in the parasite provided
an opportunity to target the trypanothione biosynthesis pathway. A total of 11 hit
compounds identified by pharmacophore modeling and virtual screening were
filtered to four potential leads by considering their ADME with their molecular
interactions in LmTR. MM-PBSA enabled the individual computation of active site
residues that contributed significantly to binding. Efficient selective blockade of
LmTR with these four coumarin compounds: Karatavicinol (7-[(2E,6E,10S)-10,11-
dihydroxy-3,7,11-trimethyldodeca-2,6-dienoxy]chromen-2-one), Marmin (7-
[(E,6R)-6,7-dihydroxy-3,7-dimethyloct-2-enoxy]chromen-2-one), Pectachol (7-
[(6-hydroxy-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-
naphthalen-1-yl)methoxy]-6,8-dimethoxychromen-2-one), and Colladonin (7-
[[(4aS)-6-hydroxy-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-
naphthalen-1-yl]methoxy]chromen-2-one) hold the potential to compromise the
redox defenses of the parasites by inhibiting the FAD binding region and corre-
spondingly increasing their sensitivity to redox-damage when carried out in in vitro
and in vivo studies. Residues such as Asp35, Thr51, Lys61, Tyr198, and Asp327 are
suspected to have critical role in the anchoring of FAD which contributes to the
formation of reduced T[SH]2 in the reducing environment of amastigotes.
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A. Appendices and nomenclature

Leu10, Gly11, Gly13, Ser14, Gly15, Gly16, Val34, Asp35, Val36, Phe44, Ala46, Ala47, Gly50, Thr51,
Cys52, Val55, Gly56, Cys57, Lys60, Lys61, Gly125, Phe126, Gly127, Ala128, Arg138, Ser140, Glu141,
Pro143, Ala159, Thr160, Gly161, Ser162, Trp163, Pro164, Thr165, Thr177, Ser178, Asn179, Phe182,
Tyr198, Ile199, Glu202, Phe203, Met282, Leu283, Ala284, Ile285, Gly286, Arg287, Arg290, Thr293,
Leu294, Gln295, Ile325, Gly326, Asp327, Val332, Met333, Leu334, Thr335, Pro336, Val337, Ala338,
Ile339, Asn340, Arg355, Thr357, Asp358, His359, Thr360, Lys361,Val362, Ala363, Cys364, Ala365,
Phe367, Pro435, Glu436, Ile438, Gln439, Gly442, Ile443, Lys446

Table A1.
Predicted amino acid residues.

Figure A1.
(a) The Z-score of the modeled LmTR (represented in dot) estimated to be �11.68 which is within the range of
experimentally determined proteins by X ray method. (b) Verify 3D plot of the modeled protein structure,
LmTR. This shows 91.65% of its amino acid residues with an average 3D-1D score greater than or equal to 0.2,
which is a positive inference to the expected 80% of amino acids with 3D-1D score above or equal to 0.2.
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Figure A2.
Ramachandran plot of the modeled LmTR protein structure. The percentage of residues in the most favored
region (red) was 93.6% which is favorable for the protein’s stereochemistry. The percentage of residues in the
allowed region (yellow) was 6%. Only 0.2% of protein residues (Phe45) showed probable stereochemical
hindrance or collision.
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Figure A3.
A 3D geometry of the generated pharmacophore. The nitrogen on the bicyclic ring of CNQB with the oxygen
from the nitro group on its purine ring derivative contributed a hydrogen bond acceptor HBA (red sphere). The
oxygen from the nitrogen dioxide group on the conjugated benzene in addition to the nitrogen on the five-
member ring of PNTPC also contributed to HBA. Both had an aromatic ring (blue ring) as a common feature
(blue ring in yellow 3D sphere) which contributed to hydrophobic interactions and the alkene feature shared
amongst them generated the same hydrophobicity.

Figure A4.
(A) AUC score of 0.99 for the pharmacophore model. Determined at 1, 5, 10, and 100% of the selected
database were the AUC and EF values as shown. The median is shown by dotted lines. If the curve is closer to the
median it would suggest poor model. (B) AUC score of 0.702 generated for validating the docking system used. It
verified the correlation between virtual screening performance and binding site descriptors of protein targets
model (LmTR).
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Figure A5.
(a) 2D schematic diagram of co-crystallized FAD (PDB ID: 2JK6) and FAD docked in LmTR superimposed
together. Similar hydrogen bonding residues include Ser14, Gly15, Arg287, and Thr335. Similar hydrophobic
residues in addition confirm the predicted active site. (b) Ligand alignment of co-crystalized FAD and FAD
docked in LmTR.
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Name P-fit
score

Binding energy
(kcal/mol)

Active/
decoy

Source
database

ZINC95486081 55.95 �9.8 Active AfroDB

(S)-alpha-methoxy-alpha-trifluoromethyl-alpha-
phenylacetate (MTPA)

56.37 �9.4 Active NANPDB

Karatavicinol 56.5 �9.4 Active NANPDB

Taccalin 56.42 �9.4 Active NANPDB

Marmin 56.18 �9.3 Active NANPDB

3-Hydroxyfeselol 55.62 �9.1 Active NANPDB

ZINC95486257 55.9 �9.0 Active AfroDB

Betaxanthin 56.97 �8.9 Active NANPDB

Coladonin 56.58 �8.8 Active NANPDB

Feselol 56.41 �8.8 Active NANPDB

ZINC38658035 55.9 �8.7 Active AfroDB

Pectachol 57.18 �8.5 Active NANPDB

ZINC85967928 55.85 �8.4 Active AfroDB

Polyanthin 56.39 �8.4 Active NANPDB

ZINC95486047 57.98 �8.3 Active AfroDB

40-Methyl gossypetin 56.17 �8.2 Active NANPDB

2-(nonan-8-one)-4-methoxy-quinoline 56.41 �8.2 Active NANPDB

Orientin 55.53 �8.1 Active NANPDB

Kaempferol-3,6-dimethylether-7-glucoside 57.15 �7.8 Active NANPDB

ZINC95486129 56.43 �7.8 Active AfroDB

Ethuliaconyzophenone 56.9 �7.7 Active NANPDB

ZINC95486209 56.55 �7.5 Active AfroDB

(+)-1,2-bis-(4-hydroxy-3-methoxyphenyl)-
propane-1,3-diol [erythro form]

55.9 �7.4 Active NANPDB

4-Hydroxy-20,40-dimethoxy-dihydrochalcone 55.58 �7.4 Active NANPDB

Drimartol A 56.31 �7.4 Active NANPDB

Isoarnottinin-40-O-beta-D-glucoside 55.71 �7.4 Active NANPDB

4-Beta-hydroxy-6alpha-(4-hydroxy-3-
methoxybenzoyl)-7-daucen-9-one

55.93 �7.4 Active NANPDB

ZINC14686464 56.55 �7.4 Active AfroDB

6-(30,40-dimethoxybenzoyl)-jaeschkeanadiol 57.17 �7.3 Active NANPDB

ZINC14887523 56.88 �7.3 Active AfroDB

Orientin-7-methoxide 56.26 �7.2 Active NANPDB

ZINC14444870 56.35 �7.2 Active AfroDB

ZINC14689062 56.5 �7.2 Active AfroDB

1-Dehydrogingerdione 56.05 �7.1 Active NANPDB

Onopordin 56.27 �7.1 Active NANPDB

ZINC95486194 56.79 �7.1 Active AfroDB

Methyl5-(3-4-dihydroxyphenyl)-3-
hydroxypenta-2,4-dienoate

55.32 �7 Active NANPDB
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Figure A6.
2D schematic diagram showing protein-ligands interaction of some leads at the active site of LmTR. (A)
LmTR–Karatavicinol interaction profile, (B) LmTR–Marmin interaction profile, (C) LmTR–Pectachol
interaction profile, and (D) LmTR–Colladonin interaction profile.

Name P-fit
score

Binding energy
(kcal/mol)

Active/
decoy

Source
database

Corniculatusin 56.23 �7 Active NANPDB

3-(10-acetoxygeranyl)-4-acetoxy-p-coumaric acid 56.14 �7 Active NANPDB

ZINC00035526 56.66 �7 Active AfroDB

ZINC00608186 57.08 �6.8 Active AfroDB

Evoxine 57.32 �6.2 Active NANPDB

Table A2.
The 42 hits obtained from pharmacophore screening with their respective pharmacophore fit score, binding
energies, and data sources.
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Compound ZINC
ID/name

Number of
Lipinski’s

rules
violated

MW
(g/mol)

No.
HA

No.
HD

xLogP Water solubility
(mg/mL)

Log S Bio. Sc

ZINC95486081 0 382.45 5 2 4.52 Moderately soluble �5.84 0.55

MTPA 0 470.52 8 0 6.35 Moderately soluble �6.00 0.55

Karatavicinol 0 400.51 5 2 4.66 Moderately soluble �4.85 0.55

Taccalin 0 418.48 9 6 �1.45 Moderately soluble 1.66 0.55

Marmin 0 332.39 5 2 2.81 Soluble �3.52 0.55

13-Hydroxyfeselol 0 400.51 5 2 1.45 Moderately soluble �5.93 0.55

Betaxanthin 0 370.44 8 7 �1.17 Moderately soluble �2.11 0.55

Colladonin 0 384.51 4 1 5.76 Poorly soluble �6.50 0.55

Feselol 0 384.51 4 1 5.76 Poorly soluble �6.5 0.55

ZINC38658035 0 464.63 6 3 �4.47 Soluble �3.28 0.55

Pectachol 0 444.56 6 1 5.70 Poorly soluble �6.70 0.55

All the hits showed good druglikeness. MW, molecular weight; No. HD, number of H-bond donors; Bio Sc,
bioavailability score, No. HA, number of H-bond acceptors.

Table A3.
Physicochemical profiling of the 11 hit compounds.
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Compound ZINC ID GI absorption BBB permeant P-gp substrate CYP1A2 inhibitor CYP2C19 inhibitor CYP2C9 inhibitor CYP2D6 inhibitor CYP3A4 inhibitor

ZINC95486081 High Yes Yes No No Yes Yes Yes

MTPA High No No No No No Yes Yes

Karatavicinol High No No No No No No Yes

Taccalin Low No Yes No No No No No

Marmin High No No No No No No No

13-Hydroxyfeselol High No Yes No No No Yes Yes

Betaxanthin Low No No No No No No No

Colladonin High Yes No No No No Yes No

Feselol High Yes No No No No Yes No

ZINC38658035 High No Yes No No No No No

Pectachol High No Yes No No No Yes No

Four compounds out of the 11 showed an appreciable pharmacological property. This included Karatavicinol, Marmin, Colladonin, and Pectachol.

Table A4.
Pharmacological profiling of top 11 compounds characterized by gastrointestinal (GI) absorption, blood brain barrier (BBB) permeant, p-gp substrates, and cytochrome P450 inhibitors.
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Lead compounds Antileishmanial predicted activity

Pa Pi

ZINC95486081 0.224 0.168

MTPA 0.263 0.130

Karatavicinol 0.513 0.021

Taccalin 0.711 0.009

Marmin 0.557 0.024

13-Hydroxyfeselol 0.658 0.030

Betaxanthin — —

Colladonin 0.768 0.006

Feselol 0.768 0.006

ZINC38658035 0.345 0.074

Pectachol 0.694 0.009

Karatavicinol,Taccalin, Marmin, 13-Hydroxyfeselol, Colladonin, Feselol, and Pectachol had a greater positive
prediction above 0.5. If 0.5 < Pa < 0.7, the substance is likely to exhibit activity in experiment, but the probability of
being a known pharmaceutical agent is less.

Table A5.
This table shows the 10 top hit compounds and their predicted antileishmanial activity.

Figure A7.
Root mean square fluctuations of six complexes. The complexes are color coded in the graph. Karatavicinol and
CHEMBL1277380 experienced the highest fluctuation at around residue number 80. Remaining complexes
had similar patterns of fluctuations.
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Figure A8.
The radius of gyration (Rg) plots of seven complexes within 100 ns simulation time. The complexes are
represented in color code in the graph. Marmin showed the most preferentially well folded protein complex with
Rg value of 2.33 nm.

Figure A9.
MM-PBSA plot of the binding free energy decomposition contribution per residue of LmTR–Karatavicinol
complex. Coded red lines represent surrounding active site amino acid residues.
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Figure A10.
MM-PBSA plot of the binding free energy decomposition contribution per residue of LmTR–Pectachol complex.
Coded red lines represent surrounding active site amino acid residues.

Figure A11.
MM-PBSA plot of the binding free energy decomposition contribution per residue of LmTR–Colladonin
complex. Coded red lines represent surrounding active site amino acid residues.
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Figure A12.
Shows a graph of RMSD of the backbone of atoms in nm versus time in nanoseconds (ns). This graph is a
representation of the average distance of the atoms of the residues at the backbone of the target protein. RMSD of
0.25 Å showed deviation from protein backbone.
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Lead compounds 2D structure IUPAC names

Marmin 7-[(E,6R)-6,7-dihydroxy-3,7-dimethyloct-2-enoxy]chromen-2-one

Pectachol 7-[(6-hydroxy-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-hexahydro-1H-
naphthalen-1-yl)methoxy]-6,8-dimethoxychromen-2-one

Colladonin 7-[[(4aS)-6-hydroxy-5,5,8a-trimethyl-2-methylidene-3,4,4a,6,7,8-
hexahydro-1H-naphthalen-1-yl]me thoxy]chromen-2-one

Karatavicinol 7-[(2E,6E,10S)-10,11-dihydroxy-3,7,11-trimethyldodeca-2,6-dienoxy]
chromen-2-one

Table A6.
Structure and IUPAC names of the three novel lead compounds.
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A.1 List of abbreviations

ADMET absorption, distribution, metabolism, excretion and toxicity
AUC area under curve
CYP cytochromes P450
DUD-E directory of useful (docking) decoys-enhanced
GROMACS GROningen MAchine for Chemical Simulations
HPC high performance computing
ID identification
Log P logarithm of the octan-1-ol/water partition coefficient
MD molecular dynamics
MM-PBSA molecular mechanics Poisson Boltzmann surface area
Mw molecular weight
P-gp permeability glycoprotein
PASS prediction of activity spectra for substance
PDB Protein Data Bank
Rg radius of gyration
RMSD root mean square deviation
RMSF root mean square fluctuation
ROC receiver operating characteristic
SDF structure data file
SMILES simplified molecular input line entry system
UFF universal force field
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