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Chapter

Retflectance Spectra Analysis
Algorithms for the
Characterization of Deposits and
Condensed Traces on Surfaces

Ran Aharoni, Asaf Zuck, David Peri and Shai Kendler

Abstract

Identification of particulate matter and liquid spills contaminations is essential
for many applications, such as forensics, agriculture, security, and environmental
protection. For example, toxic industrial compounds deposition in the form of
aerosols, or other residual contaminations, pose a secondary, long-lasting health
concern due to resuspension and secondary evaporation. This chapter explores
several approaches for employing diffuse reflectance spectroscopy in the mid-IR
and SWIR to identify particles and films of materials in field conditions. Since the
behavior of thin films and particles is more complex compared to absorption spec-
troscopy of pure compounds, due to the interactions with background materials,
the use of physical models combined with statistically-based algorithms for material
classification, provides a reliable and practical solution and will be presented.

Keywords: diffuse scattering, remote sensing, spectroscopy, surfaces, detection,
mid wave infra-red, short wave infra-red, classification

1. Introduction

Spectroscopy is one of the foremost and main methods of characterizing mate-
rials of various states of matter—gas, liquid, solid, vapor, and aerosol. The need to
remotely detect and identify residues, traces, contaminations, and small amounts of
chemicals plays an important role in many fields, such as forensics and security [1],
agriculture [2], food quality pharmaceuticals industry, climate research, and others.

Detection of surface contaminations and residues in a standoff manner enables
scanning surface from a safe distance and with no physical contact with the sample,
which may be hazardous or too sparse to necessitate wiping large area. Therefore,
optical sensing can provide an immediate result, and it is favored over surface
sampling techniques such as mass spectrometry techniques. Several studies and
efforts utilizing probing techniques for ion-mobility spectrometry of explosives
form surfaces through surface wiping [3] plasma ionization [4], desorption
electrospray ionization from skin [5], and more. Non-contact preconcentration and
ionization sampling methods, such as airflow-assisted ionization [6] and laser-
induced breakdown spectroscopy [7], enable standoff detection of surface absorbed
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chemicals. For further reading on sampling techniques and explosive detection,
refer to Tourné’s review [8].

Fourier-transform infrared (FTIR) spectroscopy, coupled with attenuated total
reflection (ATR), can be used to probe trace amounts of spores [9] or other particles
on solid surfaces [10], or remotely by imaging [11, 12]. Active methods for powders
detection, in which the investigated sample is artificially illuminated rather than
using ambient light, were also applied in various spectral regions, such as THz
[13, 14], but more commonly in lower wavelengths. The mid-IR region, the most
common for chemical spectroscopy, was pushed forward by developing the quan-
tum cascade laser (QCL) [15, 16]. Laser-assisted spectroscopy for explosive detec-
tion, and other particulated matters, was also employed by various optical
techniques, such as photo-acoustics [1, 17, 18]. Using near-field optical microscopy,
Craig et al. scanned surfaces with condensed residues by scanning QCL with a rapid
acquisition time of 90 s per spectrum [19]. Explosive’s particles and residues using
scanning QCL microscopic hyperspectral imaging enabled a four-second acquisition
time [20]. Advancing technology provides the means for an even shorter detection
time in the range of <0.1 s per spectral cube of trace surface contaminants [21]. A
similar method, i.e., imaging the diffusely scattered radiation from a light source,
was also demonstrated using a CO, laser [22]. The short wavelength of the IR region
was also used for screening envelopes for traces of hazardous powders by
hyperspectral imaging [23]. Multispectral imaging in the visible range was demon-
strated for the detection and discrimination of bloodstains on cotton [24].

IR spectroscopy in the 7-14 pm band, i.e., mid-wave IR (MWIR, also termed
long-wave IR; LWIR), is discussed in the first section of this chapter. This spectral
region is used for inspecting molecular chemical information for gaseous and con-
densed matter. In condensed samples, MWIR spectroscopy is an analytical tech-
nique fitted for trace analysis, but it is non-penetrating, which can be affected by
the surface morphology that scatters the light and affects the resulted spectrum.
Short IR wavelengths (SWIR, 1-2.5 um) spectroscopy, addressed in the second
section of this chapter, is characterized by weaker absorption and larger penetration
depth, resulting in diffuse reflection, allowing deeper investigation of the sample
and revealing its physical and chemical structure. This is not an analytical method
but provides information not only on the sample’s surface but also on the sample’s
core compound and structure.

This chapter is divided into two main sections. The first section elaborates the
issues of MWIR spectroscopy of surfaces and suggests a practical solution based on
a physical model. The second part confronts the challenges of using SWIR for
similar purposes and proposes a solution based on statistical learning.

2. Reflection and scattering: MWIR

The MWIR region, known as the ‘molecular fingerprint region’, reflects the
molecular composition of most chemicals vib-rotational transitions, hence reviling
the molecular structure by its unique spectral fingerprint. Due to its analytical
capabilities, it was favored by spectroscopists for the investigation of the chemical
properties of organic materials, and detection and identification needs. Acquiring
spectrum for gaseous samples is quite straightforward—launching an optical beam
through the sample results in spectral attenuation, i.e., absorbance, caused by the
molecular transitions. The absence of back reflection is due to the lack of specific
boundaries between materials with different refractive indices (n; and n,). How-
ever, in a condensed matter, where the boundaries between materials are well
defined such as in layers and particles, interference scattering and diffraction effect
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the spectral scattering. Each of the following phenomena: interference, diffraction,
and scattering, has its theory models and approximations that describe an interac-
tion of light and matter. In fact, these three phenomena are manifestations of
maxwell’s equations, differ only by mathematical approximations, and therefore
provide ambiguous results at certain conditions.

The simplest case is the reflection from a uniform layer, explained and demon-
strated in the following sub-section, which has an exact solution and can be
expanded to cases of non-uniform layers, such as traces and residues, as depicted in
Figure 1. The upper figure illustrates a light beam that is specularly reflected from a
flat layer. The lower figure presents a surface with residual contamination, which
results in diffuse reflection. The lower figure presents the illumination of a con-
taminated surface. The surface is tilted such as the specular reflection component
(in red), which can be orders of magnitude stronger than the diffuse reflection
component, is directed away from the detector. Part of the diffuse reflection lobe,
which originates mainly from residual traces, is directed to the detector (blue). This
section explores the physics of MWIR reflection from a uniform and non-uniform
coverage of surfaces and suggests methods for detecting and identifying traces and
residues.

2.1 Uniform layers: general

As mentioned, the reflection of light from surfaces can be generally divided into
specular reflection and diffuse reflection components, both illustrated in Figure 1.

Figure 1.

Reflected light from vesiduals on a surface. The upper panel illustrates a uniform layer deposited on a surface
and its specular reflection. The lower panel illustrates drops, particles and vesiduals on a surface and the diffuse
reflection measurement. The black arrows represent the incident light divection.
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The upper panel of the figure presents specular reflection from a finite layer, where
the reflected light is directed to a detector. In thick and highly absorbing layers, the
measured spectral reflection is comprised exclusively by the layer’s molecular
properties, i.e., the absorption coefficient and refractive index as described by
Fresnel equation [25]. When the absorption coefficient and the thickness (and the
light coherence length) allow the substantial optical intensity to be back-reflected
from the carrying surface and complete at least one round trip, interference effects
are observed, as illustrated in Figure 2. The figure illustrates the tracing of an
optical field hitting a finite smooth layer with incidence angle 6. The multiple
reflections and refractions amplitudes are summed up and then squared to get the
light intensity. Almost no surface is smooth enough to avoid the scattered diffuse
reflection lobe (illustrated in Figure 1 lower panel). This component, which obeys
the Lambertian reflection law with highly rough surfaces, is much weaker and
negligible for relatively smooth surfaces. In cases of a partial cover of a surface by
an analyte, it is desired to avoid the specular reflection, which might be orders of
magnitude stronger than the diffuse reflection of the analyte traces and therefore
mask it, as illustrated in Figure 1b and discussed in Section 2.3.

Figure 2 refers to the scenario illustrated in Figure 1a, and presents detailed
optical ray tracing through a finite and uniform thickness layer. An optical beam is
hitting a uniform interface of a transparent layer with parallel facets at incidence
angle ©. Inside the layer, the optical field suffers multiple internal reflections, which
give rise to interference. The reflection of a non-absorbing layer is:

o (VR VR + 4VReVRasin?(05) B
(1- VRIVRy) + 4V/Riv/Ry sin ()

where R; and R, are the intensity reflection coefficient from the facets (calcu-
lated by Fresnel relations) and the optical phase is 8 = 2rn ;)L cos(©)/A for a layer
with thickness L. It is clear that unlike absorption spectroscopy, which measures the
attenuation directly, the interference described in Eq. (1) has a crucial impact on
the reflected spectra. Generalizing Eq. (1) to the case of semi-absorbing material,
for example, a nonvolatile liquid over a glass window, ceramic tile, metallic surface,
or other casual flat surfaces, results in the following equation:

Figure 2.
Ray tracing of a finite uniform layer. E,, Eges ETyans ave the incident, reflected, and transmitted fields,
respectively.
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where a is the attenuation coefficient defined as 4zk,)/A () is the wavelength,
and k(;, is the imaginary part of the refractive index), thus, the reflected spectrum
is affected heavily by the layer thickness, as seen in Figure 3, showing the absorp-
tion of Polymethyl Methacrylate (PMMA) layer, and reflected spectrum from dif-
ferent layers of it. The inset of the figure shows the absorption coefficient,
measured with ATR. The figure shows reflectance measurements of three different
spin-coated layers of PMMA, measured with a spectrally scanning laser, according
to the set-up depicted in Figure 1. The measured spectra cannot be precisely asso-
ciated with the absorption coefficient, from the reasons described above (Eq. (2)).
Significant differences between the three layers can be seen as the peak’s location
are shifts and change their shape. This figure accentuates the resulted differences of
reflected spectra from the same material with different morphology (i.e., layer
thickness). The thickness differences are just a few microns (layers thicknesses are
16, 20, 27 pm), indicated by low correlations of the measured signatures, as shown
in the table given in the below figure.

2.2 Uniform layers: experimental implementation

As explained above, by knowing the optical properties of the layer and the
carrying surface, one can calculate the reflected spectrum, using Eq. (2). This is
exemplified in Figure 4, showing the real and imaginary parts of the refractive
index of poly-dimethyl-siloxane (PDMS) on a metallic surface (Figure 4a), and the
measured spectral reflection from 0.63 pm to 22 pm layers (Figure 4b and c).
Figure 4a presents the measured ATR spectra of PDMS, where the refractive index
(n) is calculated by Kramers-Kronig relations [26]. Figure 4b presents the reflected
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Figure 3.

Reflected spectra of PMMA layers. The inset depicts the absorption coefficient, and the three curves of the figure
represent the reflected intensity from three different uniform layers. The table vepresents the correlation
coefficients between the layers.
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PDMS layers veflection spectrum. (a) Optical properties (n is calculated). (b) Thin layer. (c) Thick layer.

spectrum of a thin layer that matches the absorption coefficient ‘k’ from Figure 4a.
This layer is too thin compared to the wavelength, therefore interference effects are
not observed, and the reflected spectrum correlates well with the absorption coef-
ficient. Figure 4c presents the reflected spectrum from a layer having thickness
more than twice the average wavelength. Consequently, an interference pattern
appears at the edges of the acquired spectrum, where the absorption is negligible.
Also, some deformation of the absorption around 9.5 pm is noticed. The interfer-
ence fringes properties can be used for exact evaluation of the layer thickness by
Egs. (1) or (2)—the spacing between adjacent peaks (called ‘free spectral range’) is
affected by the wavelength, thickness, incidence angle, and the refractive index,
which are the components of the phase parameter § from Egs. (1) and (2). For a
more accurate solution, one should account for the variation in the Snell law for
absorbing medium interface, which may affect the form of Eq. (2) [27].

2.3 Non-uniform layers: diffraction and scattering

Disseminating liquid materials more efficiently can be achieved by spraying and
drizzling, which cover larger areas with drops or droplets. Such dispersal processes
usually result in size distribution similar to lognormal [28], which can be very wide
and with standard deviation spread from a few microns to hundreds of microns.
The size distribution of sprayed droplets has an important effect on the perfor-
mance of agrochemical systems [29] and combustion engines [30] etc., mainly
characterized by scattering and diffraction measurements of levitating particles.
Mostly, the efforts are towards covering large volumes and surfaces with droplets
for the highest efficiency of dissemination and surface coverage. The results are
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similar to the lower panel of Figure 1, illustrating residuals and traces on a planar
surface. The surface is tilted to avoid the specular reflection component that might
mask the diffuse reflection component, which can be orders of magnitude weaker.

Light scattering is an extensive and well understood physical phenomenon,
originating from Maxwell equations in the form of the wave equation [31], and
depends on many factors such as the wavelength of light, incidence angle, material
properties of the scatterer (absorption and refraction), and geometric factors of
scatterers and illumination. As such, many scattering theories and models were
developed, each describes these phenomena under different conditions and
assumptions. For example: (1) Mie theory (full name: Lorenz-Mie-Debye theory)
describes general scattering by homogeneous, isotropic spheres with no size limits
but is more commonly used where the scatterer size is comparable to the light
wavelength [32], and have many further approximations for different sizes and
shapes of scattering particles. (2) Rayleigh scattering theory (Rayleigh-Gans-
Debye) describes scattering from particles smaller than the wavelength [33], and
more. In cases where the dissemination process, and hence the resulting size distri-
bution, is unknown, it is unclear how to choose the most suitable approximation.
Moreover, in liquid spray sediment over a surface, the interaction between the
surface and the droplets may dramatically change the size and geometry of the
droplets, and each scattering model might result in a different solution. We should
note that most of the interactions of light with matter are fundamentally the same,
and all are described by Maxwell’s equations. More specifically, interference is a
basic outcome of these equations, and it is the cause of diffraction and scattering,
which are all different manifestations of light interaction with matter, and the only
difference is the approximation of different theories. Therefore, it is expected that
scattering by a sphere and reflection by a slab are similar [34, 35]. Accordingly, it
will be demonstrated that the above-presented layers model (LM) can be used in
many realistic scenarios for the detection and identification of sprayed liquid on a
surface. Similarly, it is suggested that unknown condensed residuals on a surface
can be detected, identified, and quantified by a simple reflection model instead of a
complicated specific scattering model.

Figure 5 presents measured and calculated diffuse reflection normalized spectra
of PDMS, the solid black spectra were calculated using the LM presented in the
previous section, and the red dashed curves represent measure spectra of laboratory
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Figure 5.
Diffuse veflection measurement (solid black) of PDMS spray-on metalic surface, vs. LM (dashed red)
(from [36]).
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experiment, where PDMS was sprayed on a metallic surface and measured with EC-
QCL, using the apparatus of in Figure 1. The droplet’s size distribution was between
a few microns and dozens of microns, where the majority was 10 microns and less.
To resolve the thickness parameter (L) for the LM (see Eq. (2), where § = 8(1)), the
LM was calculated repeatedly for all the desired thickness range and correlated to
the experimental results, while the best correlation is presented in the figure. Non-
uniform coverage means non-uniform thickness and non-continuous coverage;
hence the LM can provide an estimation of the ‘effective thickness’ (ET) and
relative surface coverage using the following:

I(}‘)total = OCIO‘)PDMS + (1 - 0‘)I(}“)Subs (3)

where o is the coverage factor, I Ippms and Isyps are the total spectral mea-
surement, PDMS contribution, and reflected intensity of the substrate, correspond-
ingly. It was found that the lab experiment corresponds to 2 pm ET and 2%
coverage.

As demonstrated in Figures 3 and 4 for layers, and in Figure 5 and Ref. [36] for
sprayed traces, the spectral scattering of different ET expresses in non-identical
spectral responses, i.e., different peaks heights and locations. Figure 5 and Ref. [36]
exemplify that fitting the best correlated LM result to unknown dissemination
results in high certainty identification [36]. Using this approach of forcing the LM
over non-uniform coverage, we can circumvent the requirement of the different
scattering models to characterize the morphological properties of the analyte and
provide identification and also a good estimation of its coverage features.

3. Detection and identification in the SWIR

Although, the absorption spectrum of the invisible range was discovered in 1800
was at the near-infrared (NIR) [37-39], it was almost ignored until the 1950s, as it
was not considered for analytical purposes. Spectroscopic investigation of
chemicals, for various purposes, was perused in the longer wavelengths, i.e., 7-

14 pm, which provides specific information regarding the molecular structure of
materials, which are expressed in distinctive narrow absorption peaks. The spec-
troscopy in the VIS-SWIR range (sometimes referred to as NIR, 800-2500 nm)
exhibits broad overlapping peaks resulting from combinations of overtones and
transitions in the MWIR. Theoretically, under the assumption of harmonic poten-
tial, part of the transitions is forbidden, resulting in low absorption. In the 1950s,
SWIR spectroscopy was pushed forward due to technical and analytics progress,
i.e., the development of lead sulfide semiconductor detectors and improvement in
computing and data analysis techniques—chemometrics [40]. Consequently, this
spectral range became more prominent in industry and research, providing rapid,
nondestructive measurements for various fields [41, 42]. Another difference
between SWIR and MWIR is the increased penetration depth of SWIR which
effects the diffusion of the reflected light, as illustrated in Figure 6. As seen from
the figure, the reflection of light from a solid sample occurs in two forms—specular
and diffuse reflection. In contrast to MWIR, which is reflected from the surface,
radiation in the SWIR will penetrate the sample and therefore is affected both by
absorption and scattering. Various studies utilized this property for the investiga-
tion of deeper layers of samples, such as fruits and vegetables having penetration
depth between 1 and dozens of microns [43, 44], or near-surface (~1 mm) as in soil
[45]. Another advantage of using SWIR is the lack of blackbody radiation from the
sample and the high SNR of detectors. For example, among other advantages and
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Figure 6.
Reflection measurements—spectral (rved) and diffuse (green) veflection. In cases where the beam penetrated the
sample, it suffers.

uses of SWIR spectroscopy, Manely indicated the increased penetration depth
(compared to the MWIR), that can be utilized to rapidly analyze biological mate-
rials such as food products without sample preparation [41].

Reflectance measurements produce a large amount of data that have to be
analyzed in real-time. For example, Park et al. utilized reflectance spectroscopy for
real-time in-line poultry fecal detection [46]. They placed a dedicated camera to
measure the reflectance spectrum in every pixel in the image—a hyperspectral
imager (HSI—see Figure 7). The HSI was integrated into the production line, so
both the data acquisition and interpretation are performed in real-time with no
need for exhaustive sample preparation techniques. Similarly, Sendin et al.
described the application of SWIR HSI for the quality and safety evaluation of
cereals which are an essential part of the global population diet [42]. The HSI
measurements can be performed in various scales enabling monitoring of a single
grain to detect, for example, fungi, or on a larger scale to determine the overall
cereal stock quality. Another area in which spectroscopy in the SWIR gained popu-
larity is geophysical mapping. Goetz, one of the pioneers in this vibrant field of

Reflectance

Figure 7.

An illustration of the HSI measurement. A scene is sampled in various wavelengths vesulting in multiple images,
which are referred to as a data cube. Each pixel in the data cube contains both spatial and spectral information.
The right side of the figure shows the reflectance spectrum extracted from a pixel in the upper left corner of the
image.
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research, recognized the future advantages of imaging remote sensing in the 1980s,
for the identification of earth surface materials by their reflectance spectra [47]. For
example, Ben-Dor et al. mapped soil properties using air-born HSI in the visible
SWIR range (DAIS-7915) [48]. They developed methods to map soil organic matter,
soil field moisture, saturated moisture, and soil salinity. These studies and many
others utilize the robustness of the spectral measurements in the SWIR. However,
two challenges have to be considered; the first one is the atmosphere effect of the
reflected light, and the second one is data analysis. Brook and Ben-Dor, developed a
calibration technique that utilizes targets placed in the trajectory of the airborne
sensor [49]. The calibration process (supervised vicarious calibration—SVC)), is
performed during the mission and accounts for sensor properties and atmospheric
interference.

Data analysis also received significant attention, and several algorithms have
been introduced over the years to detect sample anomalies or specific target mate-
rials in imaging and non-imaging spectroscopy. Manolakis and Shaw described
several algorithms for analyzing HSI data [50]. In general, these algorithms are
designed to find indications for a phenomenon of interest. For example, the pres-
ence of a specific material that exceeds the naturally occurring variability in the
sample, which is to be expected in many real-life applications such as process
control, geophysical mapping and other applications in which sample preparation is
impractical. Some of these algorithms can resolve common situations in remote
sensing, where the target material occupies only a portion of the sampling area, i.e.,
linear mixing between the reflectance spectrum of the target material and unknown
background material. However, in some specific cases, non-linear mixing may also
occur since the incoming light might pass through a thin film of one material and
then be reflected by the background material that supports this film—“intimate
mixing”, in which the resulted spectrum is a dot product of the film and the
supporting material [51]. Kendler et al. developed an algorithm that automatically
resolves non-linear mixing between background and target materials by utilizing
the benefits of HSI [23, 52]. The algorithm seeks a pixel without the target material
(clear background) having a similar reflectance spectrum supporting the target
material (target pixel). Once such clear background is located in the image, the pure
spectrum is extracted and compared to a library reference. It was also shown that
the quality of extraction of the pure spectrum increases as the physical distance
between the clear background and the target pixel decreases [53]. Conversely, in
non-imaging spectroscopy, such a process may be impractical. This is exemplified
in Figure 8, presenting normalized laboratory measurements of commercial granu-
lated sugar and powdered sugar (<125 pm), disseminated over PVC and laminated
wood surfaces. The measurements were conducted with a spectrometer (ASD
FieldSpec® 4 Hi-Res) at 350-2500 nm using a custom accessory sampling contact
probe consisting of a Halogen lamp and a collecting fiber as input. This tabulated
figure accentuates the diversity and complexness of SWIR reflectance spectroscopy
described above, by presenting significant spectral differences of four different
types of measurements of the same chemical. It shows that both the surface and the
physical state of the sample affects the reflected spectrum in a way that cannot be
eliminated using a simple non-linear unmixing model.

Therefore, it is concluded that utilizing SWIR spectroscopy for a minute amount
of material placed on a surface might pose a significant analytical challenge.
Although, a simple unmixing model can be applied in some cases, where the back-
ground surface is opaque, the sample has low light scattering and absorption, and
the measurement is performed using an imaging spectrometer. However, it is hard
to guarantee such a set of conditions in many cases that may be ubiquitous in real-
life applications.

10
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Diffuse reflectance of sugar (granulated and powdered) on PVC and wood surfaces.

3.1 Classification of powdery residuals

Spectral detection and classification of powdery and condensed materials for
security, safety, food industry hygiene, etc., was suggested at various spectral
regions, from THz [13, 14, 54, 55] through the MWIR [12, 34, 35], SWIR [56, 57] and
more. However, in lower wavelengths (VIS-SWIR), most powders, especially fine-
grained powders, appear visually similar and therefore hard to distinguish, have little
color and texture, and appear white (due to scattering). Also, the spectral contribu-
tion of the carrying surface tends to blend with the powder’s spectrum, as discussed
above. The literature shows many examples for powders and materials detection and
classification, utilizing the availability and low cost of using the visual and near IR
ranges for that task. Spectral imaging and computer vision was employed by Zhi,
who showed reasonable classification accuracy (60-70%) for discrimination of 100
powders, using three cameras (RGB, NIR, SWIR) and 12 minutes acquisition time
[58]. Classification of surfaces materials, also by computer vision, was used by
capturing the micro-geometry and reflectance properties of the surfaces, using a
photometric stereo sensor with a 3 cm working distance [59]. These examples require
expensive light sources or complicated measurement apparatus, despite the use of
the visual regime, which is supposed to be cheaper and less complex. This section
presents the VIS-SWIR non-imaging spectral measurements and data analysis
approach, for powders on various surfaces, with low hardware and software
requirements, for powders detection and identification through classification.

3.1.1 Data acquisition and analysis

Different powders (sodium carbonate, Arizona dust, tryptophan, tenax, caf-
feine, hepes, copper) were disseminated on various surfaces (ceramics, laminated

11
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wood, PCV, cardboard, Perspex, acrylic glass, Teflon, painted and bare car metal,
plastics, marble stone, pebble), and their VIS-SWIR spectrum was acquired using a
non-imaging spectrometer. The data were collected using a spectrometer
(Filedspec4 from ASD, with 2151 sampling points from 350 to 2500 nm) and a
sampling contact probe consisting of a Halogen lamp and a collecting fiber as input.
For each surface, various measurements were conducted, having different concen-
trations of powder per unit surface. Thus, a large dataset was collected, comprised
of a range of intensities, and different relations between absorption peaks. Another
source of spectral diversity is the size, shape, and orientation of the measured
particles, which affects their scattering properties. It is worth noticing that due to
these scattering effects, the orientation (pivot) of the surface also affects its
reflected spectrum. These measurements produce a diverse dataset, well suitable for
statistical learning methods, aka machine learning.

Supervised learning (classification) is the process of predicting the category of a
given data point, based on a label train-set. The learning algorithm is supplied with
a labeled train-set, in which every measurement is labeled in advance and learns the
mapping function between the new input data and its response (label). Some data
sets are linearly separable, and can be processed with linear algorithms such as SVM
(support vector machine), while other problems require a higher-order hyper-plane
to resolve the data. Applying some effort (such as kernel methods) enables linear
learning algorithms to learn non-linear decision boundaries. Another approach to
‘upgrade’simple algorithm performance is ensemble learning, in which weak
learners are ensemble together to provide predictions that outperform the use of a
single type of these learners, and to learn more complicated decision boundaries.
One of these algorithms is random forest (RF, also known as tree bagger), which
uses classification trees [60] and bootstrap aggregation random processes. The RF
algorithm is trained using ~70% of the data (training set), and the produced model
is tested on the rest of the unseen data (test-set). On the train set data, RF performs
a process of bootstrap aggregation (bagging) in which a subset of the train set (2/3)
is randomly picked iteratively to produce a classification model whose results are
examined on the rest third of the data- the validation set. This random process, and
the random selection of predictors at each tree node, decrease the variance errors
and enable the production of another measurement of the predictor—the “out-of-
bag error” (OOBerr). By comparing the errors produced with and without each
predictor, the OOBerr scores each predictor to note its contribution to the learning
process. For further reading about RF, see Breiman [61-62].

Figure 9 presents the confusion matrix' presenting the classification results of
the aforementioned powders and surfaces, showing total accuracy of almost 90%,
and high true positive rates (TPR, noted in the right vertical column). Note that the
presented powders appeared white and indistinctive to the human eye, except
copper that is in the form of metallic reddish flattened flakes. Nonetheless, all
powders (except tryptophan) were classified with a similar TPR. The measurements
are not normalized by the surface signature, exemplifying the strength of the
classification process, which learns to ignore the distracting influence of the carry-
ing surface.

As explained, the OOBerr parameter evaluates the contribution of each predictor
(i.e., wavelength) to the learning process. By using only some of the top influencers,
it is possible to avoid bad predictors, and reduce the required data volume, thus

" The confusion matrix compares the true class with the predicted class for each class. The diagonal

terms represent the true classification, and its ratio to the total matrix represents the accuracy.
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Figure 9.
Confusion matrix—classification of powders on surfaces, using hyper-spectral data.

speeding the whole process. Figure 10b illustrates the importance of all 2151 pre-
dictors from the OOBerr computation, where the top 5% are marked in black. The
confusion matrix in Figure 10b shows RF classification with these 108 selected
features. We see that the classification performance is almost unchanged, and the
accuracy has an insignificant decrease of 0.4%.

3.2 Application: classification of wheat yellow rust disease

Wheat is one of the world’s major crops and provides a substantial amount of
starch, proteins, vitamins, and dietary calories worldwide. One of the major threats,
on a global scale, to wheat production is Yellow Rust (YR) disease, which is the
most damaging disease of wheat on a global scale and causes an annual loss of
millions of tons of wheat harvest valued at around 1G USD. Due to global warming
and the evolution of YR strains adapted to higher temperatures, YR damages wheat
crops in areas where it had not been previously reported. The spores are carried
with the winds and reaches high altitudes so it can travel long distances. YR has a
complex life cycle that includes several hosts and spore stages, which eventually
appear as yellow particles (size of a few dozens of microns) covering the leaf
surface, as seen in Figure 11 left. Managing yellow rust can be utilized through the
application of fungicides [63, 64], using resistant plants [65], and tracking [66].
While using resistant varieties is an efficient strategy, it poses some challenges for
YR detection for two main reasons: (1) co-evolution of the host wheat and the
fungal pathogen, might enable YR to overcome the YR-resistant genes mechanism.
Hence, resistant plants also need monitoring for disease detection. (2) The Hyper-
sensitive Response (HR) of a resistant leaf appears to be visually similar to YR
disease. This is exemplified in Figure 11 (right), presenting HR and YR early stages,
which are visually hard to discriminate. This situation resembles the above-
described detection of powder on a carrying surface, where the surface is the green
leaf, and the powder is the powdery particle of YR spores. Therefore, applying
similar measurements and data processing methods can successfully classify the
disease stages and HR response for the early detection of YR in the field.
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Figure 10.
(a) Confusion matrix—classification of powders on surfaces, using top 5% important predictors presented in (b).

Figure 11.

YR symptoms on susceptible and vesistant wheat leaves. Left—fully developed YR. Right: vesistant (top) and
susceptible (bottom) wheat leaves vesponse to YR. The top leaf exhibits HR symptoms, which is visually similar
to YR early symptoms in the lower leaf.
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Figure 12.
True positive rates (TPR) of early stages of sporulation vs. four levels of the predictors set: hyperspectral (all
2151 wavelengths), predictor-selection (top 5% important); multi-spectral (5-bands), and RGB.

Figure 12 illustrates the results of the classification process. The VIS-SWIR
spectrum of hundreds of wheat leaves in various stages was acquired and classified
with RF. Some of the leaves were green and healthy, some susceptible to YR,
exhibiting sporulation in several stages (from the onset of sporulation; sporulation
early stages; final sporulation stages), and some resistant leaves exhibiting several
stages of HR (early stages and fully developed HR). The figure presents the TPR of
sporulation early stages at four different data dimensions. Using all 2151 predictors
produces a TPR of 92.2%. Using the feature selection process described in the
previous section produced a slight decrease (TPR of 90.2%), using only 108 pre-
dictors. Further directionality reduction to five spectral bands (conventional agri-
cultural imager) results in a TPR of 88%. Using only RGB channels results in a TPR
of 78.4%. This noteworthy result pledges that YR detection does not require expen-
sive specific hardware, and enables on-site monitoring by non-experts.

4. Summary/conclusions

Spectral light reflection can be used for the identification of particulate and
condensed chemicals. In controlled situations, such as laboratory measurements,
the sample can be manipulated to provide consistent high-quality reflectance spec-
tra that can be used to characterize and identify the sample at hand. Such manipu-
lations involve classical sample treatment techniques such as purification, grinding,
and pressing to a pellet. However, standoff sensing of un-manipulated samples
results in noisy measurements, requiring more sophisticated data analysis to extract
meaningful information. LWIR spectrum does contain specific, unambiguous
information of the molecular structure, but it involves scattering phenomena that
require an adapted model, accounting for the sample’s physical geometrical proper-
ties. A simple unified model was suggested to bypass this issue using a simplified
model. A different analysis method was demonstrated in the case of light scattering
in the SWIR. In this case, the reflectance spectra are broader and weaker, and a
machine-learning model is used to classify the sample according to its typical
reflectance. An additional consequence of the machine-learning model is the
assessment of the contribution of each wavelength to the accuracy of the classifica-
tion. Using only the important wavelength can speed up the computation and
simplify the measurement, thus enhancing the usability of reflectance spectroscopy.
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List of abbreviations

ATR attenuated total reflection
EC-QCL external-cavity quantum cascade laser
ET effective thickness

FTIR Fourier transform infra-red (spectroscopy)
HIS hyperspectral imager

HR hypersensitive response

IR infra-red

LM layers model
NIRMWIR/SWIR near/mid/short wave infrared
OOBerr out-of-bag error

PDMS poly-dimethyl-siloxane
PMMA polymethyl methacrylate
PVC polyvinyl chloride (polymer)
QCL quantum cascade laser

RF random forest

RGB red, green, blue

SNR signal-to-noise ratio

SVM support vector machine

TPR true positive rate

VIS visual (visual spectral range)
YR yellow rust
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