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Chapter

Fast Computation of the EM
Algorithm for Mixture Models
Masahiro Kuroda

Abstract

Mixture models become increasingly popular due to their modeling flexibility
and are applied to the clustering and classification of heterogeneous data. The EM
algorithm is largely used for the maximum likelihood estimation of mixture models
because the algorithm is stable in convergence and simple in implementation.
Despite such advantages, it is pointed out that the EM algorithm is local and has
slow convergence as the main drawback. To avoid the local convergence of the EM
algorithm, multiple runs from several different initial values are usually used. Then
the algorithm may take a large number of iterations and long computation time to
find the maximum likelihood estimates. The speedup of computation of the EM
algorithm is available for these problems. We give the algorithms to accelerate the
convergence of the EM algorithm and apply them to mixture model estimation.
Numerical experiments examine the performance of the acceleration algorithms in
terms of the number of iterations and computation time.

Keywords: the EM algorithm, normal mixture models, acceleration of
convergence, the vector ε algorithm, restarting procedure, initial value selection,
the emEM algorithm

1. Introduction

Mixture models become increasingly popular due to their modeling flexibility
and are applied to the clustering and classification of heterogeneous data, see [1–3].
The EM algorithm [4] is largely used for the maximum likelihood estimation of
mixture models because the algorithm is stable in convergence and simple in
implementation. Despite such advantages, it is pointed out that the EM algorithm is
local and has slow convergence as the main drawback.

To circumvent the problem of slow convergence of the EM algorithm, various
acceleration algorithms incorporating optimization methods are proposed. The
optimization methods include the multivariate Aitken method [5], the conjugate
gradient method [6], and the quasi-Newton method [7, 8]. However, these methods
require matrix computation such as matrix inversion or evaluation of Hessian and
Jacobian matrices and a line search for step length optimization. Therefore, their
acceleration algorithms tend to lack one or more of the nice properties of the EM
algorithm, although they may converge faster than the EM algorithm.

As another approach, the ε-accelerated EM algorithm [9] is proposed to acceler-
ate the convergence of the EM algorithm by using the vector ε (vε) algorithm [10]
that is a vector extrapolation algorithm [11, 12]. The vε algorithm can accelerate the
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convergence of the sequence of estimates from the EM algorithm, and therefore,
the ε-accelerated EM algorithm does not require any modification of the E- and
M-steps of the EM algorithm. This point is the advantage of the ε-accelerated
EM algorithm over other acceleration algorithms using the optimization methods.
To reduce the number of iterations and computation time of the ε-accelerated EM
algorithm, the εR-accelerated EM algorithm [13] is developed. The algorithm
improves the computation speed of the ε-accelerated EM algorithm by embedding a
restarting procedure. Then the restarting procedure finds a value for restarting the
EM iterations such that a newly generated sequence of EM iterations from the value
moves quickly into a neighborhood of a stationary point. We use the ε-accelerated
EM and εR-accelerated EM algorithms for parameter estimation.

In application of the EM algorithm to mixture models, the algorithm is sensitive
to the choice of the initial value and may find estimates at a local maximum of the
log-likelihood function. Several strategies are proposed to efficiently initiate the
EM algorithm for getting the global maximum of the log-likelihood function, see
[14–17]. We use the emEM algorithm [14] for the mixture model estimation and
improve its computation speed by the ε-accelerated EM and εR-accelerated EM
algorithms.

The chapter is organized as follows. Section 2 describes the EM algorithm for
normal mixture models. In Section 3, we introduce the ε-accelerated EM and εR-
accelerated EM algorithms. Section 4 presents numerical experiments to evaluate
the performance of these acceleration algorithms. In Section 5, we provide an
acceleration algorithm that applies the ε-accelerated EM and εR-accelerated EM
algorithms to the emEM algorithm. Numerical experiments in Section 6 study the
effects of these acceleration algorithms on the emEM algorithm. In Section 7, we
present our concluding remarks.

2. The EM algorithm for normal mixture models

Let Y1, … ,Yn be p-dimensional random vectors. Assume that an observed data
vector yi of Yi arises from a mixture distribution of G components with density

f yijθ
� �

¼
X

G

k¼1

λkϕ yijμk,Σk

� �

, (1)

where ϕ yijμk,Σk

� �

is the k-th component density of a p-variate normal distribu-
tion Np μk,Σkð Þ with mean vector μk, variance–covariance matrix Σk, λk is the k-th

mixing proportion such that 0< λk < 1 and
PG

k¼1λk ¼ 1, and θ ¼

λ1, … , λG, μ⊤1 , … , μ⊤G, vecΣ
⊤
1 , … , vecΣ⊤

G

� �⊤
. Here vecΣk is the vectorization of Σk.

The log-likelihood function of θ for y ¼ y1, … ,yn

� �

is

ℓo θð Þ ¼
X

n

i¼1

log f yijθ
� �

¼
X

n

i¼1

log
X

G

k¼1

λkϕ yijμk,Σk

� �

( )

: (2)

Direct maximization of the function (2) is complicated, and then the maximum
likelihood estimate (MLE) of θ is usually found via the EM algorithm [4].

In the setting of the EM algorithm, we regard yi as incomplete data and intro-

duce the component-label vector Zi ¼ Zi1, … ,ZiG½ �⊤ of zero–one indicator variables
such that Zik ¼ 1 indicates that yi arises from the k-th component of the mixture
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model and Zik ¼ 0 otherwise. Assume that Zi has a multinomial distribution

Mu 1, λð Þ with parameter λ ¼ λ1, … , λG½ �⊤. In the mixture model, the complete data

vector is xi ¼ y⊤
i , z

⊤
i

� �⊤
, where yi is the observed vector and zi is the unobserved

vector of Zi. Then xi has a mixture distribution with density

f xijθð Þ ¼
Y

G

k¼1

λkϕ yijμk,Σk

� �� �zik : (3)

Given x ¼ x1, … ,xn½ �, the log-likelihood function of θ is

ℓc θð Þ ¼
X

n

i¼1

X

G

k¼1

zik log λkϕ yijμk,Σk

� �

, (4)

and the MLE θ̂ of the function (4) is obtained from

λ̂k ¼
X

n

i¼1

zik=n, (5)

μ̂k ¼
X

n

i¼1

zikxi=
X

n

i¼1

zik, (6)

Σ̂k ¼
X

n

i¼1

zik xi � μ̂kð Þ xi � μ̂kð ÞT=
X

n

i¼1

zik (7)

for k ¼ 1, … ,G. The EM algorithm finds θ̂ by iterating the expectation step

(E-step) and the maximization step (M-step). Let θ tð Þ be the t-th estimate of θ in
parameter space Θ. The E-step calculates the Q function that is the conditional

expectation of ℓc θð Þ given y and θ tð Þ and is written as

Q θjθ tð Þ
� 	

¼ E ℓc θð Þjy, θ tð Þ
h i

: (8)

Mixture models treat z ¼ z1, … , zn½ � as missing data. The E-step calculates the

conditional expectation of Zik given y and θ tð Þ:

τ
tþ1ð Þ
ik ¼ E Zikjy, θ

tð Þ
h i

¼ Pr Zikjy, θ
tð Þ

� 	

¼ λ
tð Þ
k ϕ yijμ

tð Þ
k ,Σ

tð Þ
k

� 	




P

G

k¼1

λ
tð Þ
k ϕ yijμ

tð Þ
k ,Σ

tð Þ
k

� 	

:

(9)

The quantity τ
tð Þ
ik is the posterior probability that yi belongs to the k-th

component of the mixture. From Eq. (9), the Q function (8) is given by

Q θjθ tð Þ
� 	

¼
X

n

i¼1

X

G

k¼1

τ
tþ1ð Þ
ik log λkϕ yijμk,Σk

� �

: (10)

The M-step finds θ tþ1ð Þ maximizing the Q function (10) with respect to θ over Θ

given θ tð Þ:
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θ tþ1ð Þ ¼ arg max
θ∈Θ

Q θjθ tð Þ
� 	

: (11)

When replacing zik in Eq. (5) with τ
tþ1ð Þ
ik in the E-step, we obtain

λ
tþ1ð Þ
k ¼

1

n

X

n

i¼1

τ
tþ1ð Þ
ik : (12)

From Eqs. (6) and (7), we also have

μ
tþ1ð Þ
k ¼

X

n

i¼1

τ
tþ1ð Þ
ik xi




X

n

i¼1

τ
tþ1ð Þ
ik , (13)

Σ̂
tþ1ð Þ

k ¼
X

n

i¼1

τ
tþ1ð Þ
ik xi � μ

tþ1ð Þ
k

� 	

xi � μ
tþ1ð Þ
k

� 	T



X

n

i¼1

τ
tþ1ð Þ
ik : (14)

We describe the EM algorithm for the normal mixture model in Algorithm 1.

Algorithm 1: The EM algorithm.

E-step: Calculate τ tþ1ð Þ
k ¼ τ

tþ1ð Þ
i1 , … , τ tþ1ð Þ

iG

h iT
using Eq. (9) and update τ tþ1ð Þ ¼

τ1
tþ1ð Þ, … , τ tþ1ð Þ

n

h i

.

M-step: Estimate θ tþ1ð Þ from Eqs. (12)–(14).

3. Acceleration of the EM algorithm

In order to accelerate the convergence of the EM algorithm, we can use the
ε-accelerated EM algorithm [9] and the εR-accelerated EM algorithm [13]. The
ε-accelerated EM algorithm incorporates the vector ε (vε) algorithm [10] in the EM
algorithm. The εR-accelerated EM algorithm improves the computation speed of the
ε-accelerated EM algorithm by adding a restarting procedure.

We briefly introduce the vε algorithm. Let θ tð Þ
n o

t≥0
be a linearly convergent

vector sequence from an iterative computational procedure and converge to a

stationary point θ̂ as t ! ∞. Then the vε algorithm generates a sequence ψ tð Þ
� �

t≥0

that converges to θ̂ faster than θ tð Þ
� �

t≥0
by using

ψ t�1ð Þ ¼ θ tð Þ þ Δθ tð Þ
h i�1

� Δθ t�1ð Þ
h i�1

� ��1

, (15)

where Δθ tð Þ ¼ θ tþ1ð Þ � θ tð Þ and θ½ ��1 ¼ θ=∥θ∥2 ¼ θ=θ⊤θ, see Appendix A for
details. The algorithm enables accelerating the convergence of a slowly convergent
vector sequence and is very effective for linearly convergent sequences.

We define the EM algorithm as a mapping θ↦M θð Þ from Θ to Θ such that each

iteration θ tð Þ ! θ tþ1ð Þ is denoted by

θ tþ1ð Þ ¼ M θ tð Þ
� 	

: (16)
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Algorithm 2: The ε-accelerated EM algorithm.

E-step: Estimate θ tþ1ð Þ from Eq. (16).

ε acceleration step Calculate ψ t�1ð Þ from θ tþ1ð Þ, θ tð Þ, θ t�1ð Þ
n o

using Eq. (15).

The ε-accelerated EM algorithm is shown in Algorithm 2. Given a convergence
criterion δ, the ε-accelerated EM algorithm iterates until

∥ψ t�1ð Þ � ψ t�2ð Þ∥2 < δ: (17)

Assume that the sequence θ tð Þ
n o

t≥0
from the EM algorithm converges to a

stationary point θ̂. The εR-accelerated EM algorithm generates ψ tð Þ
� �

t≥0
converging

to θ̂ faster than θ tð Þ
n o

t≥0
and provides θ̂ from the final value of ψ tð Þ

� �

t≥0
when the

algorithm terminates.
The theorems with the convergence and acceleration of the algorithm are given

in [18].
As shown in Algorithm 2, the ε-accelerated EM algorithm generates two parallel

sequences, ψ tð Þ
� �

t≥0
in the ε acceleration step and θ tð Þ

n o

t≥0
in the EM step. At the ε

acceleration step, the EM estimate M ψ t�1ð Þ
� �

from ψ t�1ð Þ may have a larger log-

likelihood function than the current EM estimate θ tþ1ð Þ, that is,

ℓo M ψ t�1ð Þ
� 	� 	

>ℓo θ tþ1ð Þ
� 	

: (18)

When this occurs, the EM step is restarted with M ψ t�1ð Þ
� �

as the initial value,

and the ε acceleration step gets ψ tð Þ from ψ t�1ð Þ,M ψ t�1ð Þ
� �

,M M ψ t�1ð Þ
� �� �� �

. Notice
that at the restarting point, we still generate the EM sequence using three estimates

obtained from the same initial value ψ t�1ð Þ. By this manner, we keep to always apply
the ε-acceleration to a sequence obtained by the EM mapping M from the same
initial value.

By our experiments, the restarting procedure is performed almost every time

when we only use the restarting condition ℓo M ψ t�1ð Þ
� �� �

>ℓo θ tþ1ð Þ
� 	

, and then it

inefficiently takes much computation time. As one more condition for restarting the

EM step, we give ∥ψ t�1ð Þ � ψ t�2ð Þ∥2 ≤ δRe > δð Þ and reset δRe ¼ δRe=10
k at each

restarting, where k is an integer, such as one. By adding this condition, we can

control the restarting frequency. For example, set δ ¼ 10�12, and initialize δRe ¼ 1
and k ¼ 1. Then the restarting procedure is performed at most 12 times.

The restarting conditions are summarized as follows:

i. ℓo M ψ t�1ð Þ
� �� �

>ℓo θ tþ1ð Þ
� 	

, and

ii. ∥ψ t�1ð Þ � ψ t�2ð Þ∥2 < δRe.

Condition (i) means that the log-likelihood function can be increased by
restarting. Condition (ii) is used to reduce the frequency of restarting. This is the
key idea of the restarting procedure. The εR-accelerated EM algorithm is the
ε-accelerated EM algorithm with the restarting procedure using conditions (i) and
(ii) and is given in Algorithm 3.
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Algorithm 3: The εR-accelerated EM algorithm.

EM step: Estimate θ tþ1ð Þ from Eq. (16).

ε acceleration step: Calculate ψ t�1ð Þ from θ tþ1ð Þ, θ tð Þ, θ t�1ð Þ
n o

using Eq. (15).

Restarting step: If ℓo M ψ t�1ð Þ
� �� �

>ℓo θ tþ1ð Þ
� 	

and ∥ψ t�1ð Þ � ψ t�2ð Þ∥2 < δRe, then set

θ tð Þ ¼ ψ t�1ð Þ, (19)

update

θ tþ1ð Þ ¼ M ψ t�1ð Þ
� 	

, (20)

and reset

δRe ¼ δRe=10
k: (21)

The εR-accelerated EM algorithm also gives θ̂ from the final value of ψ tð Þ
� �

t≥0
.

When the restarting step effectively finds values for restating the EM step, the
εR-accelerated EM algorithm greatly reduces the number of iterations and compu-
tation time for convergence. The advantage of the εR-accelerated EM algorithm
over the ε-accelerated EM algorithm is that it restarts the EM step at a better current
estimate and also keeps that the log-likelihood function increases in the iterations.

Theoretical results of convergence and speed of convergence of the
εR-accelerated EM algorithm are given in [13].

4. Numerical experiments for the acceleration of the EM algorithm

We investigate how much faster the ε-accelerated EM and εR-accelerated EM
algorithms converge than the EM algorithm. All computations are performed with
the statistical package R [19] executing on Windows, Intel Core i5 3.00 GHz with
8 GB of memory.

The R package MixSim [17, 20] is used to simulate a random data matrix y

having a p-variate normal mixture distribution of G components. We generate y ¼

y1, … , y1000
� �

and find the MLE of θ using the EM, ε-accelerated EM, and εR-
accelerated EM algorithms. The procedure is replicated 100 times. Here, we

consider p ¼ 2, 3, 4, 5, 6 and G ¼ 4. For all experiments, we set δ ¼ 10�12 for
convergence of the algorithms, δRe ¼ 1 and k ¼ 1 for the restarting condition of the
εR-accelerated EM algorithm. Initial values of the algorithms are obtained from the
k-means method using the R function kmeans.

Tables 1 and 2 report the results of the number of iterations and CPU time of
these algorithms for each p. The CPU times (in seconds) are measured by the R
function proc.time that times are typically available to 10 milliseconds. For all
computations, the acceleration algorithms found the same MLEs as those from the
EM algorithm.We see from the tables that the EM algorithm requires a large number
of iterations for convergence, whereas two acceleration algorithms converge a
smaller number of iterations than the EM algorithm. Then the εR-accelerated EM
algorithm can greatly reduce both the number of iterations and CPU time.

To measure the speed of convergence of the EM and two acceleration algo-
rithms, we calculate iteration and CPU time speedups. The iteration speedup of an
acceleration algorithm for the EM algorithm is defined by

The number of iterations of the EM algorithm

The number of iterations of an acceleration algorithm
:

6
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The CPU time speedup is also calculated similarly to the iteration speedup.
Tables 3 and 4 show the results of the iteration and CPU time speedups of two
acceleration algorithms. We compare the mean values of the iteration and CPU time

Min. 1st Qu. Median Mean 3rd Qu. Max.

p ¼ 2 EM 172.00 467.25 771.00 1069.48 1302.25 10852.00

ε 133.00 308.50 445.00 697.74 706.50 8090.00

εR 83.00 182.50 253.50 424.22 396.50 4967.00

p ¼ 3 EM 210.00 403.50 628.50 716.33 946.75 1973.00

ε 121.00 276.75 400.50 484.83 604.75 1566.00

εR 68.00 167.50 244.50 307.99 359.75 1183.00

p ¼ 4 EM 166.00 372.75 468.50 618.63 755.75 2193.00

ε 120.00 248.75 331.50 400.00 461.50 1452.00

εR 58.00 139.00 194.50 241.25 291.25 884.00

p ¼ 5 EM 141.00 334.75 492.50 879.35 783.00 24886.00

ε 101.00 235.50 351.00 687.31 516.00 24756.00

εR 57.00 144.00 226.00 431.55 336.50 14288.00

p ¼ 6 EM 193.00 361.25 499.00 655.80 647.75 5910.00

ε 144.00 252.00 323.50 454.45 473.75 5825.00

εR 99.00 163.75 230.50 302.13 299.00 4771.00

Table 1.
Summary statistics of the number of iterations of the EM, ε-accelerated EM (ε) and εR-accelerated EM (εR)
algorithms for 100 simulated random data. Each data is generated from a p-variate normal mixture
distribution of four components.

Min. 1st Qu. Median Mean 3rd Qu. Max.

p ¼ 2 EM 0.39 1.04 1.68 2.31 2.80 22.73

ε 0.30 0.75 1.08 1.66 1.66 19.18

εR 0.22 0.49 0.66 1.11 1.04 13.21

p ¼ 3 EM 0.75 1.40 2.07 2.64 3.30 8.53

ε 0.45 1.01 1.46 1.99 2.52 7.60

εR 0.35 0.68 1.00 1.44 1.68 8.26

p ¼ 4 EM 0.42 0.93 1.16 1.53 1.86 5.34

ε 0.28 0.65 0.86 1.06 1.24 3.80

εR 0.20 0.44 0.59 0.71 0.86 2.39

p ¼ 5 EM 0.25 0.64 0.92 1.65 1.50 46.11

ε 0.22 0.49 0.72 1.42 1.08 50.36

εR 0.16 0.35 0.51 0.95 0.80 29.07

p ¼ 6 EM 0.51 1.02 1.42 1.84 1.88 17.86

ε 0.43 0.75 1.02 1.37 1.47 17.75

εR 0.32 0.54 0.76 0.99 1.00 14.29

Table 2.
Summary statistics of CPU time of the EM, ε-accelerated EM (ε) and εR-accelerated EM (εR) algorithms for
100 random data. Each data is generated from a p-variate normal mixture distribution of four components.
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speedups of the algorithms. The ε-accelerated EM algorithm is about 1.5 times and
1.4 times faster than the EM algorithm in the number of iterations and CPU time,
respectively. Then the εR-accelerated EM algorithm is more than twice as fast as the
EM algorithm in both the number of iterations and CPU time. The boxplots of
Figures 1 and 2 also show that the εR-accelerated EM algorithm is obviously much
faster than the ε-accelerated EM algorithm. Table 3 and Figure 1 indicate that in 75
out of 100 replications, the number of iterations of the εR-accelerated EM algorithm
is less than half as small as that of the EM algorithm. For CPU time of Table 4 and
Figure 2, the εR-accelerated EM algorithm is more than twice as fast as the EM
algorithm in 50 out of 100 replications.

Figure 3 shows the boxplots of the iteration and CPU time speedups of the εR-
accelerated EM algorithm for p ¼ 6. Here, “more” (“less”) means that the number
of iterations of the EM algorithm is more (less) than the median in Tables 1 and 2.

Min. 1st Qu. Median Mean 3rd Qu. Max.

p ¼ 2 ε 1.05 1.34 1.54 1.61 1.77 3.58

εR 1.15 2.08 2.73 3.03 3.48 11.36

p ¼ 3 ε 1.07 1.32 1.52 1.52 1.68 2.15

εR 1.20 1.97 2.57 2.58 2.98 6.08

p ¼ 4 ε 1.13 1.32 1.48 1.51 1.62 2.33

εR 1.45 2.09 2.42 2.60 2.94 9.04

p ¼ 5 ε 1.01 1.30 1.46 1.47 1.63 2.06

εR 1.33 1.84 2.23 2.32 2.67 4.32

p ¼ 6 ε 1.01 1.28 1.46 1.49 1.65 2.33

εR 1.24 1.86 2.17 2.37 2.59 6.75

Table 3.
Summary statistics of the iteration speedup of the ε-accelerated EM (ε) and εR-accelerated EM (εR)
algorithms for 100 random data. Each data is generated from a p-variate normal mixture distribution of four
components.

Min. 1st Qu. Median Mean 3rd Qu. Max.

p ¼ 2 ε 0.97 1.22 1.45 1.47 1.67 3.37

εR 1.05 1.71 2.24 2.50 2.85 8.60

p ¼ 3 ε 0.85 1.21 1.39 1.40 1.56 2.07

εR 0.78 1.61 2.04 2.08 2.40 4.48

p ¼ 4 ε 1.02 1.27 1.39 1.43 1.53 2.11

εR 1.20 1.70 2.03 2.17 2.43 7.48

p ¼ 5 ε 0.92 1.17 1.33 1.34 1.50 2.06

εR 1.12 1.48 1.76 1.86 2.12 3.21

p ¼ 6 ε 0.84 1.18 1.39 1.39 1.55 2.21

εR 1.00 1.57 1.77 1.98 2.24 5.47

Table 4.
Summary statistics of the CPU time speedup of the ε-accelerated EM (ε) and εR-accelerated EM (εR)
algorithms for 100 random data. Each data is generated from p-variate normal mixture distributions of four
components.
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We can see from the figure that, for the larger number of iterations of the EM
algorithm (“more”), the εR-accelerated EM algorithm works well to speed up the

convergence of ψ tð Þ
� �

t≥0
. We observed a similar result for other p. Therefore, the

algorithm is more powerful when the EM algorithm takes a larger number of
iterations.

The results from the tables and figures demonstrate that the restarting step in
the εR-accelerated EM algorithm enables a significant increase in the computation
speed with less computational effort.

Figure 1.
Boxplots of the iteration speedup of the ε-accelerated EM (ε) and εR-accelerated EM (εR) algorithms for 100
random data generated from a p-variate normal mixture distribution of four components.

Figure 2.
Boxplots of the CPU time speedup of the ε-accelerated EM (ε) and εR-accelerated EM (εR) algorithms for 100
random data. Each data is generated from a p-variate normal mixture distribution of four components.

9

Fast Computation of the EM Algorithm for Mixture Models
DOI: http://dx.doi.org/10.5772/intechopen.101249



5. Initial value selection for normal mixture models

It is well known that the log-likelihood function (2) may have numerous
maximums. The EM algorithm does not guarantee to obtain the global maximum
of the log-likelihood function due to its local convergence. Thus, the initial value of
θ deeply depends on the performance of the EM algorithm. Several methods
for selecting the initial value are proposed; for example, see [14–17]. These methods
are based on the multiple runs of the EM algorithm using different initial values and

find θ̂ for getting the global maximum of the log-likelihood function.
We apply the emEM algorithm [14] to the mixture model estimation. The

algorithm is a popular one and usually provides excellent results when the number
of components is not large [21]. The emEM algorithm selects an initial value in the
em step that is several short runs of the EM algorithm using different initial values

and a lax convergence criterion and obtains θ̂ from the EM step that runs the EM
algorithm starting from the initial value with a strict convergence criterion.

The em step consists of three steps. The first step generates J initial values of θ.
The second step runs the EM algorithm from these initial values with a lax conver-
gence criterion. Hence, we do not wait for convergence of the EM algorithm and
stop the iterations. The third step selects the value giving the largest log-likelihood
function among J trials.

Let δini be a convergence criterion and Tmax the maximum number of iterations.
We present the emEM algorithm in Algorithm 4.

Algorithm 4: The emEM algorithm.

em step: Select θ 0ð Þ of the EM step.

Random initialization step: Draw J initial values θ 0,jð Þ
n o

j¼1,… ,J
.

Short running step: Repeat the following computation for j ¼ 1, … , J:

Generate θ t j,jð Þ
n o

t j ≥0
by iterating the EM algorithm from θ 0,jð Þ and stop the

iterations at the t j-iteration if

Figure 3.
Boxplots of the iteration and CPU time speedups of the εR-accelerated EM algorithms for 100 random data. Each
data is generated from a six-variate normal mixture distribution of four components. The label “less” (“more”)
means that the number of iterations of the EM algorithm is less (more) than the median in Tables 1 and 2.
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ℓo θ t j,jð Þ
� 	

� ℓo θ t j�1,jð Þ
� 	

ℓo θ t j,jð Þ
� 	

� ℓo θ 0,jð Þ
� 	 < δini, or t j >Tmax: (22)

Obtain θ ∗ ,jð Þ ¼ θ t j,jð Þ.

Selection step: From J candidate initial values θ ∗ ,jð Þ
n o

j¼1,… ,J
, find

θ 0ð Þ ¼ arg max
θ ∗ ,jð Þf g

j¼1,… ,J

ℓo θ ∗ ,jð Þ
� 	n o

j¼1,… ,J
: (23)

EM step: Given θ 0ð Þ in the em step, find θ̂ using the EM algorithm.

The em step performs multiple runs of the EM algorithm, and then its compu-
tation may be time-consuming. We replace the EM algorithm with the ε-accelerated

EM algorithm in the em step and use the εR-accelerated EM algorithm to obtain θ̂ in
the EM step. By applying these acceleration algorithms to the emEM algorithm, it is
possible to reduce the number of iterations and CPU time. The acceleration of the
emEM algorithm is referred as to the εem-εREM algorithm and is shown in
Algorithm 5.

Algorithm 5: the εem-εREM algorithm.

ε-em step: Select θ 0ð Þ of the εR-EM step.

Random initialization step: Draw J initial values θ 0,jð Þ
n o

j¼1,… ,J
.

Short running step: Repeat the following computation for j ¼ 1, … , J:

Generate ψ t j,jð Þ
n o

t j ≥0
by iterating the ε-accelerated EM algorithm from

θ 0,jð Þ and stop the iterations at the t j-iteration if

ℓo ψ t j,jð Þ
� 	

� ℓo ψ t j�1,jð Þ
� 	

ℓo ψ t j,jð Þ
� 	

� ℓo ψ 0,jð Þð Þ
< δini, or t j >Tmax: (24)

Obtain θ ∗ ,jð Þ ¼ ψ t j,jð Þ.

Selection step: From J candidate initial values θ ∗ ,jð Þ
n o

j¼1,… ,J
, find

θ 0ð Þ ¼ arg max
θ ∗ ,jð Þf g

j¼1,… ,J

ℓo θ ∗ ,jð Þ
� 	n o

j¼1,… ,J
: (25)

ε-R-EM step: Given θ 0ð Þ in the em step, find θ̂ using the εR-accelerated EM
algorithm.

6. Numerical experiments for the initial value selection

We evaluate the performance of the ε-accelerated EM and εR-accelerated EM
algorithms in application to the emEM algorithm.
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By using MixSim, we simulate y ¼ y1, … , y1000

� �

having the p-variate normal

mixture distribution of six components for p ¼ 2, 3, 4, 5, 6. The values of δ, δRe, and
k are the same as in the experiments of Section 1.4. Assume that the probability of
not finding the global maximum of the log-likelihood function in a single run is
0.80 for safety. Then the probability of finding the global maximum at least once

is 1� 0:8050
>0:9999. In the em and ε-em steps, we draw 50 initial values

θ 0,jð Þ
n o

j¼1,… ,50
from kmeans and set δini ¼ 0:001 and Tmax ¼ 1000.

Tables 5 and 6 present the number of iterations and CPU time for each p. We
see from Table 5 that the number of iterations of the ε-em step is much smaller than
that of the em step. The ε-accelerated EM algorithm effectively improves the
computation speed of the em step. We compare the number of iterations and CPU
time of the εem-εREM algorithm with those of the emEM algorithm. Then these
values of the εem-εREM algorithm are about less than half of those of the emEM
algorithm. The results illustrate that the ε-accelerated EM and εR-accelerated EM
algorithms can sufficiently accelerate the convergence of the emEM algorithm.

7. Concluding remarks

In this chapter, we introduced the ε-accelerated EM and εR-accelerated EM
algorithms. Both algorithms are given by very simple computational procedures and
are executed with a little bit of computation for each iteration, while they well
accelerate the convergence of the EM algorithm.

When the EM algorithm is applied to normal mixture models, the algorithm may
converge slowly and be heavily dependent on the initial value. The first problem is
solved by the acceleration of the EM algorithm. The numerical experiments

emEM εem-εREM

em EM total ε-em εR-EM total

p ¼ 2 1912 3834 5746 1415 1429 2844

p ¼ 3 1995 1490 3485 925 354 1279

p ¼ 4 2352 725 3077 997 451 1448

p ¼ 5 3344 885 4229 1516 397 1913

p ¼ 6 2641 957 3598 1234 435 1669

Table 5.
The numbers of iterations of the emEM and εem-εREM algorithms. The em and ε-em steps generate 50 random
initial values.

emEM εem-εREM

em EM total ε-em εR-EM total

p ¼ 2 6.04 7.37 13.41 4.67 3.22 7.89

p ¼ 3 6.36 3.14 9.50 3.23 1.00 4.23

p ¼ 4 8.81 1.61 10.42 3.98 1.86 5.84

p ¼ 5 12.55 2.33 14.88 6.04 1.19 7.23

p ¼ 6 11.01 2.44 13.45 5.35 1.43 6.78

Table 6.
CPU times of the emEM and εem-εREM algorithms. The em and ε-em steps generate 50 random initial values.
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indicated the availability of the ε-accelerated EM and εR-accelerated EM algo-
rithms. For the second problem, the initial value selection is useful to initiate the
EM algorithm. We applied the emEM algorithm to normal mixture model estima-
tion and developed the εem-εREM algorithm to speed up the computation of the
emEM algorithm. Then the ε-accelerated EM algorithm is used in the em step, and
the εR-accelerated EM algorithm is in the EM step. Numerical experiments showed
that the εem-εREM algorithm can converge in a smaller number of iterations and
shorter CPU time than the emEM algorithm.

The ε-accelerated EM and εR-accelerated EM algorithms accelerate the conver-
gence of the EM algorithm without any modification of the E- and M-steps of the
algorithm. This means that these algorithms do not require to derive the accelera-
tion formula for every statistical model. Thus, these algorithms are applied to
several mixture models—mixtures of factor analyzers, mixtures of multivariate t-
distributions, mixtures of generalized hyperbolic distributions, and parsimonious
Gaussian mixture models. We expect that the convergence of the EM algorithms
used in these mixture models tends to be slow. The results from the experiments
show that the εR-accelerated EM and εR-accelerated EM algorithms are useful due
to their fast speed of convergence and ease of use.

Appendix: the vector ε algorithm

Let θ tð Þ denote a d-dimensional vector that converges to a vector θ̂ as t ! ∞. We

define θ½ ��1 ¼ θ=∥θ∥2 ¼ θ=θ⊤θ. In general, the vε algorithm for a sequence θ tð Þ
n o

t≥0

starts with

ε t,�1ð Þ ¼ 0, ε t,0ð Þ ¼ θ tð Þ (26)

and then generates a vector ε t,kþ1ð Þ by

ε t,kþ1ð Þ ¼ ε tþ1,k�1ð Þ þ ε tþ1,kð Þ � ε t,kð Þ
h i

¼ ε tþ1,k�1ð Þ þ Δε t,kð Þ
h i�1

, k ¼ 0, 1, 2, … :

(27)

For practical implementation, we apply the vε algorithm for k ¼ 1 to accelerate

the convergence of θ tð Þ
n o

t≥0
. From the above equation, we have

ε t,2ð Þ ¼ ε tþ1,0ð Þ þ Δε t,1ð Þ
h i�1

for k ¼ 1, (28)

ε t,1ð Þ ¼ ε tþ1,�1ð Þ þ Δε t,0ð Þ
� ��1

¼ Δε t,0ð Þ
� ��1

for k ¼ 0: (29)

Then the vector ε t,2ð Þ becomes as follows:

ε t,2ð Þ ¼ ε tþ1,0ð Þ þ Δε tþ1,0ð Þ
h i�1

� Δε t,0ð Þ
h i�1

� ��1

¼ θ tþ1ð Þ þ Δθ tþ1ð Þ
h i�1

� Δθ tð Þ
h i�1

� ��1

:

(30)

When setting ψ tð Þ ¼ ε t,2ð Þ, we obtain Eq. (15).
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