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Abstract

A fermentation technique was utilised to assess a fungus, i.e. Cunninghamella 
bertholletiae/polymorpha, isolated from rotting cassava, ability to produce mycotoxins 
and resultant oxidation by-products of the mycotoxins using liquid chromatogra-
phy–mass spectrometry (LC/MS). Thus, the mycotoxins/secondary metabolites, 
fumonisin B1 (FB1) and deoxynivalenol (DON) were produced while, heptadecanone, 
octadecanamide, octadecenal and 3-keto-deoxynivalenol (DON) were successfully 
identified as biodegradation by-products in the fermentation broth treated with 
hydrolysing ‘monkey cup’ juice from Nepenthes mirabilis. Exposure to the mycotoxins 
and the biodegradation by-products through consumption of contaminated produce 
including contact due to the cumulative presence in arable agricultural soil can be 
harmful to humans and animals. Therefore, this work reports on a strategy for the 
mitigation and reduction of mycotoxins in agricultural soil using natural plant pitcher 
juices from N. mirabilis’ ‘monkey cup’.

Keywords: biodegradation, carboxylesterases, Cunninghamella bertholethiae, LC/MS, 
mycotoxins, Nepenthes mirabilis

1. Introduction

Postharvest storage for cassava is often shortened due to product spoilage caused 
by bacterial and fungal infestation [1, 2]. Fungal species such as Aspergillus spp., 
Fusarium spp., Penicillium spp. and Cunninghamella spp. can produce toxins and/or 
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secondary metabolites that affect the storage longevity and quality of agricultural 
product such as cassava [2, 3]. These mycotoxins, which have a negative impact on 
agricultural products, lead to economic losses due to the contamination of cassava 
tubers, which makes them inedible. Generally, toxins are biosynthetic compounds 
produced by numerous microorganisms in a natural or controlled environment.

These microorganisms include the fungus, Cunninghamella bertholletiae (also 
known as Cunninghamella polymorpha due to its morphological characteristics and 
mating/reproductive scheme) [4], is known to be pathogenic to humans and animals 
[5–7], while its toxins in the environment and on consumable commodities constitute 
an environmental hazard and a health risk to consumers [8–11]. Some fungi, includ-
ing their metabolites, are able to contaminate several plant parts as they are endo-
phytes, culminating in infestation of agricultural products such as tomatoes, maize, 
potatoes, beans, peanuts, yams and wheat, including cassava [1, 5, 12–17] and dairy 
products such as milk and cheese [1, 18, 19]. Humans’ or animals’ consumption of 
contaminated products may lead to foodborne toxin-related intoxication [7, 20] cul-
minating in the degeneration of human internal organs including their functionality 
and the promotion of diseases such as cancer [8, 15, 21–23]. Some clinical outcomes in 
animals and humans include liver and oesophageal cancer [21, 23], the destruction of 
renal and nerve tissues, profound oxidative stress, heart and pulmonary diseases [23].

There are several varieties of mycotoxins, namely aflatoxins (AFB1, AFB2, AFG1 
and AFG2), fumonisins (FB1, FB2), deoxynivalenol (DON), ochratoxins (A, B and C), 
amongst others, which are produced by numerous species, some of which are del-
eterious to plants/agricultural products, humans and animals [1, 5, 21, 23, 24]. Their 
production can occur under favourable environmental conditions, such as a high 
temperature and adequate moisture/humidity, including the availability of nutrients 
(mostly from the decaying produce) [25]. These concerns have prompted researchers 
to find cheap, efficient and cost-effective ways to reduce or manage mycotoxin-
producing organisms, including mycotoxin contamination, when produced [11, 26] to 
limit sequential effects including products’ contamination.

In a previous study, it was found that C. bertholletiae/polymorpha, a common 
soil organism [7, 23, 26] which was isolated from decomposing cassava, was both 
cyanide-resistant with the ability to biodegrade free cyanide while being antagonistic 
towards other soil organisms [15, 27]. Currently, there is minimal literature available 
on mycotoxins produced by C. bertholletiae. Similarly, there is minimal research on 
a mitigation strategy which could be classified as environmentally benign for com-
bined toxin reduction, via oxidation or hydrolysis. The mitigation method must be 
implementable in-situ in order to minimise deleterious effects observed when other 
methods are used.

Therefore, the aim of this study was to propose and assess a method for the iden-
tification of mycotoxins from the free-cyanide tolerant C. bertholletiae/polymorpha 
isolate; furthermore, to quantitatively assess a mitigation method using oxidative/
hydrolysing ‘monkey cup’ digestive fluids from N. mirabilis (green chemistry 
approach). A N. mirabilis is a carnivorous plant which belongs to the genus of 
Nepenthes. This plant is characterised by a pitfall trap commonly known as a ‘monkey 
cup’ at the end of the plants’ leaf, which contains an acidic and oxidative/hydrolysing 
fluid. The plants’ pitcher juices are known to contain a variety of enzymes useful for 
prey digestion [28, 29]. As such, these enzymes can oxidise and/or hydrolyse myco-
toxins and secondary metabolites via deamination or mechanisms biocatalytically 
facilitated by esterases for the decoupling of aliphatic chains in mycotoxins or second-
ary metabolites.
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2. Mycotoxin (secondary metabolite) production in food

Several studies discussed about the presence of mycotoxins in food. Thus, during 
a produce life cycle from harvest, postharvest, selves’ life, processing and sometimes 
distribution, there is a presence of mycotoxins in food worldwide [1]. These toxins 
occurred during poor storage, handling and processing conditions, sometimes might 
be the result of the rot/decay foodstuffs [2, 14, 30]. While these mycotoxins constitute 
a serious threat to food quality and human’s health [22, 30].

2.1  Extraction and analysis of mycotoxins (secondary metabolites) and their 
biodegradation by-products

Literatures abound on the extraction and analysis of mycotoxins, a liquid-phase 
extraction method seems to be more used. Thus, [31, 32] used liquid-liquid extrac-
tion method for their studies in mycotoxins identification, while [33] used a liquid 
chromatography/tandem mass spectrometry for a combined analysis of aflatoxins, 
ochratoxin A and Fusarium for maize crop. Whereas [34] chose a multiplex approach 
of Gas chromatography–mass spectrometry (GC-MS), Liquid chromatography-mass 
spectrometry (LC-MS) and One-dimensional (1D) NMR spectroscopy (1D NMR) 
techniques for their study on a comparative metabolite profiling and fingerprinting of 
medicinal licorice roots, to name few.

The samples were analysed using an LC/MS-ToF 6230 (Agilent Technologies 
Inc., USA) and using mobile-phase parameters as listed in the table below in 
Supplementary Material, without optimisation as suggested by [31, 34]. The solvent 
extract phase was steadily evaporated using a blow-down technique to dryness at an 
ambient temperature for 24 h to minimise mycotoxin evaporation using nitrogen (N2) 
gas (Afrox, South Africa) [31, 35].

The identification of the mycotoxins from C. bertholletiae/polymorpha isolate, 
including toxin biodegradation by-products, was done through analysis on LC/MS-ToF 
6230 (Agilent Technologies Inc., USA) and analytical standard as well as profile data 
as per [31, 35] using a mycotoxin/biodegradation by-product database, with the 
assumption that samples were assumed to lose an electron with the H+ proton being 
hypothetically the lost ion. Compounds were initially mined based on their molecular 
features and verified by mining based on their exact formulas. The extracted ion chro-

matogram (EIC) of matched compounds is presented in Supplementary Figure 2.

3. Proposed mitigation strategy

3.1 N. mirabilis extracts collection, characterisation and application

The assessment of the physicochemical characteristics of the N. mirabilis pitcher juice 
used was similar to that in [36–38]. Thus, the assessment revealed the following: conduc-
tivity: 5.89 S/m, redox potential: 510 mV, specific gravity (SG): 1.02 and a pH of 2.5.

Additionally, a qualitative method for the analysis and enzymes/biochemical 
tests were done to determine the presence of enzymes in the pitcher juice [36–39]. 
Furthermore, the VITEK 2 DensiChek™ cards were used (as a supplementary 
method) to quantitatively determine the enzyme presence in the extracts during the 
physicochemical analysis of the pitcher juice according to the instrument’s/device’s 
user manual instructions [40].
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3.2  Enzyme (carboxylesterase) activity: mechanism, specificity and 
quantification

The quantification of carboxylesterases activity was similar to the method adopted 
from [41–43] with minor modifications. The overall biocatalysis properties of the 
N. mirabilis pitcher constituents, with a focus on carboxylesterases, are described by 
[41], who suggested that hydrolysis mechanism associated with carboxylesterases 
facilitates the biocatalysis of reactions associated with enzymes, including arylester-
ase, lysophospholipase, acetylesterase, acylglycerol lipase, etc. In the current study, 
the biodegradation of fumonisin and deoxynivalenol (DON) was achieved using a 
single enzyme (carboxylesterases).

Furthermore, subsequent reports on the development of a spectrophotometric 
method used for the determination of carboxylesterase activity for the N. mirabilis 
digestive fluid were used by [29, 42].

3.3 Carboxylesterase activity assay

Previous studies assessed carboxylesterase activity. Thus, the carboxylesterase 
activity assay was determined spectrophotometrically at an ambient temperature using 
p-nitrophenyl acetate (PNPA) as the substrate as suggested by [36, 43]. While the 
activity was measured by determining the rate of biocatalysis of PNPA to p-nitrophenol 
(PNP) which was spectrophotometrically monitored at 410 nm. The PNPA exhibits 
minimal absorbance at 410 nm, whereas the PNP absorbs strongly. The extinction 
coefficient used for PNP was 17,000 M−1·cm−1 [36]. Activity was then expressed in U/L, 
where 1 unit is equivalent to 1 μmol/min (the rate of conversion for PNPA to PNP).

3.4 Spectrophotometer settings: Carboxylesterase activity assay

The JENWAY 6405 UV/Vis spectrophotometer (Agilent Pty, USA) at a kinetics 
setting was used 410 nm to monitor PNP formation for 2 min at 10 sec intervals, while 
the cell holder temperature was at 25°C. Eq. (1) Illustrates the mathematical expres-
sion used to quantify the activity of carboxylesterases [36].

 ( )
( )

6
dilution factor

activity U /L 60 10
extinction coefficient

dA

dt

 ∗ 
= ∗ ∗ 
 
 

 (1)

Where 
dA

dt
 is the value of the reaction’s initial rate.

4. Mycotoxins identification

Mycotoxins produced by the isolated C. bertholletiae/polymorpha were assessed via 
a fermentation technique in a nutrient broth medium with the liquid-liquid extraction 
method being done using chloroform, subsequent to a blow-down technique of the 
samples and reconstitution in absolute methanol. The compounds listed in Table 1 
were identified based on their molecular composition (structural features) and mass-
to-charge ratio (m/z), using an LC/MS-ToF.
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Toxin identification is important due to observed consequential outcomes of the 
infested cassava as by-products of bacterial or mycotic infestation which are hazard-
ous to both humans and animals if such agricultural product is consumed. Thus, both 
fumonisin B1 and deoxynivalenol were identified as the prevalent compounds associ-
ated with the fermentation of the cyanide resistant isolate, C. bertholletiae, accession 
no. KT275316 [15].

FB1 detection on LC/MS-ToF was done, based on a method developed by  
[18, 24, 31, 44], for which the analyte produces a signal under a positive MS acquisi-
tion mode (Table 1).

A, mycotoxins molar mass (g/mol); B, biodegradation by-products molar mass 
(g/mol); A1, mycotoxins mass (m/z) to charge ratio-ion form [M + H]+; B1, biodeg-
radation by-products mass (m/z) to charge ratio-ion form.

For FB1, mean peak counts of 4 × 103 were observed, while 1.9 × 103 counts were 
for DON. Similarly, and according to [31], DON detection is easily achieved through 
HPLC/LC-MS and UV methods. A LC/MS–ToF method, as described above, was 
used without modification nor optimisation, to also identify the biodegradation by-
products for each identified mycotoxins/secondary metabolite as listed in Table 1.

Two peaks were observed with a retention time of 23.79 and 35.12 min, with a 
molecular formula of C34H59NO15 and C15H20O6, analogous to FB1 and DON, respec-
tively. The peaks, A and B, were directly associated with ion m/z of 722.395 and 
297.13, when the ESI was operated in a positive mode [ion form: M + H+]. From the 
analysis, a combination of the molecular weight, the structure, including m/z ratio, 
confirmed the identification of the compounds. It is paramount to indicate that FB1 
was detected in a culture in which CN− (as KCN) was supplemented; hypothetically, 
indicating that the FB1 production was perhaps influenced by strenuous conditions to 
which the culture was subjected in comparison to DON.

4.1 Biodegradation by-products’ identification

To the reported residual samples of the cyanide-resistant C. 
bertholletiaee/polymorpha, in which FB1 and DON were detected, N. mirabilis pitcher 
juices were added. This was for an assessment of the fungal mycotoxins/toxins’ (FB1 
and DON) biodegradation into by-products [36–38], which could be identified using 
the LC/MS-ToF. Thus, compounds such as heptadecanone, octadecanamide and 
octadecenal were successfully identified from FB1 samples with only 3-keto-DON 

being identified in DON samples, respectively (Table 1; Figure 1).

Mycotoxins/secondary 

metabolites

Biodegradation 

by-products identified

Molar mass (g/mol) (m/z) ion form [M + H]+

A B A1 B1

Fumonisin B1 

(C34H59NO15

Heptadecanone C17H34O 721 254.45 722.395 256.270

Octadecanamide 

C18H37NO

283.29 284.282

Octadecenal C18H34O 266.46 267.268

Deoxynivalenol (DON) 

(C15H20O6)

3-keto-DON C15H18O6 296 294.91 297.13 295.115

Table 1. 
C. bertholletiae’s mycotoxins/toxins and mycotoxins biodegradation by-products identified using LC/MS-ToF.
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The findings of this study are similar to those from previous studies which 
revealed that a biodegradation of FB1 yielded by-products such as heptadecanone, 
octadecanamide and octadecenal (Supplementary Figure 2a–c) [26, 45]. While a 
degradation of DON led to an intermediate by-product such as 3-keto-DON [46, 47] 
(Supplementary Figure 2d). By using a similar identification strategy to that used to 
identify FB1 and DON, it was clear that N. mirabilis had a deleterious effect on both 
DON and FB1. The findings of this study are in agreement with those by [38, 48]. 
From the spectra, the by-product counts indicated octadecenal (1.1 × 102) > octa-
decanamide (1 × 102) > heptadecanone (0.9 × 102) with molecular ion peaks at m/z 
[M + H+], 267.268, 284.282 and 256.270, respectively.

Furthermore, for DON residual samples, the by-products observed when 
subjected to the N. mirabilis pitcher juice were indicative of 3-keto-DON; that is, 
with the ESI spectra showing a molecular ion peak at m/z [M + H+], 295.115 in a 
positive ion mode which was consistent with the molecular formula (C15H18O6) 
(see Supplementary Figure 2d). Due to the nature of the proposed in-situ 
mitigation strategy, it is prudent to indicate that the applied N. mirabilis pitcher 
juice comprises biocatalytic agents or enzymes [39, 49] known to facilitate the 

Carboxylesterases
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Figure 1. 
Summary of a biodegradation process and associated oxidation/hydrolysing enzymes.
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biodegradation of mycotoxins, using both qualitative and quantitative techniques. 
Thus, a degrading ability of the pitcher juice is due to the presence of enzymes 
such as carboxylesterase, β-glucuronidase, phosphatidyl inositol phospholipase 
C, xylanases, etc., which are able to biodegrade several organic matters, i.e. 
agro-waste, hemicellulose, etc., as well as mycotoxins/toxins [36–39, 49–51]. The 
enzymes found in the N. mirabilis pitcher juice originate from decayed multitude 
of trapped preys/species (insects) and microbial community (fungal and bacterial, 
etc.) within the plant’s fluid [28, 37, 39, 41, 49, 51, 52].

4.2 Enzyme/biochemical activity assays for N. mirabilis pitcher juice

The samples’ carboxylesterase activity (quantitative) and other biochemical assays 
(using the VITEK system, qualitative) were also done at room temperatures, whereas 
the N. mirabilis pitcher juice for carboxylesterase, P-nitrophenyl acetate (PNPA) were 
used as a substrate at 75% dilution and 410 nm absorbance which was similar to [36, 37]. 
For biochemical assays, numerous enzymes (as highlighted in Table 2) were positively 

identified, while the calculation of carboxylesterase activity was found to be 7.8 U/L.

5. Mycotoxin identification from cyanide-resistant Cunninghamella spp.

Due to the multitude of methods developed and assessed, a method modified 
by [44], for toxin extraction from a fermentation of broth, was adopted. It was 
thus used to produce mycotoxins (FB1 and DON) from the cyanide-resistant C. 
bertholletiae/polymorpha, with the extracts being used for LC/MS-ToF analysis due 
to the method’s usability, reproducibility and rapidity, while incurring minimal 
input/sample-processing costs.

5.1 Biodegradation by-products: outcomes of the mitigation strategy

A digestive fluid of N. mirabilis was used as a feasible alternative for the biodegra-
dation of fungal mycotoxins/toxins (Fumonisin and DON) with assays (n = 2) con-
firming the prevalence of carboxylesterases. However, previous studies mentioned 
the existence of several enzymes [28, 39, 41, 49, 50] within a N. mirabilis digestive 
fluid/pitcher juice, which counts as a larger enzymatic profile than individual micro-
bial species, as highlighted in Table 2.

Furthermore, a few sceptics could express concern about the use of a plant’s 
pitcher juice on mycotoxin-contaminated matrices because of its low pH (2.5), as well 
as availability, which can be addressed by using appropriate buffers and suitable plant 

Enzymes Activity/outcome References

Carboxylesterase 7.8 (U/L) In this study

β-glucosidase ++ [38, 39]

β-glucuronidase ++ [48]

Phosphatidyl inositol phospholipase C ++ [49]

++, positively identified in previous studies.

Table 2. 
Carboxylesterase activity and qualitatively identified enzymes.
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extracts with similar enzymatic characteristics. Overall, the application of a low pH 
extract in a matrix such as agricultural soil should not be a major concern because a 
soil’s pH can be amended by an application of lime. A study by [53] revealed that the 
application of lime on agricultural soil with a low pH increases the soil’s pH, improv-
ing its respiration capacity, while retaining the soil’s microbial community profile at 
an acceptable level.

6. Conclusions

The identification through LC/MS-ToF of toxins ((fumonisin B1 and 
deoxynivalenol (DON)) from a free-cyanide-resistant Cunninghamella 
bertholletiae/polymorpha as well as a mitigation strategy for toxins reduction 
through a biodegradation/fermentation process using ‘monkey cup’ juice from N. 
mirabilis (which yielded by-products such as heptadecanone, octadecanamide, 
octadecenal and 3-keto-DON) is an important step towards ensuring food safety 
and mitigating humans’ health hazards through toxins exposure. As, an exposure or 
intoxication from these mycotoxins, through consumption of contaminated food or 
agricultural product, can be hazardous to humans and animals. Therefore, control 
measures for food and animal feed contamination are needed in order to decrease 
the levels of these compounds. Additionally, preventative protocols and/or mitiga-
tion strategies that would ensure the eradication of these hazardous compounds, 
using an environmentally benign approach such as N. mirabilis digestive fluid/
pitcher juices, are paramount. Thus, the application of the digestive fluid to a liquid 
matrix which culminated in the biodegradation of mycotoxins (fumonisin B1 and 
DON), with the subsequent formation of the biodegradation by-products such as 
heptadecanone, octadecanamide, octadecenal for fumonisin B1 and 3-keto-DON 
for DON, which are easier to biodegrade by other microbial communities, should be 
encouraged.

However, it is worth noting that at this stage, there is a need to find alternative 
indigenous plant extracts with similar characteristics to that of the N. mirabilis.
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Appendix

Gradient (min) A (H2O)* B (MeOH)Y Flow (mL/min)

0 85 15 0.4

30 0 100 0.4

33 0 100 0.4

45 85 15 0.4

50 85 15 0.4

*, water contained, 0.1% formic acid, pH 3.
Y, analytical grade methanol.

Supplementary Table S1. 
LC/MS-ToF elution and mobile phase parameters.

Supplementary Figure 2. 
Molecular features and the extracted ion chromatograms (EICs)/mass spectrum of mycotoxins/toxins’ 
biodegradation by-products: (a) heptadecanone, (b) octadecanamide, (c) octadecenal and (d) 3-keto-DON.
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