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Chapter

Toward New Antileishmanial 
Compounds: Molecular Targets for 
Leishmaniasis Treatment
Huseyin Istanbullu and Gulsah Bayraktar

Abstract

The leishmaniases are a group of diseases caused by protozoan parasites— 
Leishmania sp. Leishmaniasis is classified among the 20 neglected diseases by 
WHO. Although the disease has been known for more than 120 years, the number 
of drugs used for the treatment is still limited to 5–6. The first-line drugs against 
leishmaniasis are pentavalent antimonials, which were introduced to the treatment 
70 years ago—despite all their side effects. Molecular targets are becoming increas-
ingly important for efficacy and selectivity in postgenomic drug research studies. 
In this chapter, we have discussed potential therapeutic targets of antileishmanial 
drug discovery such as pteridine reductase (PTR1), trypanothione reductase (TR), 
N-myristoyltransferase (NMT), trypanothione synthetase (TryS), IU-nucleoside 
hydrolase, and topoisomerases, enzymes and their inhibitors reported in the 
literature.

Keywords: antileishmanial compounds, molecular target, pteridine reductase, 
N-myristoyltransferase, inhibitors

1. Introduction

Leishmaniasis is a parasitic disease that occurs in the tropic and subtropics 
regions, and the parts of southern Europe. The disease is classified among neglected 
tropical diseases (NTDs) [1]. Leishmaniasis is spread by the bite of phlebotomine 
sand flies that causes the infection with Leishmania parasites. There are three main 
forms of the disease—cutaneous leishmaniasis (CL) known as the most common 
form, that causes skin sores; visceral leishmaniasis (VL; kala-azar) is the most 
severe form, that affects several internal organs; and mucocutaneous leishmaniasis 
(MCL) that has a chronic and metastatic behavior [2, 3].

Although the disease has been known for more than 120 years, the number 
of drugs used for the treatment is still limited to 5–6. The first-line drugs used 
against leishmaniasis are pentavalent antimony (SbV) compounds namely sodium 
stibogluconate (Pentostam®) and meglumine antimonate (Glucantime®), 
which was introduced into treatment more than 70 years ago, despite all their side 
effects. Neither their mechanism of action nor their chemical structures have been 
clarified/verified yet in spite of their wide use for a long time. Other drugs used 
in Leishmania infections are liposomal amphotericin B (L-AmB), miltefosine, 
paromomycin (aminosidine), and azole-derived antifungals; ketoconazole, itracon-
azole, and fluconazole.
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The need for effective, safe, and selective chemotherapeutics against leishmani-
asis increases every day. Targeting distinct molecular pathways is a widely used 
strategy in rational drug design and discovery for developing such agents to treat 
leishmaniasis. In this chapter, we would like to focus on enzymes which being 
targeted by the researcher for antileishmanial studies.

2. Potential molecular targets for the treatment of leishmaniasis

2.1 Pteridine reductase (PTR1, Pteridine reductase 1, EC 1.5.1.33)

PTR1 enzyme is an NADPH-dependent, short-chained reductase enzyme family 
member [4]. It is broadly active and can reduce a variety of unconjugated pteridines, 
as well as folates [5]. This enzyme has been investigated in studies of resistance to 
the dihydrofolate reductase inhibitor methotrexate (MTX) [6, 7]. After finding the 
missing link of resistance, researchers have suggested that inhibition of PTR1 may 
be a rational target for chemotherapy [4]. Since trypanosomatids are auxotrophic for 
folates and pterins, the inhibition of the PTR1 enzyme may also lead to selectivity. 
Therefore, PTR1 appears to be a rational target for antileishmanial drug development.

The first reported PTR1 inhibitors are pteridine analogs (diaminopteridines and 
quinazolines) and their activity was tested against purified Leishmania major pteri-
dine reductase (LmPTR1) [8]. The structure of LmPTR1 in complex with NADPH 
and the inhibitor 2,4,6-triaminoquinazoline (TAQ ) were reported in 2004 [9]. 
Based on its crystal structure, Cavazzutti et al. analyzed a library of 440 synthetic 
folate-like compounds and tested selected compounds on LmPTR1 among other 
enzymes such as DHFR [10]. In this study compound, 6b was found to be the most 
promising compound with a Ki value of 37 nM toward LmPTR1. Then, the crystal 
structure of the LmPTR1:NADPH:6b ternary complex revealed a substrate-like 
binding mode (Figure 1) [10].

It was reported that pteridine, pyrrolopyrimidine, and 2,4-diaminopyrimidine 
scaffold as PTR1 inhibitors with a structure-based approach by Tulloch et al. [11]. 
Among the tested compounds, compounds 11 and 13 bearings pyrrolopyrimidine 
core were reported with a modest ED50 value and a good lethality to the parasites. 
Additionally, a combination of MTX and compound 13 resulted in an improvement 
in efficacy [11]. Based on these hit molecules, TbPTR1 inhibitors were developed for 
the treatment of human African trypanosomiasis (Figure 1) [12].

Also, nonfolate scaffolds with LmPTR1 inhibition activity were reported. After 
three rounds of election considering computational and experimental results, 18 
compounds were selected, and among them, compound 28b and compound 5c 
known CNS active drug, showed promising activity with their IC50 values of 93 μM 
and 50 μM, Ki values of 7 μM and 4 μM, respectively (Figure 1) [13]. Moreover, 
5c in combination with pyrimethamine showed antileishmanial activity on pro-
mastigotes with no hDHFR inhibition [14]. Another nonfolate scaffold, hexahydro 
pyrimido pyrimidinone, was introduced with potential antileishmanial activity in 
a virtual screening study. Compound 7 was reported as a potent LdPTR1 enzyme 
inhibitor (Ki of 0.72 μM) and showed promising Leishmania donovani amastigote 
and Labrus donovani promastigote activity with the IC50 value of 3 μM and 29 μM, 
respectively [15].

Apart from the compounds summed up so far, thianthrene [16], dihydropy-
rimidines [17], benzothiazoles [18], thiazolidinedione [19, 20], thienopyrimidine 
[21], thiazolopyrimidine [22], and natural products such as flavanone derivatives 
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[23], 2,3-dehydrosilybin A, and sophoraflavanone G [24], kaurane-type  
diterpenes [25] were reported as PTR1 inhibitors with antileishmanial properties 
in the literature (Figure 1).

2.2  N-Myristoyltransferase (glycylpeptide N-tetradecanoyltransferase, NMT; 
EC 2.3.1.97)

NMT catalyzes the co- and post-translational addition of myristic acid (satu-
rated, 14-carbon fatty acid) onto the N-terminal glycine of specific proteins in 

Figure 1. 
Examples of PTR1 inhibitor structures with antileishmanial activity.
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eukaryotes (Figure 2). This physiological pathway, N-myristoylation, plays an 
important role in the correct cellular localization and biological functions. NMT 
enzyme was purified and characterized from yeasts for the first time and it is 
thought to be a target for development of a new class of antifungal drugs [26]. The 
presence of NMT in L. major was verified in 1997 [27]. Later, NMT enzyme activity 
was proven essential for viability in Leishmania sp. then, it attracted attention as a 
potential drug target in kinetoplastid parasites [28]. The validation of this enzyme 
as a target for antitrypanosomal and antileishmanial drug discovery was not until 
2010 (Figure 2) [29, 30].

A group of antifungal agents was tested to identify the first NMT inhibitors by 
Panethymitaki et al. in 2006 [31]. Although some of the tested compounds were 
found to be NMP inhibitors in a low μM concentration range, their antileishmanial 
activity has not been reported [31].

In an HTS campaign led by Pfizer, around 150.000 compounds from the 
Pfizer Global Diverse Representative Set were screened against protozoan NMTs. 
Four different scaffolds, namely aminoacylpyrrolidine (PF-03402623 IC50 of 
0.093 μM), piperidinylindole (PF-03393842 IC50 of 0.102 μM), thienopyrimi-
dine (PF-00349412 (IC50 of 0.482 μM), and biphenyl (PF-00075634 (IC50 of 
0.158 μM) derivatives were identified as novel inhibitors of Labrus donovani NMP 
(Figure 3) [32].

Following the previous study, the crystal structures of PF-03393842 and 
PF-03402623 with the enzyme, the initial hits selected in the HTS campaign, 
were elucidated. Based on this data, a fused hybrid compound 43 was developed 
as a highly potent L. donovani NMT inhibitor (Ki of 1.6 nM) with good selectiv-
ity over the human isoform of the enzyme (Ki 27 nM) (Figure 3) [33]. Although 
the lack of cell activity of 43 attributed to its poor uptake, the HTS campaign, 
and hybridization of the hit compounds have resulted in the discovery of a new 
scaffold [33].

Another HTS assay dedicated to identifying novel Leishmania sp. NMT 
inhibitors was focused on a set of 1600 pyrazolyl sulfonamide compounds [34]. 
Interestingly, no correlation between the enzyme potency of these inhibitors and 
their cellular activity against L. donovani axenic amastigotes was observed. This 
might be rationalized by the fact that poor cellular uptake considering the basic-
ity of the compounds. The most potent inhibitor of LmNMT (compound 2, Ki of 
0.34 nM) exhibited modest activity against L. donovani intracellular amastigotes 

Figure 2. 
Myristoylated proteins with NMT.
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(EC50 of 2.4 μM). Yet, advanced studies on compound 2 confirmed the on-target 
mechanism. Moreover, oral use of compound 2 resulted in a 52% reduction in 
parasite burden in the mouse model of VL (Figure 3) [34].

Other NMT inhibitors as potential antileishmanial compounds were reported 
in a few publications and patents. In these studies, pyrrolidines, piperidinylin-
doles, azetidinopyrimidines, aminomethylindazoles, benzimidazoles, thienopy-
rimidines, biphenyl derivatives, benzofuranes, benzothiophenes, oxadiazoles, 
(pyrazolomethyl)-1,3,4-oxadiazoles and thienopyrimidine scaffolds, and peptido-
mimetic inhibitors were reported with their NMT inhibitory properties [35–38].

2.3 Inosine-uridine (IU) nucleoside hydrolase (IU-NH, EC:3.2.2.2)

The nucleoside hydrolase enzyme is an important target for the development 
of antiparasitic drugs due to its role in the purine salvage pathway. The amino acid 
sequence and X-ray structure of the enzyme from L. major were revealed in 1999 
[39]. IU-NH enzyme establishes a homolog in Leishmania species.

In contrast to these facts, there is no study on IU-NH enzyme inhibitors possess-
ing in vitro/in vivo antileishmanial activity up to our knowledge. Yet, few inhibitors 
of Leishmania IU-nucleoside hydrolase were reported.

Fuernaux et al. reported transition state analogs of nucleosides with IU-NH 
inhibitory activity [40]. Later, Berg et al. reported iminoribitol derivatives and 
evaluated their not only Tabanus vivax-NH activity but also human purine nucleo-
side phosphorylase to determine selectivity [41]. In other studies, two ribose-
quinolone derivatives were tested against LdNH [42] and Casanova et al. reported 
proanthocyanidins with LdNH activity [43].

Figure 3. 
Examples of NMT inhibitor structures with antileishmanial activity.
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2.4 Enzymes Involved in Polyamine metabolism in Leishmania

In Leishmania parasites (and other members of the trypanosomatids), poly-
amine pathways can be considered as a unique pathway; most enzymes are essential 
for parasitic survival and infectivity (Figure 4).

2.4.1 Arginase (L-arginine amidinohydrolase, ARG, E.C. 3.5.3.1)

Arg is an enzyme that catalyzes the conversion of L-arginine amino acid to 
L-ornithine and urea.

The expression of the Leishmania amazonensis ARG in a bacterial host was done 
[44]. da Silva et al. expressed the recombinant enzyme in E. coli and performed 
biochemical and biophysical characterization studies [45].

Figure 4. 
Polyamine metabolism and enzymes in the pathway.
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Reguera et al. suggest that broad inhibition of ARG activity alone will be insuf-
ficient to achieve therapeutically useful control of leishmaniasis, but combined 
inhibition of ARG with downstream enzymes leading to polyamine synthesis 
could result in improved therapeutic responses [46]. 3′-methoxy-cinnamoyl-1,3,4-
thiadiazolium-2-phenylamine, an ARG inhibitory compound, exhibited moderate 
antileishmanial activity upon amastigotes of L. amazonensis [47].

[1,2,4]triazolo[1,5-a]pyrimidine derivatives [48], pyrazolo[3,4-d]pyrimidine 
derivatives [49], α,α-difluorohydrazide derivatives [50], chalcone derivatives 
[51], cinnamide derivatives [52], and 7,8-dihydroxyflavone—gold nanoparticles 
[53] were also studied as antileishmanial compounds with the mechanism of ARG 
inhibition.

On the other hand, antileishmanial natural products exhibiting ARG inhibitor 
activity with antileishmanial properties were reported—flavonoid and quercetin 
derivative [54], orientin and isovitexin [55], verbascoside [56], fisetin [57], rosma-
rinic acid, and caffeic acid [58].

2.4.2 Ornithine decarboxylase (ODC, EC 4.1.1.17)

ODC metabolizes ornithine to the diamine putrescine by its catalytic action [59]. 
Although alpha-difluoromethylornithine (DFMO) is an irreversible inhibitor of 
ODC, DFMO has not shown any antileishmanial activity [60]. Therefore, inhibition 
of ODC serves as a promising therapeutic paradigm for the treatment of leishmani-
asis [61].

3-aminooxy-1-aminopropane was reported as a selective ODC inhibitor with 
potent antileishmanial activity against Labrus donovani (L. donovani promastigotes 
IC50 of 42 μM and L. donovani amastigotes IC50 of 5 μM) [62].

Gama-guanidinooxypropylamine [63], diospyrin [64], oxochromen, xanthone, 
and azaspirodecene derivatives [65] are reported in the literature with their ability 
to inhibit ODC enzyme and antileishmanial activity.

2.4.3 Spermidine synthase (SpdSyn, SpdS, EC 2.5.1.16)

SpdS catalyzes the conversion of putrescine to spermidine, a crucial polyamine 
for parasite proliferation. Genetic studies proved that SpdS is an essential gene in 
L.donovani [66]. Additionally, it was demonstrated that L. donovani amastigotes 
require SpdS activity to sustain a robust infection in mice; which is required for 
virulence [67].

Up to our knowledge, the only reported SpdS inhibitor with antileishmanial 
properties is natural compound hypericin [68].

2.4.4 S-Adenosylmethionine decarboxylase (AdoMetDC, EC 4.1.1.50)

AdoMetDC is involved in the synthesis of spermidine and spermine, an essential 
polyamine for Leishmania. Therefore, AdoMetDC may be a potential therapeutic 
target for leishmaniasis [69].

CGP40215A, a specific AdoMetDC inhibitor, was also reported with the anti-
leishmanial effect that verified the potential of AdoMetDC enzyme inhibition 
strategy [70].

2.4.5 Trypanothione synthetase (Trypanothione synthase, TryS; EC 6.3.1.9)

TryS bifunctionally catalyzes both biosynthesis and hydrolysis of the glutathi-
one-spermidine adduct trypanothione, which is the main regulator in intracellular 
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thiol-redox metabolite for parasitic trypanosomatids. As TryS is absent in humans, 
targeting this enzyme provides selectivity. Inhibition of TryS results in controlling 
relative levels of the critical metabolites, trypanothione, glutathionylspermidine, 
and spermidine in Leishmania [71]. Genetic and chemical analyses reveal that TryS 
is essential for Leishmania infantum [72].

In a computational screening campaign, oxabicyclo[3.3.1]nonanone skeleton 
was identified not only as a TryS inhibitor but also with TR inhibitory properties. 
A modest antileishmanial activity was reported for compound PS203 upon L. 
donovani promastigotes (Figure 5) [73]. In another study, TryS from L. donovani 
was characterized and inhibition studies with the natural compounds selected from 
an earlier Micro Source discovery natural product data set were performed [74]. 
Among the tested natural compounds, conessine and uvaol showed good TryS 
inhibition (Ki of 3.12 μM and 3.55 μM, respectively) with significant antileishman-
ial activity on L. donovani promastigotes (IC50 of 13,42 μM and 11,23 μM, respec-
tively) (Figure 5) [74].

About 144 compounds belonging to seven different scaffolds were tested for 
TyrS inhibitory properties in a study by Benitez et al. One of the most promising 
inhibitors (IC50 of 0.15 μM) namely MOL2008, an N5-substituted paullone deriva-
tive was evaluated upon L. infantum promastigotes (EC50 of 12.6 μM) (Figure 5) 
[75]. Following these results, 36 different derivatives of MOL2008 were developed 
by the same group [76]. Based on intriguing TyrS inhibition of compound 20 (IC50 
0.3 μM), it was tested on both L. infantum promastigotes and L. infantum amasti-
gotes. The metabolic changes exerted by 20 in both promastigote form and amasti-
gote form of L. infantum are compatible with TryS inhibition (Figure 5) [76].

2.4.6  Trypanothione reductase (TR, TryR, Trypanothione-disulfide reductase 1, 
EC 1.8.1.12)

One of the main strategies of the host organism to overcome the infection 
is oxidative stress. TR has been purified from T.cruzi [77], first, and then from 
Labrus donovani [78]. TR enzyme is responsible for keeping trypanothione in the 
reduced state that is a variant of glutathione in Leishmania parasites. These enzyme 

Figure 5. 
Examples of TryS inhibitor structures with antileishmanial activity.
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inhibitors have been investigated in antileishmanial drug discovery as the enzyme 
is essential for the parasite survival and its absence in the host, in which glutathione 
reductase (GR) is found, provides selectivity [79]. Although both TR and GR are 
inhibited by trivalent antimonials, TR is considerably more sensitive [80]. TR 
enzyme is also a target for anti-Chagas compounds and antimalarials. The main 
limitation of TR becoming a target in antileishmanial drug discovery is that in order 
to obtain a considerable effect in parasites’ redox state, a minimum of 85% inhibi-
tion is required [81]. Additionally, GR should be considered as an off-target for TR 
inhibitors and the selectivity over TR enzyme of the compounds may be presented. 
Apart from being an interesting target for antileishmanial drug design, it is also a 
popular target for antimalarial compounds.

The early discovery of tricyclic inhibitors that are specific for TR over GR led to 
the design and synthesis of a group of phenothiazine derivatives and their opened-
ring analogs.

The first rational drugs with TR inhibitor activity over GR inhibition are tricy-
clic structures like phenothiazine and imipramine. Based on this, among several 
of quaternary phenothiazines, [3-(2-chloro-4a,10a-dihydrophenothiazin-10-yl)
propyl] - (3,4-dichlorobenzyl) dimethylammonium derivative (Ki 0.12 μM) was 
reported possessing improved activity up to 2-fold compared to chlorpromazine on 
L. donovani species [82]. Compound 10, an opened ring analog of phenothiazine, 
showed antileishmanial activity upon L. donovani (IC50 of 3.9 μg/mL). Expectedly, 
it was one of the most active compounds for TR enzyme with the Ki value of 
6.5 μM [83].

A series of bis (2-amino diphenyl sulfides) were designed and synthesized 
to inhibit TR [84]. Among them, compound 15 was found to be the most active 
with the IC50 value of 200 nM. Although there was no correlation between TR 
inhibition and antileishmanial activity, the compounds showed activity upon 
L. infantum amastigotes (Figure 6) [84]. Sulfonamide and urea derivatives of 
quinacrine with varying methylene spacer lengths were designed as TR inhibi-
tors and their antiprotozoal activities were evaluated [85]. Compound 2b (TR 
IC50 of 3.3 μM and GR IC50 of 27.2 μM) was also one of the most active com-
pounds upon L. donovani among with Trypanosoma cruzi and Trypanosoma brucei 
[85] (Figure 6).

In the pursuit of discovering novel lead heteroaromatic frameworks, harmaline, 
pyrimidobenzothiazine, and aspidospermine scaffolds were tested against TR inhibi-
tion (Ki of 35.1 μM, Ki of 26.9 and Ki of 64.6 μM, respectively) and L. amazonensis 
promastigote toxicity. Moreover, compounds have not exhibited any GR inhibitory 
activity [86]. Interestingly, Blackie et al. has introduced ferrocenic 4-aminoquinoline 
urea compounds with TR inhibitory and antileishmanial properties to the literature 
[87]. Although compounds inhibited TR in a low μM range with good selectivity over 
GR and showed antileishmanial activity on L. donovani amastigotes, unfortunately, 
these compounds were found to be toxic to macrophages (Figure 6) [87].

In an HTS campaign, 100,000 lead-like compounds were evaluated for their 
TR inhibition. As our focus on antileishmanial compounds, 2 series of compounds 
namely, nitrogenous heterocycles (triazine and pyrimidine derivatives) and 
conjugated indole derivatives took our interest in their potential on L. donovani 
amastigotes (Figure 6) [88].

Various chemical structures were reported with TR inhibitor activity and 
leishmaniacidal activity to the literature: Ag(0) nanoparticles encapsulated by 
ferritin molecules [89], Cu(II) diketonates [90], oxabicyclo[3.3.1]nonanones [73], 
azole-based compounds – e. pyrrole [91], β-carboline–quinazolinone hybrid [92], 
phenothiazine and phenoxazine derived chloroacetamides [93], selenocyanates and 
diselenide compounds [94, 95], iminodibenzyl derivatives with ethylenediamine, 
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ethanolamine and diethylenetriamine and their copper(II) complexes [96], diaryl 
sulfide derivatives [97], ammonium trichloro [1,2-ethanediolato-O,O′]-tellurat [98], 
all-hydrocarbon stapled peptides [99] chalcone derivatives [100], thiophene deriva-
tives [101], imidazole-phenyl-thiazole compounds [102], isothiocyanate derivatives 
[103], (phenylthio)pyrimidin-4-amine derivatives [104], ferrocenylquinoline 
derivatives [105], triazole-phenyl-thiazoles derivatives [106], fluorene deriva-
tives [107], adamantan derivatives, and their gold complexes [108] and natural 
 products [109, 110] (Figure 6).

2.4.7 Tryparedoxin peroxidase (TryPI, TXNPx, EC 1.11.1.15)

Crystal structures of the tryparedoxin-tryparedoxin (TXN-TXNPx) peroxidase 
couple were reported but there is no study that targeted this system with antileish-
manial activity [111].

Figure 6. 
Examples of TR inhibitor structures with antileishmanial activity.
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2.5 Phosphotidylinositol-3-kinase (PI3K, EC 2.7.1.137)

The discovery of apoptotic pathways regulated by intracellular protozoan 
parasites and inhibit apoptosis, studies on signaling pathways have accelerated 
[112–114]. Interestingly, it was reported that there is an L. major PI3K mediated 
negative feedback mechanism for IL-12 production and PI3K/Akt signaling in 
Leishmania promastigotes [115].

Various heterocyclic compounds (quinoline, quinazoline, purine, thiazolopy-
rimidine scaffolds, etc.) as PI3K inhibitors were reported for treatment of several 
diseases alongside Leishmania [116, 117]. Later, Khadem et al. showed idelalisib—
known PI3K inhibitor—and ampB combination therapy resulted in the reduction 
in parasite burden and moderate immune response [117]. A recent study showed 
that PI3K/mTOR inhibitor Torin2, Dactolisib, and NVP-BGT226 also possess good 
antileishmanial activity [118].

Imidazo[1,2-b]pyridazin scaffold was designed to inhibit various eukaryotic 
kinases by Bendjeddou et al. [119]. In this study, some of the compounds were 
tested against L. amazonensis parasites. The compounds showed antileishmanial 
activity at rather high concentrations (10 μM) although the compounds have not 
exhibited any toxicity at cell viability assays regarding concentrations [119].

Because of Leishmania parasite has a life cycle in the mammalian host, inhibi-
tion of signal transduction protein kinases for antileishmanial activities was 
investigated. Polyfluoroalkyl sp2-glycolipid compounds were reported with anti-
leishmanial properties by binding p38a-MAPK [120]. Purine derivatives, benzopyr-
roles, and benzopyrrolidines exhibited CRK3 cyclin-dependent kinase inhibitory 
properties and showed antileishmanial activity upon Labrus donovani amastigotes 
[121]. Lastly, a chemical inhibitor of heat shock protein 78 (HSP78), namely Ap5A 
reported with antileishmanial activity [122].

2.6 Topoisomerase I and II (TOPI, EC 5.6.2.1; TOPII, EC 5.6.2.2)

Topoisomerases are enzymes that modulate DNA topology. Firstly, topoi-
somerase II and then topoisomerase I enzymes were reported in Leishmania 
 species [123, 124].

Different classes of TOP inhibitors show activity against L. donovani parasites by 
the means of DNA TOPI catalytic activity. The most important point is providing 
selectivity over parasite-human topoisomerase enzymes [125]. Pentostam’s one of 
the proposed modes of action is inhibition of TOPI of L. donovani [126]. Werbovetz 
et al. tested known TOPII inhibitors, acridine derivatives, against L. chagasi and L. 
donovani, therefore, it was suggested that TOPII could serve as a useful target for 
parasite chemotherapy [127].

16-phenyl-6-hexadecynoic acid and 16-phenylhexadecanoic acid derivatives 
were synthesized by Carballeira et al. [128]. Compounds 1 and 2 showed promising 
activity on L. donovani TOPIB (EC50 14 μM and 36 μM, respectively). Moreover, 
compounds 1 and 2 showed cytotoxicity toward L. infantum amastigotes (IC50 of 
3–6 μM) and L. infantum promastigotes (IC50 of 60–70 μM) [128].

In another study, compounds bearing 1,5-naphthyridine scaffold were reported 
[129]. Compound 22 was found to be one of the promising ones with the IC50 
value (0.58 ± 0.03 μM) against L. infantum amastigotes similar to the standard 
drug amphotericin B (0.32 ± 0.05 μM) and selectivity over host murine spleno-
cytes. Additionally, this compound showed remarkable inhibition on leishmanial 
TopIB [129].

Three compounds were identified in a very recent virtual screening campaign 
with a significant LdTopIB activity (IC50of LRL-TP-85: 1.3 μM; LRL-TP-94: 2.9 μM; 
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and LRL-TP-101: 35.3 μM) [130]. Further studies showed that compounds were 
selective for LdTopIB over Homo sapiens (Hs) TopIB. After that, compounds were 
evaluated for their in extracellular promastigote (4.9 μM, 1.4 μM, and 27.8 μM, 
respectively) and intracellular amastigote (34.0 μM, 53.7 μM, and 11.4 μM, respec-
tively) activities [130].

Apart from these recent advances, several scaffolds such as bis-naphtoquinone 
[131, 132] betulinic acid derivatives [133], bisbenzimidazoles [134] and proto-
berberine alkaloids [135], and 1,3,4-thiadiazole derivatives [136] were identified 
with TOP inhibitor activity as potential antileishmanial compounds. Additionally, 
acetylenic fatty acids, 6-heptadecynoic acid, and 6-icosynoic acid derivatives [137], 
2-octadecynoic acid [138], 3,3′-diindolylmethane derivatives [139], bis-lawsone 
analogs [140], spirooxindole derivatives [141], indeno-1,5-naphthyridines [142], 
diamidine derivatives [143], and copper salisylaldoxime [144] compounds are other 
reported topoisomerase inhibitors with antileishmanial activity.

2.7  Cysteine synthase (CS, O-acetylserine sulfhydrylase, OASS, EC 2.5.1.47)

Cysteine biosynthesis is a potential target for antileishmanial drug development. 
The structure of L. major cysteine synthase was revealed in 2012 by Fyfe et al. [145]. 
Cyclic imide derivatives were identified with a multitarget profile including TOPOI, 
N-myristoyltransferase, cyclophilin, and CS enzymes using in silico approach and L. 
amazonensis activity of the compounds were reported [146].

2.8 Oligopeptidase B (OPB, EC 3.4.21.83)

It was found out that a high level of serine protease activity was expressed by 
L. donovani, which was explained by an increase in OPB enzyme activity [147]. 
The crystal structure of L. major OPB was revealed in 2010 by McLuskey et al. 
[148]. Epoxy-α-lapachone was shown activity on both promastigote and amasti-
gote forms of L. amazonensis in a study exploring natural compounds as potential 
antileishmanial agents. Moreover, this activity was associated with serine proteinase 
inhibitory activity of epoxy-α-lapachone in the same study [149]. Peptidic structure 
ShPI-I (Kunitz-type protease inhibitor from the sea anemone Stichodactyla helian-
thus) was shown to be a potent inhibitor of L. amazonensis serine proteases [150].

2.9 Superoxide dismutase (SOD, EC 1.15.1.1)

SOD enzyme was found in L. tropica by Meshnick and Eaton and it was sug-
gested that the enzyme may be containing iron (Fe) which causes a difference from 
its host’s enzymes which is linked to a copper or zinc atom [151]. Later, molecular 
isolation and characterization of Fe containing SOD cDNAs of L. chagasi were 
reported in 1997 [152] and the 3D structure of Fe-dependent superoxide dismutases 
(FeSODs) from L. major was reported [153].

In a study, imidazole-containing phthalazine derivatives were found to be 
potent inhibitors of Fe-SOD with antileishmanial properties. Additionally, the 
tested compounds were selective toward parasite Fe-SOD over human CuZn-
SOD [154]. Arylamine Mannich base derivatives, known to be effective against 
Trypanosoma cruzi, were exhibited remarkable activity against Leishmania 
species. The mechanism of action of these compounds was linked to their potent 
Fe-SOD inhibition [155].

2-Iminothiazole derivatives [156], scorpiand-like azamacrocycles [157, 158], 
pyrazole-containing polyamine macrocycles [159], natural product momordicatin 
[ethyl 2-(4-hydroxybutyl)benzoate] [160], imidazole or pyrazole-based benzo [g] 
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phthalazine derivatives [161], triphenyl tin salicylanilide thiosemicarbazone [162], 
Se containing aromatics and heteroaromatic compounds [163], ruthenium complexes 
with purine analogs [164], fisetin—a flavanoid anolog [57] and dialkyl pyrazole-
3,5-dicarboxylates [165] were reported as SOD inhibitors exhibiting antileishmanial 
activity in the literature.

2.10 Nitroreductases (NTR, EC 1.7.1.16)

Nitroreductase enzymes catalyze the reduction of nitro/nitroaromatic compounds. 
Based on oxygen sensitivity, NTRs are divided into two groups: NTR1 is oxygen-insen-
sitive and functions via a series of two-electron reductions, NTR2 is oxygen-sensitive 
and mediated a one-electron reduction [166]. NTR1 enzyme is found mainly in bacte-
ria and absent in most eukaryotes. Keeping this in mind, L. major NTR1 (LmNTR) was 
characterized and identified as a potential drug target for leishmaniasis [167].

It was reported that aziridinyl nitrobenzamide compounds [168], nitroquinoli-
none derivatives [169], 3-nitro-2-(phenylsulfonylmethyl) imidazo[1,2-a]pyridine 
derivatives [170], and nitro-heteroaryl nitrone derivatives [172] are NTR inhibitors 
with antileishmanial effects.

2.11 Nucleoside hydrolases (NH, EC 3.2.2.1)

Koszalka and Krenitsky, separated and purified three nucleoside hydrolases 
from promastigotes of L. donovani—purine 2′-deoxyribonucleosidase, purine 
ribonucleosidase, and pyrimidine ribonucleosidase [172]. Then, the X-Ray struc-
ture and amino acid sequence of nucleoside hydrolase from L. major was revealed 
alongside its several nanomolar transition state inhibitors [39].

Augustyns’s research group design and synthesize various compounds and 
tested against IAG-NH (inosine-adenosine-guanosine nucleoside hydrolase) 
from Tabanus vivax. In contrast to promising enzyme activity of the compounds, 
antileishmanial activity of the compounds hasn’t been investigated [41, 173, 174]. 
Freitas et al. also tested immucillin derivatives against L. donovani, L. inf. Chagasi 
and L. amazonensis parasites [175].

It was found out that hydroxychromenone and tetrahydrocyclohexanecarboxylic 
acid fragments could bind to the enzyme in a fragment-based analysis on LdNH 
using saturation transfer difference (STD) NMR spectroscopy [176].

In a recent study, a natural product from Brazilian flora, flavonoids, and proan-
thocyanidins, with antileishmanial activity screened against LdNH and described 
as an inhibitor of LdNH [43, 177].

Interestingly, LdNH (NH36) is the main area of interest for human recombinant 
vaccine-based studies and phase I trial of nucleoside hydrolase NH36 of L. donovani, 
the main antigen of the Leishmune® vaccine, and the sterol 24-c-methyltransferase 
(SMT) from L. infantum is in progress [178].

2.12 Cysteine proteases

There are two cysteine protease genes from L. major—one is structurally similar 
to the cathepsin L (CatL) family and the other is similar to the cathepsin B (CatB) 
family of cysteine proteases. These cysteine protease enzymes were isolated and 
sequenced by Sakanari et al. [179].

It is reported that aziridine-2,3-dicarboxylate [180], natural products flavone 
derivatives [181], trans-aziridine-2,3-dicarboxylate derivatives [182] organotellu-
rane RF07 and palladacycle complex [183–185], and dipeptidyl enoates [186] exhibit 
antileishmanial effect and inhibit cysteine proteases.



Leishmaniasis - General Aspects of a Stigmatized Disease

14

2.13 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12)

GAPDH activity was detected in two cell compartments of Leishmania mexicana 
promastigotes [187]. Then, the crystal structure of L. mexicana GAPDH in complex 
with inhibitors was reported to the literature [188].

Although GAPDH enzyme is found in Leishmania sp., it is an attractive target for 
the development of novel antitrypanosomatid agents rather than antileishmanial 
compounds.

2.14 Dihydroorotate dehydrogenase (DHODH, EC 1.3.5.2)

DHODH enzyme catalyzes the stereoselective oxidation of (S)-dihydroorotate 
(DHO) to orotate (ORO) in the de novo pyrimidine biosynthetic pathway. The struc-
ture of L. major DHODH was revealed by X-ray diffraction analysis [189]. It was 
reported that natural compounds from Asteraceae species could inhibit LmDHODH 
by Chibli et al., though the antileishmanial effect of the compounds has not been 
evaluated [190].

2.15 Methionyl-tRNA synthetase (MetRS, EC 6.1.1.10)

Considering the structure of L. major MetRS, the difference in human cytosolic 
and mitochondrial MetRS and near the ATP- and methionine-binding regions of 
LmMetRS promises selectivity for MetRS inhibitors [191].

DDD806905, a known TbMetRS inhibitor, tested against LdMetRS and 
showed antileishmanial effect upon Leishmania axenic amastigote yet, it has not 
shown efficacy in an animal model of leishmaniasis due to high protein bind-
ing as well as sequestration of this dibasic compound into acidic compartments 
[192]. Researchers have characterized a new series of LdMetRS inhibitors bearing 
4,6-diamino-substituted pyrazolopyrimidine core that target a previously unde-
fined, allosteric binding site in the enzyme recently [193].

2.16 Phosphodiesterases (PDE, EC 3.1.4.17)

Phosphodiesterases control the cellular concentration of the second messengers 
cAMP and cGMP that are key regulators of several physiological processes.

A correlation between cAMP concentration in Leishmania cells and proliferation 
and transformation is demonstrated. By the addition of phosphodiesterase inhibi-
tors to the culture medium, the intracellular level of cAMP was increased [194].

Crystal structure of the L. major phosphodiesterase LmjPDEB1, one of the five 
PDE encoding genes, was reported in 2007 [195].

Isoxazolo[3,4-d]pyridazinone analogs were reported to inhibit PDE extracted 
from L. mexicana [196]. Later, it was reported that triphenyl-substituted imid-
azole compound exhibits in vitro antileishmanial and PDE inhibitor activity. 
Moreover, there was a correlation between in vitro antileishmanial activity and 
cAMP content [197].

2.17 Squalene synthase (SQS, SSN, E.C. 2.5.1.21)

SQS enzyme catalyzes the first step in sterol biosynthesis. Cloning, expression, 
and purification of a catalytically active recombinant squalene synthase of  
L. donovani (LdSSN) [198].

Biphenylazabicyclooctanol, biphenylquiniclidine, and quiniclidine derivatives 
possessing LmSQS inhibitory activity have shown antileishmanial effects against 
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L. amazonensis, therefore, SQS might serve as a potential target for antileishmanial 
drug discovery [199–201].

2.18  Uridinediphosphate-glucose pyrophosphorylase (UGPase, EC 2.7.7.9)

UGPase enzyme catalyzes the reaction of UTP and glucose-1-phosphate to 
3-UDP-glucose and PPi in the presence of Mg2 in vivo. It was reported that proto-
zoan UGP differed from its mammalian counterparts which might provide selectiv-
ity [202]. L. major UGPase three-dimensional structure was reported but there has 
not been any reported in vitro/in vivo inhibitor of the enzyme yet although virtual 
screening campaigns have been applied to the enzyme [203].

2.19  Deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase,  
EC 3.6.1.23)

The levels of dUTP are kept low by the action of dUTPase, a ubiquitous enzyme 
that catalyzes the hydrolysis of dUTP to PPi and dUMP, a substrate for thymidylate 
synthase (TS) [204]. The purification and characterization of L. major dUTPase 
were reported alongside its crystal structure [205, 206].

Deoxyuridine derivatives were shown to inhibit L. major, and human dUTPase 
enzymes exhibited moderate activity against L. donovani [207].

2.20 γ-Glutamylcysteine synthetase (Gcs, EC 6.3.2.2)

Gcs is an essential protein of the trypanothione biosynthesis pathway, which 
catalyzes ATP-dependent ligation of L-cysteine to L-glutamate. Characterization of 
L. donovani Gcs was reported to the literature in 2016 [208]. Agnihotri et al. identi-
fied carbamate, urea, and purine derivatives as Gcs inhibitors using in silico tools, 
then antileishmanial effect of the compounds was reported in vitro [209].

2.21 Cyclophilin (Cyp, Peptidylprolyl isomerase, EC 5.2.1.8)

Cyclophilins are a ubiquitous class of proteins with peptidylprolyl cis-trans isom-
erase activity. The structure of cyclophilin from L. donovani bound to cyclosporin 
was reported in 2009 [210]. Interestingly, a recent study showed that cyclosporin 
A, cyclophilin A modulator, does not express any significant inhibitory effect on 
intracellular L. donovani amastigotes, therefore, further studies are needed to 
validate this enzyme [211].

2.22 Other Leishmania sp. enzymes

We have summarized the validated targets for antileishmanial drug discovery 
and tried to give examples of potential modulators of these targets so far. Up to our 
knowledge, there are several other enzymes involved in kinetoplastids’ physiologi-
cal pathways which might serve as a potential target and provide selectivity, such 
as NDKb (nucleoside diphosphate kinase B, C 2.7.4.6), GPD (glycerol-3-phosphate 
dehydrogenase, EC 1.1.1.8), PGI (glucose-6-phosphate isomerase, EC 5.3.1.9), 
GspS (glutathionylspermidine synthetase, EC 6.3.1.8), PMM (phosphoman-
nomutase, EC 5.4.2.8), PyK (pyruvate kinase, EC 2.7.1.40), TIM (triosephosphate 
isomerase, EC 5.3.1.1.), DHS (deoxyhypusine synthase, EC 2.5.1.46), and DOHH 
(deoxyhypusine hydroxylase, EC 1.14.99.29). Yet, the antileishmanial effect by 
the modulation of these targets has not been reported therefore further studies on 
these targets are needed.
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3. Conclusion

Leishmaniasis treatment research has long been neglected. In this postgenomic 
era, work on leishmaniasis has accelerated, but great challenges still remain for 
medicinal chemists and chemical biologists—selectivity over human enzymes and 
efficacy over parasite life cycles. This chapter will be useful for researchers who will 
do in silico and in vitro studies.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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