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Chapter

Matlab Program Library for
Modeling and Simulating Control
Systems for Electric Drives Based
on Fuzzy Logic

Constantin Volosencu

Abstract

Fuzzy control of the speed of electric drives is an alternative in the field of the
control system. Modeling and simulation of electric drive control systems based on
fuzzy logic is an important step in design and development. This chapter provides a
complete means of modeling and simulation of fuzzy control systems for DC
motors, induction motors, and permanent magnet synchronous motors, made in the
Matlab/Simulink program environment, useful for performing complex analyzes.
The functioning of the programs is demonstrated by an example of characteristics
obtained practically, with a functioning regime often encountered in practice.

Keywords: simulation, modeling, control of electric drives, DC motors, induction
motors, permanent magnet synchronous motors, fuzzy PI controllers

1. Introduction

Electric drives play an important role in the development of machine tools,
production systems, means of transport, and many other practical applications. The
purpose of using electric drive control systems is to ensure good performance
indicators. The use of fuzzy logic in the control of electric drives ensures the
realization of high-performance systems. Modeling and simulation of electric drive
control systems based on fuzzy logic are an important means in their design. This
chapter presents a library of Matlab/Simulink programs designed to model and
simulate electrical drive control systems based on fuzzy speed PI controllers.

In the literature, the control of electric drives based on fuzzy logic is studied in
many works. Several Matlab programs for modeling and simulating electric drive
systems based on fuzzy logic are presented on the Matlab website as well. Programs
for modeling and simulating fuzzy DC drive systems are presented in [1-3]. Pro-
grams for modeling and simulating fuzzy driving systems of induction motors are
presented in [4, 5]. The Matlab software has the facilities for modeling and simu-
lating fuzzy systems [6] and electric drive systems [7, 8]. The problem of intelligent
control of electric drives has been addressed in numerous papers over the years,
including application of expert systems, fuzzy logic and neural networks in electric
drives [9], fuzzy control of switched reluctance motor drives [10], or fuzzy adap-
tive vector control of induction motor drives [11]. The basic management systems
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of electric actuators have been treated in numerous works in the literature as well.
The problem of using electric machines in variable speed control systems is treated
in [12], principles of motion control with induction motors are presented in [13]
and with permanent magnet, AC machines in [14], the issues of pulse-width mod-
ulation for electronic power conversion are presented in [15], principles of model-
ing and simulation of electric drive control systems are presented in [16]. The basic
design of fuzzy PID controllers is shown in [17].

The author of this chapter published the results of his research in the field of
fuzzy control of electric drives in specialized literature, addressing the following
issues: speed control based on fuzzy PI controllers of DC machines [18], of syn-
chronous machines with permanent magnets [19], of AC machines in general [20],
demonstration of the robustness of fuzzy control systems of electric machines [21],
analysis of the basic properties of fuzzy control systems [22, 23], tuning of fuzzy
PID regulators [24, 25] and analysis of the stability of fuzzy control systems [26].

The chapter presents program libraries dedicated to fuzzy speed regulation of
the main electric motors used in practice: direct current motors, induction motors,
and permanent magnet synchronous motors, respectively in subsections 2, 3, and 4.
For each element of the control systems are presented the equations used in model-
ing and the related subprograms. For each control system, the transient regime
characteristics obtained by simulation are presented. Based on the transient regime
characteristics, the values obtained for the performance indicators of the control
systems are highlighted, such as overshoot, rise time, error, and others.

2. Library programs
2.1 DC motor

The developed programs solve the problem of speed control of the DC machine
with the control system from Figure 1.

The speed control structure from Figure 1 has the following components: MCC -
DC motor, ML - load machine, CONV - power converter, RG-i - current controller,
RF-Q - fuzzy speed controller, Ti - current sensor, TQ - speed sensor, CAN, CNA -
analog to digital and digital to analog converters, MM-ISI - DC motor with state-
space equations, Lim - anti-wind-up circuit. The control system variables are: Q* -
speed reference, Q - motor speed, Q,,, - measured speed, M - motor torque, M - load
torque, eq - speed error, i* - current reference, i,,, - measured current, e; - current
error, u; - command voltage, u, - motor armature voltage, i, - current motor, u, -
excitation voltage.

The Simulink block diagram of the speed control system of DC drives based on
the fuzzy PI controller is presented in Figure 2.

CONV Ly M, o
Q" Kgp | ua MM-IST
Tggs+1
Uant MCC
En ia
Tes+l
TQ Ti
Qn Kro Q
CAN Tras+l

Figure 1.
Block diagram of the DC motor fuzzy speed control system structure.
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Figure 2.
Simulink block diagram of the fuzzy control system of DC drive.
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Figure 3.
Simulink diagram of current control loop srcmcec.

The block RF-w in Figure 1 represents the Simulink model of the fuzzy speed
controller. The other part of the Simulink diagram is a conventional control part of a
linear control system.

The block sremec is the internal current control loop and it has the Simulink
block diagram from Figure 3.

The block Mcc represents the DC motor and it has the equations:

di, R,. k. 1

dAr ~ AL L,
aQ k, kf 1
BB, oM
a ] J J

(1)

The power converter has the block CONV and the current sensor has the block
Ti. Their transfer functions are presented in their blocks. The current controller has
a PI linear transfer function. The armature voltage u, is limited. The speed sensor
has the block Tw. The current controller has anti-windup protection. The current
reference is limited. The simulation diagram allows simulations in four quadrants
for speed and torque. The diagram calculates a quadratic performance criterion of
speed error with the formula:

E— Jezdt )

A theoretic design for fuzzy speed control systems for DC drives is presented
in [27].
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2.2 Induction motor

The structure of the fuzzy control system of the induction machine is presented
in Figure 4.

The meanings of the notations in the Figure 4 are as follows: MAS - induction
machine; ML- working machine; CONV- power electronic convertor; RG-i - stator
phase current controllers; Ti—current sensor; TO—position sensor; TQ—speed
sensor; TCl—inverse Park coordinate transformation; BCC—block for calculating
the reference currents in the vector control structure of the asynchronous machine
with rotor flux orientation; RF-Q—speed fuzzy PI controller; Q—rotor speed; Q*—
speed reference; M*—torque reference; ¢,*—rotor flux reference; 6,*—stator
phasor position reference; ig", iq*—d, q stator current references; i.*—stator current
reference; Q,,—measured speed; 6,,—measured rotor position; i;,,—measured sta-
tor currents; eq—speed error; e;—current error; Si—control signals for power con-
verter switches with pulse width modulation; V..—DC converter supply voltage;
us—stator voltages; M—load torque. The induction motor is vector controlled with
rotor flux orientation, with rotor flux reference ¢, and torque reference M "and the
measured rotor position 0,,,. The reference stator currents are calculated with the
block TCI. The current regulators RG-i give the pulse width modulation signals S;
for the electronic power converter CONV, fed from a DC voltage source V. The
power converter CONV gives the stator voltages u..

The speed control system of induction motors based on the fuzzy PI controller is
presented in Figure 5.

The model from Figure 5 implements an induction motor control structure with
indirect field orientation in rotor coordinates [13, 28]. The block mas represents the
induction motor and it has the Equations [13, 29, 30]:

BCC | i}

Figure 4.
Block diagram of the induction motor fuzzy speed control system structure.
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Figure 5.
Simulink diagram of the fuzzy control system of induction motors.
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The Egs. (3) are written for the general flux, and in the case of vector control
with rotor flux orientation, the flux is the rotor flux: 6¢ = 6,. CONV is a power
inverter functioning in comutation, TCI is the inverse Park coordinate transforma-
tion [30], BCC is for calculating the reference currents in the vector control struc-
ture of the asynchronous machine with rotor flux orientation. BCC has the block
diagram from Figure 6 [13, 30].

Where 7, - the pole pair number, Ly, , - magnetic and rotor inductances, s - slip
frequency, R, - rotor resistance, o - stator frequency reference. Two-position
current controllers RG-i with hysteresis are used.

E;f - er;f +

2.3 Permanent magnet synchronous motor

The structure of the fuzzy control system of the permanent magnet synchronous
motor is presented in Figure 7.

The meanings of the notations in Figure 7 are the same as in Figure 4, and
MSMP is the permanent magnet synchronous machine. The permanent magnet
synchronous motor is vector controlled with rotor flux orientation with rotor q
current i qas atorque reference, the rotor d current i 4 at zero as a flux reference
¢ and the measured rotor position 6,

The speed control system of 1nduct10n motors based on the fuzzy PI controller is
presented in Figure 8.

8
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a
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e

Figure 6.
The block for calculating the reference currents in the vector control structure of the asynchronous machine with
rotor flux ovientation (BCC).
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Figure 7.

Block diagram of the induction motor fuzzy speed control system structure.
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Figure 8.
Simulink diagram of the fuzzy control system of permanent magnet synchronous motors.

This diagram implements the rotor flux oriented control structure [14]. The

block msmp + csc includes the permanent magnet synchronous motor, with
Equations [14, 30]:

dd

uy = we iy = ie ", Oy = B, up = Rig +— 7 +jody, "

3 . 749)
M =3 Re{ j@ypiy ] 7> =M—ksQ—M,

The current controllers and the Park inverse coordinator transformation, like in
the case of the induction motor.

2.4 Fuzzy speed controller

The Simulink diagram of fuzzy speed controller RF-w is presented in Figure 9.

It is developed based on the block diagram of the fuzzy controller RG-F from
Figure 10.

The fuzzy controller has Mamdani’s structure with the fuzzification of the input
variables x;, inference of the fuzzy values xy, with a rule base, and defuzzification of
the fuzzy command u¢. The fuzzy block gives the command #4. Different member-
ship functions for the input and output variables, different inference methods, and
different rule bases may be chosen [17, 19, 21, 22]. Here are some Matlab programs
for fuzzy computing, as follows.
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Figure 9.
Simulink diagram of fuzzy speed controller RF-w.
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Figure 10.
The block diagram of the fuzzy controller RG-F.
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A program for defining the function of triangle membership:

function [m]=triunghi(x,a,b,c)
% parameters: a<b<c / m(a)=m(c)=0, m(b)=1
n=length(x);
for i=1:n
if x(i)<=a | x(i)>=c
m(i)=0;
elseif x(i)>a & x(i)<b
m(i)=1/(b-a)*x(i)+a/(a-b);
elseif x(i)==b
m(i)=1;
else
m(1)=x(1)/(b-c)+c/(c-b);
end
end

A program for defining the function of decreasing trapezoidal membership:

function [m]=trapezd(x,a,b)
% parameters: a<b, m(a)=1, m(b)=0
n=length(x);
for i=1:n
ifx(i)<=a
m(i)=1;
elseif x(i)<b & x(i)>a
m(1)=x(1)/(a-b)+b/(b-a);
else
m(i)=0;
end
end

A program for defining the function of increasing trapezoidal membership:

function [m]=trapezc(x,a,b)
% parameters: a<b, m(a)=0, m(b)=0
n=length(x);
for i=1:n
if x(i)<=a
m(1)=0;
elseif x(i)>=b
m(i)=1;
else
m(i)=x(i)/(b-a)+a/(a-b);
end
end
end

A program for calculating the rule base 3-3 for DC motors:

% Loading control system parameters:

load pudmcc

% Calculating the margins of discourse universes:
diN=IN/Ki/5/Ti;

diM=IM/Ki/5/Ti;
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ewM=KCAN*KTw*2*wb;
ewb=ewM/2;
deMt=KCAN*KTw/J*(MMt+kf*wb);
deMc=KCAN*KTw/J*(MMc+kf*wb);
pdi=diM/20;
pe=ewM/20;
pde=deMt/20;
% discourse universes:
udi=[-diM:pdi:diM];
ue=[-ewM:pe:ewM];
ude=[-deMt:pde:deMt];
% Definition of fuzzy values:
NBdi=trapezd(udi,-diN,0);
ZEdi=triunghi(udi,-diN,0,diN);
PBdi=trapezc(udi,0,diN);
NBe=trapezd(ue,-~ewb,0);
ZEe=triunghi(ue,-ewb,0,ewb);
PBe=trapezc(ue,0,ewb);
NBde=trapezd(ude,-deMc,0);
ZEde=triunghi(ude,-deMc,0,deMc);
PBde=trapezc(ude,0,deMc);
% Normalization of discourse universes:
ue=ue/ewb;
ude=ude/deMc;
udi=udi/diN;
subplot(3,1,1),plot(ue,NBe,ue,ZEe,ue,PBe);
xlabel('ew');ylabel('me');grid
subplot(3,1,2),plot(ude,NBde,ude,ZEde,ude,PBde);
xlabel('de');ylabel(‘mde');grid
subplot(3,1,3),plot(udi,NBdi,udi,ZEdi,udi,PBdi);
xlabel('di');ylabel(‘'mdi');grid
% Table of rules
Al=[NBe; ZEe; PBe;
NBe; ZEe; PBe;
NBe; ZEe; PBe];
A2=[NBde; NBde; NBde;
ZEde; ZEde; ZEde;
PBde; PBde; PBde];
B=[NBdi; NBdi; ZEdi;
NBdi; ZEdi; PBdi;
ZEdi; PBdi; PBdi];
save daterf3 ue ude udi A1 A2 B ewM deMt

A program for fuzzy block implementation in Simulink scheme:

function [dip]=bdf(e,de,Al,ue,A2,ude,B,udi)

% Input variables: error e, error deivative: de

% Output variable: dip

% Inference with Larsen max-min method:
dif=infermm(Al,e,ue,A2,de,ude,B);

% Defuzzification with centre of gravity method:
dip=defzfir(dif,udi,l);

end
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Figure 11.
Speed characteristics for divect current machine a), induction machine b) and synchronous machine with

permanent magnets c), for fuzzy regulation with continuous line and for conventional regulation with a dashed
line.

The fuzzy block RG-F has algebraic properties and the sector property presented
in [22-24]. The fuzzy controller RF-w may be designed using a pseudo-equivalence
with a linear PI controller with a grapho-analytical method [25-27], based on its
input—output transfer characteristics [22-24].

3. Speed characteristics

With the help of the programs presented above, transient characteristics can be
obtained for various operating regimes, which can be chosen by the signals applied
to the speed prescription inputs and to the disturbing inputs of the load torques.
Thus, transient regime characteristics can be obtained for speeds, currents, volt-
ages, fluxes, mechanical torques, regulation errors, and others. These programs
allow complex analyzes of the behavior of speed control systems based on fuzzy PI
controllers. The fuzzy PI controller can be replaced with a conventional, linear PI
controller. In order to demonstrate the good functioning of the programs, the
following is an example of an operating regime often encountered in practice for the
three-speed regulation structures. The simulated operating regime consists of:
starting the machine idle up to the nominal speed, loading it with a nominal
mechanical torque, and reversing the load. It was also chosen to exemplify the case
when a conventional linear PI speed regulator is used. The characteristics in the two
cases - fuzzy and linear - are presented in the same graph, and the same coordinate
axes, for example. Figure 11a—c show the speed characteristics for the DC machine,
induction machines, and the permanent magnet synchronous machine, respec-
tively.

It is observed that in the case of fuzzy control better quality control indicators
are obtained: zero overshoot, shorter rise time, shorter time for elimination of load
torque effect, etc. [18-20]. The fuzzy control structures are global absolute internal
stable and external BIBO stable [28]. The fuzzy control structures are robust at
parameter identification errors and at the perturbation from the load torque [21].

4, Conclusion

The chapter presents a library of Matlab/Simulink programs for the control of
electric drives. Thus, Simulink schemes are presented for modeling and simulating
the fuzzy speed control systems of direct current machines, induction machines
with vector control with rotor flux orientation, and synchronous machines with
permanent magnets. Matlab/Simulink programs are presented for modeling and



MATLAB Applications in Engineering

simulating fuzzy PI controllers based on the Mamdani structure. To demonstrate
the operation of the programs, the characteristics of the speed obtained in the case
of the three adjustment structures are presented. Fuzzy system modeling programs
can be developed for various types of membership functions, inference methods,
and rule bases.
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Appendix

The parameters of the three motors taken as examples are presented below.

The DC motor: P, = 1 kW, U,, =220 V, n,, = 3000 rot./min., n = 0,75, p = 2,
J=0,006 kgm2, M, =3,2Nm, Q, =314 rad/s, I,, = 6A, Iy = 10,8 A, R, = 2,01 Q,
L,=0,034H,T, = 0,017 ms, k, = 0,664 Vs, k., = 0,533 Nm/A, k¢ = 8.10 * Nms,
Kena = Kean = 1, Liim = I, Uam = 240 V.

The induction motor: R, = 12,4 Q; R, = 12,4 Q; L., = 0,8 H; L, = 0,06 H;
L,;=0,06 H; p = 4; k¢= 0,008 Nms; ] = 0,01 kgm2; M. = 7 Nm; My = 24 Nmy;
np, = 750 rot/min; Pnovcey = 550 W Iy = 1,77 A; Igq = 8 A; Ugy = 220 V.

The permanent magnet synchronous motor: Py = 400 W; Iy = 3 A; Iy = 8 A;
N, = 4000 rot/min; ny, = 3000 rot/min; My = 1,3 Nm; My = 3,4 Nm; J = 0,001
kgm?; k¢ = 0,0001 Nms; R = 0,6 Q; Lq = 4 mH; Ly = 5mH; p = 4; @0 = 0,072 Wh;
Ve =200V.
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