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Chapter

Numerical Verification Method of
Solutions for Elliptic Variational
Inequalities
Cheon Seoung Ryoo

Abstract

In this chapter, we propose numerical techniques which enable us to verify the
existence of solutions for the free boundary problems governed by two kinds of
elliptic variational inequalities. Based upon the finite element approximations and
explicit a priori error estimates for some elliptic variational inequalities, we present
effective verification procedures that, through numerical computation, generat a
set which includes exact solutions. We describe a survey of the previous works as
well as show newly obtained results up to now.

Keywords: numerical verification method, variational inequalities, error estimates,
fixed point formulation, newton-like method, finite element method

1. Introduction

Numerical verification methods of solutions for differential equations have been
the subject of extensive study in recent years and much progress have been made
both mathematically and computationally [1–23]. However, for some problems
governed by the elliptic variational inequalities, there are very few approaches. As
far as we know, it is hard to find any applicable methods except for those of Nakao
and Ryoo [13, 24–46].

The authors have studied for several years the numerical verification method of
solutions for elliptic variational inequalities using finite element method and the
constructive error estimates combining with Schauder’s and Banach’s fixed point
theorem. Several results in our research are already published in [13, 24–46]. In this
chapter, we briefly overview our resent research results including works not yet
published.

The outline of this chapter is as follows. In Section 2, the two types of elliptic
variational inequalities are considered. In Subsection 2.1, we describe the elliptic
variational inequalities and give a fixed point formulation to prove the existence of
solutions. In Subsections 2.2 and 2.3, the main tool of the verification method is
explained at an abstract level. In Subsection 2.2, we present a simple iteration
method for numerical verification of solutions for the elliptic variational inequal-
ities. We construct the concepts of rounding and rounding error for functions and
present a computer algorithm to construct the set satisfying the verification condi-
tions. However, it is difficult to apply the method in Subsection 2.2 to a problem in
which an associated operator is not retractive in a neighborhood of the solution,
because it is based upon a simple iteration method. In Subsection 2.3, we propose
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another approach to overcome such a difficulty. This method can be applied to
general elliptic variational inequalities without any retraction property of the asso-
ciated operator. We introduce a Newton-like operator and reformulate the problem
using it. Particularly, special emphasis is placed on the way to devise the Newton-
like operator for a kind of non-differentiable map which defines the original prob-
lem. We introduce a computational verification condition. In order to show a
concrete usage of the tool, in Section 3, we present an application to some problems
governed by the elliptic variational inequalities. Many difficulties remain to be
overcome in the construction of general techniques applicable to a broader range of
problems. However, the authors have no doubt that investigation along this line will
lead to a new approach employing numerical methods in the field of existence
theory of solutions for various variational inequalities that appear in mathematical
analysis.

2. Elliptic variational inequalities

The theory of elliptic variational inequalities has become a rich source of inspi-
ration in both mathematical and engineering sciences. Elliptic variational inequal-
ities are an effective tool for studying the existence of solutions of constrained
problems arising in mechanics, optimization and control, operation research, engi-
neering science, etc. [47–52]. It is the aim of this chapter to introduce a numerical
technique to verify the solutions for elliptic variational inequalities. The basic
approach of this technique consists of the fixed point formulation of elliptic varia-
tional inequalities and construction of the function set, on computer, satisfying the
validation condition of a certain infinite dimensional fixed point theorem. For fixed
point formulation, we consider a candidate set which possibly contains a solution.
In order to get such a candidate set, we divide the verification procedure into two
phases: one is the computation of a projection into a closed convex subset of some
finite dimensional subspace (rounding); the other is the estimation of the error for
the projection (rounding error). Combining these methods with some iterative
technique, the exact solution can be enclosed by sum of rounding parts, which is a
subset of finite dimensional space, and the rounding error, which is indicated by a
nonnegative real number. These two procedures enable us to treat infinite
dimensional problems as finite procedures, thta is, by computer.

Notations

• V : real Hilbert space with scalar product �, �ð Þ and associated norm ∥ � ∥,

• V ∗ : the dual space of V,

• a �, �ð Þ : V � V ! R is a bilinear, continuous and V-elliptic from on V � V.

A bilinear form a �, �ð Þ is said to be V-elliptic if there exists a positive constant α

such that a v, vð Þ≥ α∥v∥2, ∀v∈V:.
In general we do not assume a �, �ð Þ to be symmetric, since in some applications

nonsymmetric bilinear forms may occur naturally.

• L : V ! R continuous, linear functional,

• Kis a closed convex nonempty subset of V,
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• j �ð Þ : V ! R∪ ∞f g is a convex lower semicontinuous (l.s.c) and proper
functional (j �ð Þ is proper if j vð Þ> �∞,∀v∈V and j 6¼ þ∞Þ.

The two types of elliptic variational inequalities.
We consider two classes of elliptic variational inequalities.

• Elliptic variational inequalities of the first kind: Find u∈V such that u is a
solution of the problem

a u, v� uð Þ≥L v� uð Þ, ∀v∈K, u∈K:

• Elliptic variational inequalities of the second kind: Find u∈Vsuch that u is a
solution of the problem

a u,�uð Þ þ j vð Þ � j uð Þ≥L v� uð Þ,∀v∈V, u∈V:

2.1 The problem and the fixed point formulation

Let us first set a few notations [1, 47, 49, 50, 53–61]. In what follows we shall

make use of the Sobolev spaces Wk,p
Ωð Þ of functions which possess generalized

derivatives integrable with the pth power up to and including the kth order. For

p ¼ 2, we shall write Wk,p
Ωð Þ ¼ Hk

Ωð Þ,H0
Ωð Þ ¼ L2

Ωð Þ: Further, we introduce the

scalar product in L2
Ωð Þ by

f , gð Þ ¼
ð

Ω

f xð Þg xð Þdx:

The norm in Hk
Ωð Þ will be denoted by ∥ � ∥Hk

Ωð Þ: The symbol �j jHk
Ωð Þ will stand

for the seminorm,

uj jHk
Ωð Þ ¼

X

∣α∣¼k

∥Dαu∥2
L2

Ωð Þ

 !1
2

, ∥u∥Hk
Ωð Þ ¼

Xk

j¼0

uj j2H j
Ωð Þ

 !1
2

:

Let V be a real Hilbert space with a scalar product �, �ð ÞV and an associated
norm ∥ � ∥V , V ∗ its dual space. K denotes a nonempty closed convex subset of
V, a �, �ð Þ : V � V ! R is a bilinear, symmetric, continuous and elliptic form of V,
a �, �ð Þ : V � V ! R is a bilinear, symmetric, continuous and elliptic form of V � V;
that is, there exist constants α>0, and β>0 such thata u, vð Þ≤ α∥u∥V∥v∥V , ∀u, v∈V

and a v, vð Þ≥ β∥v∥2V , ∀v∈V. The pairing between V and V ∗ is denoted by < � , � > .
Let Λ be a canonical isomorphism from V ∗ onto V defined, for g∈V ∗ , by < g, v> ¼
Λg, vð ÞV , ∀v∈V: We can easily see that ∥Λ∥V ∗ ¼ ∥Λ�1∥V ¼ 1. Now, let us consider
the following variational inequality:

Find u∈K such that a u, v� uð Þ≥ < f uð Þ, v� u> , ∀v∈K, (1)

where f is a nonlinear operator such that f uð Þ∈V ∗
:.

In order to obtain a fixed point formulation of variational inequality (1) we need
the following standard result.

Lemma 1. Let K be a closed convex subset of V. Then u ¼ PKω, the projection of ω on
K, if and only if
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u∈K : u� ω, v� uð ÞV ≥0, ∀v∈K: (2)

For some constant ρ>0, let us define a mapping G : V ! V by

G uð Þ ¼ PKΛΦ uð Þ, (3)

where u∈V, Φ uð Þ∈V ∗ is defined by

<Φ uð Þ, v> ¼ u, vð ÞV � ρa u, vð Þ þ ρ< f uð Þ, v> , ∀v∈V: (4)

For some constant ρ>0, problem (1) can be written as

u, v� uð ÞV � u, v� uð ÞV � ρa u, v� uð Þ þ ρ< f uð Þ, v� u>
� �

≥0,∀v∈K:

Using (4) in the above inequality, problem (1) is equivalent to that of finding
u∈K such that

u� ΛΦ uð Þ, v� uð ÞV ≥0, ∀v∈K: (5)

By (2) and (5), we now have the following fixed point problem for the operatorG:

u ¼ PKΛΦ uð Þ ¼ G uð Þ: (6)

Under appropriate conditions on the space V and the operator G : V ! V(e.g.,
continuity, compactness), which usually have to be verified by theoretical means,
fixed point theorem yields the existence of a solution u of the problem (1) in some
suitable set U ⊂V, provided that

G Uð Þ⊂U: (7)

In order to compute an explicit inclusion, we must therefore construct U explic-
itly. For the numerical verification of condition (7), we have to use interval analysis
on many levels between basic interval arithmetic and functional analysis. For the
appropriate and suitable choice of the operator f , the form a �, �ð Þ, and the convex set
K; one encounters problems governed by the elliptic variational inequality as special
cases from the problem (1) [48–52]. Inbrief, it is clear that the problem (1) is the
most common. Up to now, devising a verification technique for the problem (1) is
still an open problem. It is an important and interesting area of future research to
find the numerical inclusion methods for the problem (1) by using (6). In this

paper, we suppose that V ⊂L2
Ωð Þ and the nonlinear map f �ð Þ : V ! L2

Ωð Þ satisfies
the following assumptions.

A1. f is a continuous map from V to L2
Ωð Þ:

A2. For each bounded subset W ⊂V, f Wð Þ is also bounded in L2
Ωð Þ:

If we restrict the nonlinear map f as above, then it can be shown that the
problem (1) can be characterized by a class of variational inequality of the type,

find u∈K such that a u, v� uð Þ≥ f uð Þ, v� uð Þ, ∀v∈K: (8)

The problem (8) has the restricted condition; even so (8) is an important and
very useful class of nonlinear problems arising in mathematical physics, mechanics,
engineering sciences, etc. In Section 3, we briefly consider a particular example of
interest in applications. Another example is given in [13, 24–46]. In the special case
in which K � V, (8) yields the variational theory of the boundary value problems
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for partial differential equations. We will discuss existence and inclusion methods
for problem (8). These are methods providing the existence of a solution of the
problem (8) within explicitly computable bounds. As we have seen before, the
transformation of problem (8) into some fixed point formulation (6) can be carried
out in the same way. In a conclusion problem (8) is equivalent to the fixed point
problem of finding u∈K such that

u ¼ S uð Þ, (9)

where S denotes a specific operator, not necessarily the same as in (6). In
particular for a given problem, we reduced the problem (8) to the fixed point
formulation (9) and the continuity and compactness of S is discussed. For this
reason, we shall say nothing about this problem for which we refer to [13, 24–46].
In order to simplify argument we assume that S is a continuous and compact
operator. Since S is continuous and compact, as a result of Schauder’s fixed point
theorem, if there exists a nonempty, bounded, convex, and closed subset U such
that S Uð Þ⊂U, then there exists a solution of u ¼ S uð Þ in U. In Sections 2.2 and 2.3,
we describe how to construct U explicitly.

2.2 Verification by a simple iteration method

In this subsection, we describe a simple iteration method for numerical verifica-
tion of solutions for elliptic variational inequalities. In order to treat functions and
variational inequalities in the infinite dimensional space V by computer, we intro-
duce two concepts, rounding and rounding error. Now, let Vh be a finite dimen-
sional subspace of V dependent on h 0< h< 1ð Þ and let Kh be a nonempty closed
convex subset of Vh. Usually, Vh is taken to be a finite element subspace with mesh
size h. For the sake of simplicity, we shall define Kh, an approximate subset of K, by
Kh ¼ Vh ∩K: Kh is a closed convex subset of Vh. In practical applications, the
construction of Kh is one of the difficulties presented by variational inequalities. For
a given problem, several approximations are available. For a general study of the
approximation of convex sets, we refer the reader to the work of Mosco [51]. We
define the projection PKh

from V into Kh [49, 50]. That is, vh ¼ PKh
uð Þ, the

projection of u into Kh, is defined as follows:

u ¼ S uð Þ, vh ∈Kh : vh, ζ � vhð ÞV ≥ u, ζ � vhð ÞV , ∀ζ∈Kh: (10)

To verify the existence of a solution of (9), we determine a setW for a bounded,
convex, and closed subset U ⊂V as

W ¼ v∈V : v ¼ S uð Þ, u∈Uf g:

From Schauder’s fixed point theorem, if W ⊂U holds, then there exists a solu-
tion of (8) in the set U. Our goal is to find a set U which includes W: For any subset
W ⊂V, we define R Wð Þ⊂Kh by the projection of V to Kh, which is called the
rounding of W. Additionally, we define RE(W), the rounding error of W, as a
subset of V so that W ⊂R Wð Þ þ RE Wð Þ holds. Using R Wð Þ þ RE Wð Þ instead of W,
the verification condition becomes

R Wð Þ þ RE Wð Þ⊂U: (11)

Let us describe the procedure more concretely. First, we consider the auxiliary

problem: given g∈L2
Ωð Þ,
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find u∈K such that a u, v� uð Þ≥ g, v� uð Þ, ∀v∈K: (12)

We note that, by well known result [49], there is a unique element u which
satisfies (12).

Secondly, we define the approximate problem corresponding to (12) as

a uh, vh � uhð Þ≥ g, vh � uhð Þ,∀vh ∈Kh, uh ∈Kh (13)

and (13) admit one and only one solution [49]. Error estimates for the varia-
tional inequalities can be found in [48, 49, 52], etc. Now, using (10), (12), (13) and
error estimates, we make the following assumption.

A3. For each u∈V, there exists a positive constant C, independent of u and h,
such that

∥u� PKh
u∥V ≤Ch∥g∥L2

Ωð Þ: (14)

In order to verify the solutions numerically, it is necessary to determine the
constant C that appears in a priori error estimations; this constant will be discussed
later.

In order to construct the set U satisfying the verification condition (11) in a
computer, we use an iterative procedure, that is, the sequential iteration. We pro-
pose a computer algorithm to obtain the set U which satisfies the condition (11).

(1) First, we obtain an approximate solution v
0ð Þ
h ∈Kh to (8) by an appropriate

method. Set U
0ð Þ
h ¼ v

0ð Þ
h

n o
and α0 ¼ 0:.

(2) Next we will define R W ið Þ� �
and RE W ið Þ� �

for i≥0, where W ið Þ is the set
defined as follows:

W ið Þ ¼ v ið Þ ∈V : v ið Þ ¼ S u ið Þ
� �

, u ið Þ ∈U ið Þ
n o

:

R W ið Þ� �
is defined by the subset of Kh which consists of all the elements v ið Þ

h ∈Kh

such that

a v
ið Þ
h ,ψ � v

ið Þ
h

� �
≥ f u ið Þ

� �
,ψ � v

ið Þ
h

� �
, ∀ψ ∈Kh, (15)

holds for some u ið Þ ∈U ið Þ
: Note that R W ið Þ� �

can be enclosed by

R W ið Þ� �
⊂
PM

j¼1A jϕ j, where A j ¼ A j, A j

h i
are intervals, ϕ j

n oM

j¼1
is a basis of Vh,

andM ¼ dimVh. For details of the interval calculation, we refer the reader to Nakao

[6, 7, 12]. Next RE W ið Þ� �
is defined as

RE W ið Þ
� �

¼ v∈V : ∥v∥V ≤Ch sup
u ið Þ ∈U ið Þ

∥f u ið Þ
� �

∥L2
Ωð Þ

( )
: (16)

Here, C is the same constant as in (14). Hence,W ið Þ ⊂R W ið Þ� �
þ RE W ið Þ� �

holds.
(3) Check the verification condition:

R W ið Þ
� �

þ RE W ið Þ
� �

⊂U ið Þ
: (17)

If the condition is satisfied, then U ið Þ is the desired set, and a solution to (8)

exists in W ið Þ, and hence in U ið Þ
:

6
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(4) If the condition is not satisfied, we continue the simple iteration by using
δ� inflation; that is, let δ be a certain positive constant given beforehand, and take

αiþ1 ¼ Chsupu ið Þ ∈U ið Þ∥f u ið Þ� �
∥L2

Ωð Þ þ δ,

αiþ1½ � ¼ v∈V : ∥v∥V ≤ αiþ1f g,

U
iþ1ð Þ
h ¼

PM
j¼1 A j � δ, A j þ δ
h i

ϕ j,

U iþ1ð Þ ¼ U
iþ1ð Þ
h þ αiþ1½ �,

and then go back to the second step. The reader may refer to [26–46] for the
details. If the condition (17) is satisfied, in our inclusion method of solutions for (9),

the solution u is enclosed in the set U ið Þ, which we call ‘a candidate set’ of the form

U ið Þ ¼ U
ið Þ
h þ αi½ �.

2.3 Verification by a Newton-like method

The significance of a Newton-like operator was already pointed out in [29, 43].
Hence we will not discuss it in detail here. In Subsection 2.1, numerical verification of
solutions for elliptic variational inequalities using a finite element method have been
discussed only for simple iteration method. The method proposed in Subsection 2.2 is

such that U
ið Þ
h
, αi

� �n o
always converges to the limit value Uh, αð Þf g from an arbitrary

initial value U
0ð Þ
h

, α0

� �n o
if S in (9) is retractive operator (we refer to Zeidler [59–61]

for the definition of retraction), while no convergence can generally be expected if S
is not retractive operator. Briefly, for not retractive operator in the neighborhood of
the solution, it is difficult to use the previous scheme proposed in Subsection 2.2. To
overcome such a difficulty, in this section, we newly formulate a verification method
using the Newton-like method. This approach enables us to remove the restriction in
Subsection 2.2 to the retraction property of the operator in the neighborhood of the
solution. Namely, this technique can be applied to general variational inequalities
without any retraction property of the associated operator S. We refer to [29, 43] for
a detailed study of the properties of the Newton-like Method.

In this subsection, we use the notation of Section 2.2. We assume that Kh ¼
Vh ∩K is a closed convex cone with vertex at 0 and K ∗

h its dual. We note that K ∗
h is

also a closed convex cone with vertex at 0, which is the only point common to Kh

and K ∗
h . From (10) it follows that K ∗

h is the set of points whose projections into Kh is
0. We need some additional lemma.

Lemma 2. Any u∈V can be uniquely decomposed into the sum of two orthogonal
elements. That is,

u ¼ PKh
u⊕ I � PKh

� �
u ¼ PKh

u⊕PK ∗
h
u:

Here, ⊕ denotes the sum of two orthogonal elements in the sense of V:.
Note that (9) can be rewritten as the following decomposed form in Kh and K ∗

h :

PKh
u ¼ PKh

S uð Þ,
I � PKh

� �
u ¼ I � PKh

� �
S uð Þ:

(
(18)

In order to formulate a Newton-like verification condition for (18), we need a
Fréchet derivative of the operator S. For most of the variational inequalities, the S in
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(9) is not Fréchet differentiable at all. Therefore, in order to use a Newton-like
type method, a major difficulty in numerically solving the fixed point formulation
u ¼ S uð Þ is the treatment of the non-differentiable operator S. We need a suitable
modification of the Fréchet derivative of S. Using some techniques, we can devise

the approximate Fréchet derivative of S. Hence we shall assume that eDS uð Þ is the
approximate Fréchet derivative of the S uð Þ at u as the linear operator. Let eDS uð Þ be
designated as the Fréchet-like derivative of S at u.

To consider the Newton-like operator for (18), we define the nonlinear operator
Nh : V ! Vh as

Nh uð Þ � PKh
u� I � eDS uhð Þ

h i�1

h
PKh

� PKh
S

� �
uð Þ:

Here I is the identity operator and I � eDS uhð Þ
h i�1

h
denotes the inverse on Vh of

the restriction operator I � eDS uhð Þ
h i���

Vh

: Note that we will verify the existence of the

inverse operator I � eDS uhð Þ
h i�1

h
from the nonsingularity of the matrix corresponding

to I � eDS uhð Þ
h i���

Vh

in actual calculations.

Next we define the operator T : V ! V as follows:

T uð Þ � Nh uð Þ þ I � PKh

� �
S uð Þ: (19)

Then T is considered as the Newton-like operator for the former part of (18),
but as the simple iterative operator for the latter part. T becomes a compact and
continuous map on V by properties of S. Using some techniques, for a given
problem we can not only define the Newton-like operator, but also devise a
Newton-like Method. Furthermore, we obtain the following proposition and
theorem.

Proposition 3. Given the assumption that Nh uð Þ∈Kh,

u ¼ S uð Þ⇔ u ¼ T uð Þ: (20)

Theorem 4. If there exists a nonempty, bounded, convex, and closed subset U ⊂K
such that T Uð Þ ¼ T uð Þju∈Uf g⊂U, then by the Schauder fixed point theorem, there
exists a solution u∈U of u ¼ S uð Þ.

When we decompose the set U as U ¼ Uh ⊕U⊥ in Theorem 8.1, where Uh ⊂Kh

and U⊥ ⊂K ∗
h , the verification condition can be written by

Nh Uð Þ⊂Uh,

I � PKh

� �
S Uð Þ⊂U⊥:

	
(21)

Here, Uh is represented as the linear combination of the base functions of Vh

with interval coefficients, whereas U⊥ is the intersection of K ∗
h with a ball in V.

That is,

Uh ¼ φh ∈Kh : φh ¼
XM

j¼1

A jϕ j with a j ∈ A j,A j

h i( )
,

U⊥ ¼ φ∈K ∗
h : ∥φ∥V ≤ α

� �
,

respectively.
Note that Nh Uð Þ can be directly computed from Uh and U⊥ with additional

information on the a priori error estimates. On the other hand, I � PKh

� �
S Uð Þ is

8
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evaluated using (14), by the following constructive error estimates for the finite
approximate solution of variational inequality (8):

∥ I � PKh

� �
S Uð Þ∥V ≤Ch sup

u∈U

∥f uð Þ∥L2
Ωð Þ:

Therefore, the former condition in (21) is validated as the inclusion relations of
corresponding coefficient intervals; the latter part can be checked by comparing
two nonnegative real numbers.

Next we show a computer algorithm to construct the set U which satisfies
the verification condition (21). In order to realize it, we use the iteration
method described in Subsection 2.2. Similarly to that in Subsection 2.2, we now

generate the following iteration sequence U
nð Þ
h , αn

� �n o
for n ¼ 0, 1, 2,⋯: For n≥ 1,

the δ-inflation of U
n�1ð Þ
h , αn�1

� �
is denoted by eU n�1ð Þ

h ,eαn�1

� �
. Next, for the set

eU n�1ð Þ ¼ eU n�1ð Þ
h ⊕ eαn�1½ �, define U

nð Þ
h , αn

� �
by

U
nð Þ
h ⊃Nh

eU n�1ð Þ� �
,

αn ¼ Ch sup

u∈eU n�1ð Þ
∥f uð Þ∥L2

Ωð Þ:

8
>><
>>:

(22)

Finally, the verification condition in a computer is given by the following theo-
rem. The proof of Theorem 4 will be given here for the sake of completeness; it is
based on Proposition 3 and Schauder’s fixed point theorem.

Theorem 5. For an integer N, if two relationships

U
Nð Þ
h ⊂ eU N�1ð Þ

h and αN <eαN�1 (23)

hold, then there exists a solution u of (8) in U
Nð Þ
h ⊕ αN½ �. Here, the first term of

(21) means the strict inclusion in the sense of each coefficient interval of U
Nð Þ
h and

eU N�1ð Þ
h .

3. Applications

The study for the numerical verification method for elliptic variational inequal-
ities has been still made less progress than for the differential equation case. The
author’s method in the present chapter can be also applied, in principal, to the
verification of solutions of the practical problems. Namely, in Section 3.1, we first
give, a slightly detailed descroption of the basic principle and formulation of our
numerical verification method for the solution of obstacle problems with a homo-
geneous condition. This should be an appropriate introduction to another applica-
tions of our idea. The basic approach of the method consisits of the fixed point
formulation of the problems and construction of the function set, in a computer,
satisying the validation condition of a certain infinite dimensional fixed point theo-
rem. We also mention that it is possible to extend the method to more general
problems with non-homogenerous obstacles. Moreover, in order to apply our
method to the problem whose associated operator is not retractive in a neighbor-
hood of the solution, a Newton-like method is introduced. Next, in Section 3.2, we
apply our method to another type of free boundary problem with appears in the
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elasto-plastic deformation theory. This problem causes some properties of non-
smoothness in tha associated finite dimensional equations. But, we can also over-
come such a difficulty by appling the solution method for non-smooth problems
developed by [29, 32, 33]. In the Section 3.3, we briefly remark that our enclosure
method can also be applied to the so-called simplified Signorini problem which is a
simplified version of a problem accurring in the elasticity theory [43]. Finally, in
Section 3.4, we show the way to apply our approach to elliptic variational inequal-
ities of the second kind appearing in the flow problems of a viscos-plastic fulied in
a pipe.

3.1 Obstacle problems

We introduce the verification method for solutions of the obstacle problem
which is known as a free boundary problem to cahracterize the contacted zone by
an obstacle ψ in an elastic membrane region.

3.1.1 Homogeneous case

Here, ‘homogeneous’ stands for the case that obstacle ψ � 0 in the whole
domain.

3.1.1.1 Basic formulation of verification

Though the basic idea of verification is given in other places [26–28], in order to
keep the paper as self-contained as possible, we describe rather detailed formulation
and verification procedure for the present case.

Let Ω be a bounded convex domain in 
n, 1≤ n≤ 2, with piecewise smooth

boundary ∂Ω. We set V � H1
0 Ωð Þ ¼ fv∈H1

Ωð Þ : v
��
∂Ω

¼ 0g and

a u, vð Þ ¼ ∇u,∇vð Þ

which is adopted as the inner product on V, where �, �ð Þ stands for the inner
product on L2

Ωð Þ. We define K≔ v∈V : v≥0 a:e: on Ωf g:.

First, we note that, by well-known result [49], for any g∈L2
Ωð Þ, the problem:

a u, v� uð Þ≥ g, v� uð Þ, ∀v∈K, u∈K, (24)

has a unique solution u∈V ∩ H2
Ωð Þ, and the estimate

uj jH2
Ωð Þ ≤ ∥g∥L2

Ωð Þ (25)

holds [49], where wj jH2 implies the semi-norm of w in H2
Ωð Þ defined by

wj j2H2
Ωð Þ �

Xn

i, j¼1

∥
∂
2w

∂xi∂x j
∥2L2

Ωð Þ:

Now consider the following elliptic variational inequalities with nonlinear right-
hand side;

Find w∈K such that

a w, v�wð Þ≥ f wð Þ, v�wð Þ, ∀v∈K:

	
(26)
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We take an appropriate finite dimensional subspace Vh of V for 0< h< 1.
Usually, Vh is taken to be a finite element subspace with mesh size h. We then
define Kh, an approximation of K, by

Kh ¼ Vh ∩ K ¼ vhjvh ∈Vh, vh ≥0 on Ω
� �

:

We also define the projection PK from V onto K. That is, v ¼ PK wð Þ, the
projection of w∈V into K, is defined as the unique solution of the following
problem:

v∈K : a v, ζ � vð Þ≥ a w, ζ � vð Þ, ∀ζ∈K: (27)

And define the projection PKh
from V onto Kh. That is, vh ¼ PKh

wð Þ, the
projection of w into Kh, is defined as follows:

vh ∈Kh : a vh, ζ � vhð Þ≥ a w, ζ � vhð Þ, ∀ζ∈Kh: (28)

Now, as one of the approximation properties of Kh, assume that.

For each w∈K ∩ H2
Ωð Þ, there exists a positive constant C1, independent of h,

such that

∥w� PKh
w∥V ≤C1h wj jH2

Ωð Þ: (29)

Here, C1 has to be numerically determined. For example, it is known that we

may take C1 ¼
ffiffi
5

p

π
for the linear element in one dimensional case [27]. Furthermore,

it will be readily seen that the same constant can be taken for the two dimensional
bilinear element from the consideration on the proof of Theorem 5.1 in [27]. To
verify the existence of a solution of (26) in a computer, we use the fixed point
formulation.

First, note that, for each w∈V, there exists a unique F wð Þ∈V such that

∇F wð Þ,∇vð Þ ¼ f wð Þ, vð Þ, ∀v∈V, (30)

which also implies that

�ΔF wð Þ ¼ f wð Þ in Ω,

F wð Þ ¼ 0 on ∂Ω:

	
(31)

Then the map F : V ! V is compact. By (30), the problem (26) is equivalent to
finding w∈V such that

a w, v�wð Þ≥ a F wð Þ, v�wð Þ, ∀v∈K: (32)

Using the definition (27) and (32), we now have the following fixed point
problem for the compact operator PKF.

Find ∃w∈V such that w ¼ PKF wð Þ: (33)

3.1.1.2 Verification condition

We introduce two concepts, rounding and rounding error, which enable us
to deal with the infinite dimensional problem by finite procedures, that is, in a
computer.
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Now we define the dual cone of Kh by

K ∗
h ¼ w∈V : a w, vð Þ≤0, ∀v∈Khf g,

and note that K ∗
h is also closed convex cone in V with vertex at 0 which is the

only point common to Kh and K ∗
h . From (28) it follows that K ∗

h is the set of points
whose projections into Kh is 0.

Lemma 6. Any w∈V can be uniquely decomposed into the sum of two orthogonal
elements. That is,

w ¼ PKh
w⊕ I � PKh

� �
w ¼ PKh

w⊕PK ∗
h
w:

Here, ⊕ denotes the sum of two orthogonal elements in the sense of V.
For any w∈V, we now define the rounding R PKF wð Þð Þ∈Kh by the solution of

the following problem:

a R PKF wð Þð Þ, vh � R PKF wð Þð Þð Þ≥ f wð Þ, vh � R PKF wð Þð Þð Þ, ∀vh ∈Kh:

Next, for any subset W ⊂V, we define the rounding R PKFWð Þ⊂Kh by

R PKFWð Þ ¼ wh ∈Kh : wh ¼ R PKF wð Þð Þ, w∈Wf g:

Usually, R PKFWð Þ is enclosed and represented as a linear conbination of the base
functions in Vh with interval coefficients.

Moreover, for W ⊂V, we define RE PKFWð Þ, the rounding error of PKFW, as a
subset of K ∗

h , that is,

RE PKFWð Þ ¼ v∈K ∗
h : ∥v∥V ≤C0h∥f Wð Þ∥L2

� �
, (34)

where

∥f Wð Þ∥L2 � sup
w∈W

∥f wð Þ∥L2 :

Here, C0 � C1C2, where C1 is the same positive constant as in (29), and C2 is
determined by the following regularity estimate for the solution to (24) of the form

uj jH2 ≤C2 gk kL2 : (35)

Thus we may take as C2 ¼ 1 for the present case from (25). Then, we have

PKF wð Þ � R PKF wð Þð Þ∈RE PKF wð Þð Þ, ∀w∈W:

Therefore, the following verification condition is obtained by Schauder’s fixed
point theorem.

Lemma 7. If there exists a nonempty, bounded, convex, and closed subset W ⊂K such
that

R PKFWð Þ⊕RE PKFWð Þ⊂W, (36)

then there exists a solution of w ¼ PKF wð Þ in W .
We sometimes refer the above set W as a candidate set, which we generate in

computer so that it satisfies the condition (36).
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3.1.1.3 Verification procedures

We describe the method to find a set W satisfying (36) in th ebelow.
Consider the following approximate solution wh ∈Kh of (24):

a wh, vh �whð Þ≥ g, vh �whð Þ, ∀vh ∈Kh, wh ∈Kh: (37)

Since the bilinear form a �, �ð Þ is symmetric, (37) is reduced to the quadratic
programming problem:

min
v∈Kh

1

2
a v, vð Þ � g, vÞð

�
:

�
(38)

Let ϕ j

n o
j¼1⋯M

be a basis of Vh with usual linear functions such that

ϕ j xð Þ≥0, ∀x∈Ω and satisfying

ϕ j xið Þ ¼
1, i ¼ j,

0, i 6¼ j,

	

where xi is an interior node of the finite element mesh. Then (38) reduces to the
following vector form:

min
w≥0

1

2
w0Dw� P0w

� �
, (39)

where w≥0 means the componentwise relation. Here, D≔ dij
� �

1≤ i,j≤M
with

dij ¼ ∇ϕi,∇ϕ j

� �
, and w is the coefficient vector with ϕ j

n o
of the function v in

(38). Also, P≔ g,ϕ j

� �� �
1≤ j≤M

.

Furthermore, we define for any α∈Rþ, nonnegative real number, we set

α½ � � ϕ∈K ∗
h ; ∥ϕ∥V ≤ α

� �
:

Then, for a given candidate setW ¼ Wh ⊕ α½ �withWh ⊂Kh, the computation of
the rounding R PKFWð Þ reduces to enclose an interval vector Z ¼ Z j

� �
and Y ¼ Y j

� �

satisfying the following nonlinear system of equations [27]:

Y �DZ ¼ � f Wð Þ,ϕ j

� �
, 1≤ j≤M,

Y jZ j ¼ 0, 1≤ j≤M:

(
(40)

Here, f Wð Þ,ϕ j

� �
is evaluated as an interval B j such that f wð Þ,ϕ j

� �
jw∈W

n o
⊂B j:

In order to solve (40) with guaranteed accuracy, we use some interval approaches
for nonlinear system of equations [19, 20]. Thus, using the solution of (40), we can
enclose the set R PKFWð Þ in (36). Combining this with (34), we can successfully
compute the left-hand side of (36) for any candidate set W ¼ Wh ⊕ α½ �.

Thus we can present a computational verification condition. In the actual com-
putation, we use an iterative procedure with δ-inflation technique to find the set W
satisfying (36). Several numerical examples for verification are presented in [27] for
one dimensional problem using linear finite element.
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3.1.2 Non-homogeneous case

In this subsection, we consider the two-dimensional case. In order to verify solutions
numerically, it is necessary to determine some constants that appear in the a priori error
estimates. For the non-homogeneous case, we define K≔ v∈V : v≥ψ a:e: on Ωf g,
where ψ is a givenH2

Ωð Þ function such that ψ ≤0 on ∂Ω and is not identically equal
to 0. Let Ω be a square with side 1 and let T h be the uniform triangulation of Ω. We

introduce Σh ¼ p; p∈Ω, p is a vertex of T ∈ T h

� �
and define the approximate

Vh of H
1
0 Ωð Þ by Vh ¼ fvh; vh ∈H1

0 Ωð Þ∩C0
Ω
� �

, vh
��
T
∈P1, ∀T ∈ T hg: Here, vhjT

denotes the restriction of vh to T and P1 representing the space of polynomials in two
variables of degree ≤ 1. It is then quite natural to approximate K by

Kh ¼ vh ∈Vh; vh pð Þ≥ψ pð Þ, ∀p∈Σhf g:

Note that, in general, Kh 6¼ Vh ∩ K. Then, PK and PKh
are similarly defined as

before, and we also have the constructive error estimates of the form, ∀vh ∈Kh and
∀v∈K,

∥uh � u∥H1
0 Ωð Þ ≤C g,ψ , hð Þ, (41)

where,

C g,ψ , hð Þ≤ sup
g∈L2

Ωð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:494ð Þ2h2 uj j2H2 þ 2 ∥g∥L2 þ ∥Au∥L2

� �
0:494ð Þ2h2 uj jH2 þ 6h2 ψj jH2

� �r
:

We provide a numerical example of verification in the two-dimensional case
according to the procedures described in the previous section. Let Ω ¼ 0, 1ð Þ �
0, 1ð Þ. We consider the case f uð Þ ¼ Kuþ sin πx sin 2πy and ψ ¼ sin πx sin πy. For
simplicity, we only consider the uniform mesh here. First, we divide the domain
into small triangles with a uniform mesh size h and choose the basis of Vh as the
pyramid functions.

The execution conditions are as follows (Figures 1–3):

K ¼ 0:1, dimVh ¼ 10

Obstacle function ψ ¼ sin π x sin π y

the outline of ψ is shown in Figure 1:

Initial value : u
0ð Þ
h ¼ Galerkin approximation, α0 ¼ 0

the outline of u
0ð Þ
h is shown in Figure 2:

Illustration of contact zone between obstacle

and approximate solution is shown in Figure 3:

Extension parameters : δ ¼ 10�5
:

Results are as follows:

Iteration numbers for verification : 2

H1
0 Ωð Þ � error bound : 0:15437

Maximum width of coefficient intervals in A
Nð Þ
j

n o
¼ 0:00001:

Detailed arguments and with numerical examples are presented in [42].
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Figure 2.

Approximate solution u
0ð Þ
h .

Figure 1.
Obstacle function ψ .
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3.1.3 A Newton-type verification method

The idea of the enclosure method for solutions of obstacle problems is based
upon simply sequential iterations for the original fixed point operator PKF. There-
fore, it is difficult to apply the method to the problem of which associated operator
is not retractive in a neighborhood of the solution. In order to overcome such a
difficulty, we introduce an another formulation using a Newton-like operator. The
essential point is the way to devise the Newton-like operator for a kind of non-
differentiable map which defines the original problem.

To formulate a Newton-type verification condition, we need a Fréchet deriva-
tive of the operator PKF. However, PKF is not Fréchet differentiable at all. There-

fore, we define the approximate Fréchet-like derivative eDKF uhð Þ on Vh for some

uh ∈Kh instead of the Fréchet derivative. Assume that ϕ j

n o
j¼1⋯M

is a basis of Vh,

where M ¼ dimVh, such that ϕ j xð Þ≥0 on Ω and satisfying

ϕ j xið Þ ¼
1, i ¼ j,

0, i 6¼ j,

	

where xi is an interior node of the finite element mesh.
And, for vh ∈Vh, we represent it such as

vh ¼
XM

j¼1

vhjϕ j:

Here, vhj
� �

j¼1,⋯,M
is called as the coefficient vector of vh. Now we take a fixed

subset N0 ⊂ 1, 2,⋯,Mf g, define Vh,N0
, the closed subspace of Vh, by

Vh,N0
¼ vhjvh ∈Vh, vhj ¼ 0 for j ∉ N0

� �
:

Figure 3.
Illustration of the contact zone.
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And let Ph,N0
be a H1

0-projection from V onto Vh,N0
defined by

a u� Ph,N0
u, vð Þ ¼ 0, ∀v∈Vh,N0

,Ph,N0
u∈Vh,N0

:

In order to define eDKF uhð Þ : Vh ! Vh,N0
, we differentiate the first equation of

(40) in W at W ¼ uh to get, for arbitrary δ∈Vh,

∂Y ∗ �D∂Z ∗ ¼ � f 0 uhð Þδ,ϕ j

� �n o
1≤ j≤M

: (42)

Here, ∂Y ∗ ¼ eY ∗

j

� �
1≤ j≤M

and ∂Z ∗ ¼ eZ ∗

j

� �
1≤ j≤M

, where eY ∗

j ¼ 0 for j∈N0 and

eZ ∗

j ¼ 0 for j ∉ N0, respectively.

Then we define the approximate Fréchet-like derivative of PKF uð Þ at u ¼ uh, as

the linear map eDKF uhð Þ : Vh ! Vh,N0
such that, for each δ∈Vh,

eDKF uhð Þ δð Þ≔
XM

j¼1

fZ j
∗
ϕ j:

We now assume that.

A4. The restriction to Vh,N0
of the operator Ph,N0

I � eDKF uhð Þ
h i

: Vh ! Vh,N0
has

the inverse operator

Ph,N0
� eDKF uhð Þ

h i�1

h
: Vh,N0

! Vh,N0
:

Here, I means the identity map on Vh.
By using the above approximate Fréchet-like derivative, we define the Newton-

like operator Nh : V ! Vh by

Nh wð Þ � PKh
w� Ph,N0

� eDKF uhð Þ
h i�1

h
Ph,N0

PKh
� PKh

PKF
� �

wð ÞÞ:

Next we define the operator T : V ! V as follows:

T wð Þ � Nh wð Þ þ I � PKh

� �
PKF wð Þ:

Then T becomes a compact map on V and it follows the fixed point problem
w ¼ PKFw is equivalent to w ¼ T wð Þ. Detailed arguments and with numerical
examples are presented in [35].

3.2 Elasto-plastic torsion problems

In this subsection, we consider an enclosure metnod of solutions for elasto-
plastic torsion problems governed by an elliptic variational inequalities [25, 32, 33].
The nonlinear elasto-plastic torsion problem is defined as the same type elliptic
variational inequalities as (26) with

K≔ v∈H1
0 Ωð Þ; j∇vj ≤ 1 a:e: on Ω

� �
: (43)

As is well known [56, 58], two sub-domains Ωp and Ωe defined by
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Ωp ¼ x; x∈Ω, j∇uj ¼ 1f g,

and

Ωe ¼ ΩnΩp ¼ x; x∈Ω, j∇uj < 1f g

correspond to the plastic and elastic regions, respectively. The elastic region Ωe

and the plastic region Ωp are not known beforehand and should be determined,
therefore ∂Ωe ∩ ∂Ωp is actually the free boundary of the problem (26). The problem
(26) has been formulated as the problem of finding u satisfying

�Δu ¼ f uð Þ in Ωe,

∣∇u∣ ¼ 1 in Ωp,

u ¼ 0 on ∂Ω:

8
><
>:

(44)

The finite dimensional convex subset Kh is also defined similarly as before:

Kh ≔Vh ∩ K ¼ vhj vh ∈Vh, ∣∇vhj ≤ 1 a:e: on Ωf g: (45)

In order to formulate the verification procedure, we need a verified computa-
tional method for solving the finite dimensional part (rounding) and a constructive
estimates for infinite dimensional part (rounding error) as in the previous subsec-
tion.

Following [49, 56], we define the Lagrangian functional L associated with (1) by

L v, μð Þ ¼ 1

2

ð

Ω

∇vj j2dx� g, vð Þ þ 1

2

ð

Ω

μ ∇vj j2 � 1
� �

dx:

It follows, from [49, 56], that if L has a saddle point u, λf g∈H1
0 Ωð Þ � L∞þ Ωð Þ,

then u is a solution of (1), where L∞þ Ωð Þ ¼ q∈L∞ Ωð Þ; q≥0 a:e: in Ωf g: We use
the Uzawa algorithm to solve (1). Thus we can claculate the rounding R PKF Wð Þð Þ,
for a candidate set W, by solving the following problem with guaranteed error
bounds:

Find uh, λhf g∈Kh � Λh such that

λh ¼ max λh þ ρ ∇uhj j2 � 1
� �

, 0
h i

with ρ>0:

Ð
Ω
1þ λhð Þ∇uh � ∇vhdx ¼ f Wð Þ, vhð Þ,∀vh ∈Vh, uh ∈Vh,

8
>><
>>:

(46)

The problem (46) can be formulated as a system of nonlinear and nonsmooth
(nondifferentiable) equations. A verification method for nonsmooth equations by a
generalized Krawczyk operator is studied in [1, 55]. We briefly describe the method
presented by [55] in the below.

We consider the following equivalent system of nonlinear(and nondiffer-
entiable) equation to (46) for a fixed w∈W

H xð Þ ¼ 0: (47)

Here, we assume that H : Rn ! Rn is locally Lipschitz continuous. The equiva-
lence means that x ∗ solves (46) if and only if x ∗ solves (47). The method is based
on the mean value theorem for local Lipschitz functions of the form

H xð Þ �H yð Þ∈ co∂H x½ �ð Þ x� yð Þ, for all x, y∈ x½ �,
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where [x] stands for an interval vector, “co” denotes the convex hull, and ∂H the
generalized Jacobian in Clarke’s sense [57], which is also considered as a slope
function, and

co∂H x½ �ð Þ≔ co V ∈ ∂H xð Þ; x∈ x½ �f g:

Let L x½ �

 �

be an interval matrix such that co∂H x½ �ð Þ⊆ L x½ �

 �

: Then for any

x, y∈ x½ �⊆Rn it holds that H xð Þ �H yð Þ∈ L x½ �

 �

x� yð Þ.
Then an interval operator for nonsmooth equations is defined by

G x,A, x½ �ð Þ≔ x� A�1H xð Þ þ I � A�1 L x½ �

 �� �

x½ � � xð Þ: (48)

The mapping G x,A, x½ �ð Þ is called a generalized Krawczyk operator. Therefore,
the verification condition of solutions for (46) in x½ � is given by

G x,A, x½ �ð Þ⊆ x½ �⊂D:

Thus, we can compute the solution of (46) with guaranteed accuracy. That is,
we can enclose the rounding R PKF Uð Þð Þ. On the other hand, in order for the
calculation of the rounding error RE PKF Uð Þð Þ, the similar arguements can also be
applied for one dimensional problem. Actually, we can prove that the same constant

C0 ¼
ffiffi
5

p

π
is also valid for the present problem in one dimensinal case, which implies

that we can give a verification procedure besed on the same principle as before
[25, 32, 33]. In [33], we extended the approach to the numerical proof of existence
of solutions for elasto-plastic torsion problems as well as gave a numerical example
for one dimensional case. The verification method in [33] is based on the general-
ized Krawczyk operator for solving a system of nonsmooth (nondifferentiable)
equations. In order to use the generalized Krawczyk operator, we need to calculate
the Jacobian. In that case, we need some complicated techniques. However, in many
cases, calculating the generalized Jacobian is very difficult. To overcome such diffi-
culties, we proposed a numerical verification method without using the generalized
Krawczyk operator. This method is attractive, since calculating the generalized
Jacobian is not required in the computational performance. Furthermore, up to
know, our verification methods are mainly based on the enclosure of solutions in

the sense of L2 or H1 norms. We considered a numerical verification method with
guaranteed L∞ error bounds for the solution of elasto-plastic torsion problem.

3.3 Simplified Signorini problems

A simplified Signorini problem is also given by the elliptic variational inequal-
ities of the form (26) with

K≔ v∈H1
0 Ωð Þ; v≥0 on ∂Ωj

� �
(49)

and

a u, vð Þ ¼
ð

Ω

∇u � ∇vdxþ
ð

Ω

uvdx: (50)

where

∇u � ∇v ¼ ∂u

∂x1

∂v

∂x1
þ ∂u

∂x2

∂v

∂x2
:
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As well known, the solution u of this elliptic variational inequalities can be
characterized as a solution of the following free boundary problem finding u and
two subsets Γ0 and Γþ such that Γ0∪Γþ ¼ ∂Ω and Γ0 ∩Γþ ¼ Ø

�Δuþ u ¼ f uð Þ in Ω,

u ¼ 0 on Γ0,
∂u

∂n
≥0 on Γ0,

u>0 on Γþ,
∂u

∂n
¼ 0 on Γþ,

8
>>>><
>>>>:

(51)

where ∂

∂n the outer normal derivative on ∂Ω. In the present case, the approxima-

tion subspace Kh is taken as

Kh ≔Vh ∩K ¼ vhj vh ∈Vh, vh ≥0 on ∂Ωf g: (52)

For a candidate set W, the computation of rounding R PKF Wð Þð Þ is also reduced
to the quadratic programming problem as in the Section 3.1 [56].

Since the constant C2 in (25) is easily estimated as C2 ¼ 1, the standard approx-
imation property of the interpolation by Kh gives a constructive error estimates to
compute the rounding error RE PKF Wð Þð Þ. For a simplified Signorini problem [43],
we constructed a computing algorithm which automatically encloses the solution
within guaranteed error bounds. In particular, the method proposed in [43] enables
us to verify the free boundary of a simplified Signorini problem, which has been
impossible so far. Concerning the numerical verification of solutions for elliptic
variational inequalities, we would like to mention that the inclusion method
described in this article can be applied to the solution of the elliptic variational
inequalities on large space domains.

3.4 Some other problems

In this subsection, we show that our idea of verification method can also be
applied to the elliptic variational inequalities of the second kind.

Now, we define the functional j vð Þ ¼
Ð
Ω
∣∇v∣dx: We consider the following prob-

lem of the flow of a viscous plastic fluid in a pipe:

Find u∈H1
0 Ωð Þ such that

a u, v� uð Þ þ j vð Þ � j uð Þ≥ f uð Þ, v� uð Þ, ∀v∈H1
0 Ωð Þ:

(
(53)

As in the previous section, we consider the following auxiliary problem associ-

ated with (53) for a given g∈L2
Ωð Þ :

a u, v� uð Þ þ j vð Þ � j uð Þ≥ g, v� uð Þ, ∀v∈H1
0 Ωð Þ, u∈H1

0 Ωð Þ: (54)

By the well known result, we have the following lemma.

Lemma 8. There exists a unique solution u∈H1
0 Ωð Þ∩H2

Ωð Þ of (54) for any
g∈L2, such that

∥u∥H2
Ωð Þ ≤ Ĉ∥g∥L2

Ωð Þ:

When we denote the solution u of (54) by u ¼ Ag and define the composite map

F on H1
0 Ωð Þ by F uð Þ � Af uð Þ, which is a little bit of different from the previously

appeared symbol F in Section 2, we have.
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Theorem 9. F is compact on H1
0 Ωð Þ and the problem (53) is equivalent to the

fixed point problem

u ¼ F uð Þ:

Proof. First, for a bounded subset U ⊂L2
Ωð Þ, we show that AU ⊂H1

0 Ωð Þ is
relatively compact. Secondly, prove that A : L2

Ωð Þ ! H1
0 Ωð Þ is continuous. By

Lemma 3, AU ⊂H2
Ωð Þ∩H1

0 Ωð Þ and AU is bounded in H2
Ωð Þ. Since U is bounded in

L2
Ωð Þ, by the Sobolev imbedding theorem, we have AU is relatively compact in

H1
0 Ωð Þ: Next, for arbitrary f 1, f 2 ∈L2

Ωð Þ, setting u1 ¼ Af 1 and u2 ¼ Af 2, by using
(54), we obtain

a u1, u2 � u1ð Þ þ j u2ð Þ � j u1ð Þ≥ f 1, u2 � u1
� �

,

a u2, u1 � u2ð Þ þ j u1ð Þ � j u2ð Þ≥ f 2, u1 � u2
� �

:

With the above inequalities, we obtain a u2 � u1, u2 � u1ð Þ ¼ �a u1, u2 � u1ð Þ þ
a u2, u2 � u1ð Þ≤ j u2ð Þ� T h Hence, by the Poincaré inequality, we have

∥u2 � u1∥
2
H1

0 Ωð Þ ≤ ∥ f 2 � f 1∥L2
Ωð Þ∥u2 � u1∥L2

Ωð Þ ≤C∥ f 2 � f 1∥L2∥u2 � u1∥H1
0 Ωð Þ:

Therefore, we obtain

∥u2 � u1∥H1
0 Ωð Þ ≤C∥ f 2 � f 1∥L2

Ωð Þ:

That is, A is Lipschitz continuous as a map L2
Ωð Þ ! H1

0 Ωð Þ: Hence A is compact.
The latter half in the theorem is straightforward from the definition of F.

We now define the approximate problem corresponding to (54) as

a uh, vh � uhð Þ þ j vhð Þ � j uhð Þ≥ g, vh � uhð Þ,∀vh ∈Vh, uh ∈Vh: (55)

In order to apply our verification method to enclose the solutions of (53), we
need a guaranteed computation of the exact solution of the problem (55), a rounding
procedure, as well as the constructive error estimates between the solution of (54)
and (55), rounding error estimates.

A major difficulty in solving the problem (55) numerically is the processing of
the nondifferentiable term j uð Þ ¼

Ð
Ω
∣∇u∣dx: One approach is the method of

Lagrange multiplier on that term, whose continuous version is as follows [56].

Let us define Λ ¼ q j q∈L2
Ωð Þ � L2

Ωð Þ, jq xð Þj≤ 1 a:e: x∈Ω
� �

with

∣q xð Þ∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 xð Þ2 þ q2 xð Þ2

q
: Then the solution u of (54) is equivalent to the existence

of q satisfying

a u, vð Þ þ
Ð
Ω
q � ∇v ¼ g, vð Þ, ∀v∈H1

0 Ωð Þ, u∈H1
0 Ωð Þ,

q � ∇u ¼ ∣∇u∣ a:e: , q∈Λ:

(
(56)

Moreover, it is known that (56) is equivalent to the following problem:

a u, vð Þ þ
Ð
Ω
q � ∇v ¼ g, vð Þ, ∀v∈H1

0 Ωð Þ, u∈H1
0 Ωð Þ,

q ¼ qþ ρ∇u

sup 1, jqþ ρ∇ujð Þ :

8
><
>:

(57)
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Here ρ is a positive constant. Let T h be a triangulation of Ω, and let define Lh and
Λh (approximation of L∞ Ωð Þ � L∞ Ωð Þ and Λ, respectively) by

Lh ¼ qhjqh ¼
X

τ∈ T h

qτχτ, qτ ∈R2

( )
and Λh ¼ Λ∩Lh, respectively,

where χτ is the characteristic function of τ.
Then our first purpose, computing the rounding RF Uð Þ, is to enclose the solution

of the following approximation problem of (57):

a uh, vhð Þ þ
Ð
Ω
qh � ∇vh ¼ g, vhð Þ,∀vh ∈Vh, uh ∈Vh,

qh ¼
qh þ ρ∇uh

sup 1, jqh þ ρ∇uhj
� �

:

8
>><
>>:

(58)

The Eq. (58) leads to a kind of finite dimensional, nonlinear but nondiffer-
entiable problem. We use a slope function method proposed by Rump [18–20] to
enclose the solutions of (58) with g ¼ f Wð Þ for a candidate set W. On the other
hand, the rounding error RE F Uð Þð Þ can be computed by using the following con-
structive error estimates:

Theorem 10. Let u and uh be solutions of (54) and (55), respectively. If g∈L2
Ωð Þ,

then there exists a constant C hð Þ such that

∥uh � u∥H1
0 Ωð Þ ≤C hð Þ∥g∥L2

Ωð Þ:

Here, we may take C hð Þ ¼
ffiffi
5

p

π
h for the linear element in one dimensional case,

and C is also numerically estimated such that C hð Þ≈O h
1
2

� �
for the two dimensional

linear element. A proof of this theorem is described in Ryoo and Nakao [34]. Thus
we can also implement the verification algorithm for the solution of (53) as in the
previous section. For details on this subsection, please refer to Ref. [47].

4. Conclusions

We have surveyed numerical verification methods for differential equations,
especially around partial differential equations, variational inequalities and the
author’s works. But the period of this research is shorter than the history of the
numerical methods for differential equations by computer and we can say it is still
in the stage of case studies. Indeed, recently, this kind of studies have been referred
little by little for practical applications in PDEs and variational inequalities but there
are many open problems to be resolve. Therefore, we can make no safe prediction
that these approaches will grow into really useful methods for various kinds of
equations and variational inequalities in mathematical analysis. Also, since the
program description of the verification algorithm is very complicated in general,
there is another problem like software technology associated with assurance for the
correctness of the verification program itself. Actually, some of the mathematician
would not give credit the computer assisted proof in analysis as correct as they
believe the theoretical proof, which might cause a kind of seriously emotional
problem in the methodology of mathematical sciences. And there is another diffi-
culty from the huge scale of numerical computations which often exceed the
capacity of the concurrent computing facilities.
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However, in the twenty-first century, the computing environment would make
more and more rapid progress, which should be beyond conception in the present
state. In any case, a realistic study for partial differential equations and variational
inequalities should be the future subject of the numerical computations with
guaranteed accuracy. The authors believe that numerical methods with guaranteed
accuracy for differential equations and variational inequalities would highly
improve the reliability in the numerical simulation of the complicated phenomena
in both mathematical and engineering sciences.
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