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Chapter

Critical Dry Spell Prediction 
in Rain-Fed Maize Crop Using 
Artificial Neural Network in 
Nigeria
Nnadozie Okonkwo Nnoli, Ahmed Balogun, Jerome Omotosho 

and Samuel Agele

Abstract

Prediction of yearly mid-growing season first and second critical dry spells 
using artificial neural networks (ANN) for enhanced maize yield in nine stations 
in Nigeria is performed. The ANN model uses nine meteorological parameters to 
predict onset dates and lengths of the critical dry spells. The daily dataset is from 
1971 to 2013 of which about 70% is used for training while 30% is for testing. Seven 
ANN models are developed for each station with a view to measuring their predic-
tive ability by comparing predicted values with the observed ones. Prediction lead 
times for the two critical dry spell onset dates generally range from about 2 weeks 
to 2 months for the nine stations. Error range during testing for the onset dates and 
lengths of first and second critical dry spells is generally ±4 days. The root-mean-
square error (RMSE), coefficient of determination, Nash-Sutcliffe coefficient of 
efficiency, Wilmott's index of agreement, and RMSE observation standard devia-
tion ratio range from 0.46 to 3.31, 0.58 to 0.93, 0.51 to 0.90, 0.82 to 0.95, and 0.30 to 
0.69, respectively. These results show ANN capability of making the above reliable 
predictions for yearly supplementary irrigation planning, scheduling, and various 
other decision makings related to sustainable agricultural operations for improved 
rain-fed maize crop yield in Nigeria.

Keywords: Nigeria, rain-fed maize, critical dry spells, yearly prediction,  
artificial neural network

1. Introduction

Variability of rainfall in Nigeria as well as in West Africa, etc., leads to the  
occurrence of wet and dry spells within the growing season. Short- and long-
duration dry spells are noted during the period of crop growth and development 
on yearly basis. Song et al. [1] using weather- and county-level maize yield data 
estimated the drought risk for maize in China for the period from 1971 to 2010. They 
noted that drought risk had increased in China over the last 40 years and that the rea-
sons for the observed changes were increased drought hazard associated with climate 
change and increased exposure of maize to drought due to an expanded production 
area. Significant drought incidents have seriously affected sustainable agriculture, 
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people’s living condition, and the economy of many developing and under-devel-
oped countries [2, 3]. The occurrence and distribution of dry spells, especially the 
longer ones at critical times during growing season, generally have negative impact 
on maize crop development and yield under rain-fed farming in Nigeria. According 
to Mugalavai et al. [4] and Gao et al. [5], the most critical growth stages for maize 
crop in terms of dry spell occurrences are the germination, tasseling, and flowering. 
Germination is within the initial stage, while tasseling and flowering occur during 
the mid-season stage of growing season. The four crop growth stages are initial, 
development, mid-season, and late season [6]. Advance knowledge on critical dry 
spell onset dates and lengths for rain-fed maize crop on yearly basis is very important 
in supplementary irrigation planning, scheduling, and various other decision mak-
ings related to sustainable agricultural operations for improved maize yield.

Sharma [7] noted that a major challenge of drought research was to develop 
suitable methods and techniques for forecasting the onset and termination points of 
droughts. Successful development of suitable methods will enable stakeholders in 
agricultural and water resource sectors of the economy to embark upon risk-based 
(proactive) rather than crisis-based (reactive) approach to drought management in 
areas prone to drought [8, 9]. This is also applicable to dry spell management. Most 
publications are concerned with probabilistic, statistical, and stochastic modeling, 
and the most widely used stochastic models are autoregressive integrated moving 
average (ARIMA) models [10]. A dynamical model and a statistical model have 
been used to determine trends and make seasonal predictions of rainfall and dry 
spells occurrence in Ghana [11].

In recent years, neural-based models have been gaining attention over statistical 
models, possibly owing to the simplicity in modeling complex problems when many 
parameters are taken into consideration [12]. Abrishami et al. [13] used artificial  
neural network (ANN) model for estimating wheat and maize daily standard evapo-
transpiration. The results showed the suitable capability and acceptable accuracy 
of ANN. Mulualem and Liou [14] developed seven ANN predictive models incor-
porating hydro-meteorological, climate, sea surface temperatures, and topographic 
attributes to forecast the standardized precipitation evapotranspiration index (SPEI) 
for seven stations in the Upper Blue Nile basin (UBN) of Ethiopia from 1986 to 2015. 
Statistical comparisons of the different models showed that accurate results in pre-
dicting SPEI values could be achieved by including large-scale climate indices. Morid 
et al. [15] were able to show the efficiency of ANN when it was used for forecasting 
some drought indices in some selected places in Iran for up to 12 months lead times 
[3]. One neural network model was developed to forecast precipitation occurrences 
such as “rain” or “no-rain,” while another model was developed to predict the amount 
of precipitation at several sub-levels using fuzzy techniques in Sri Lanka [16]. The 
ability of neural network model to predict “no-rain” situation gives it credence to 
forecast dry spell. Mathugama and Peiris [17] therefore recommended the exploration 
of the use of artificial neural network (ANN) to predict dry spell properties and that 
the models had to be statistically validated. Studies related to forecasting critical dry 
spell onset dates and lengths (especially mid-growing season dry spells) in Nigeria 
and other places are scarce. Farmers (especially maize farmers) in Nigeria desire to 
know on yearly basis when dry spells—critical dry spells—will occur after plant-
ing their crops to enable them plan their yearly agricultural operations effectively. 
In Nigerian Meteorological Agency (NiMet), numerical model have been used for 
sub-seasonal to seasonal forecasts of weather elements [18], while statistical models 
are used in seasonal rainfall forecasts for agricultural activities. Probabilistic fore-
casts have been made [19] for severe dry spell occurrences of lengths 10–21 days and 
moderate ones of lengths 8–15 days for 10 northern States for the month of June for 
year 2020; however, specific dry spells onset dates are not given.
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These informed our embarking on this study in aid of effective yearly agricul-
tural operations for improved crop yield and maize in particular. The objective 
therefore of the present work is to predict the onset dates and lengths of mid-
growing season critical dry spells for rain-fed maize crop on yearly basis in Nigeria 
using artificial neural network (ANN) model to enable farmers in those stations 
plan yearly agricultural operations for enhanced maize yield.

2. Study area, data, and methodology

2.1 Study area

Table 1 shows the geographical and some climate characteristics of the study 
area. The following nine meteorological stations in their respective agro-ecological 
zones in Nigeria are considered: Calabar, Warri, Ibadan, Makurdi, Lokoja, Ilorin, 
Yola, Kaduna, and Yelwa.

2.2 Data

a. The data used for this work are as follows: the daily maximum, minimum, 
and mean temperatures, 0600 and 1500 GMT relative humidity, wind speed 
at 2 meter level, and sunshine hours (1971–2013) for the nine stations from 
Nigerian Meteorological Agency (NiMet), Oshodi, Lagos and supplemented 
with 0.125° resolution ERA INTERIM Reanalysis data (1979–2013) [20].

b. NiMet daily rainfall data supplemented with the daily 0.25° horizontal resolu-
tion 3B42 rainfall from Tropical Rainfall Measuring Mission (1998–2013) [21].

Since the NiMet data were supplemented as stated above, the Adapted 
Caussinus-Mestre Algorithm for homogenizing Networks of Temperature series 
(ACMANT) was used to check and correct the inhomogeneities in the quality con-
trolled time series. A full scientific description of ACMANT setup could be found 
in [22]. Several studies included [22, 23], etc. have been effectively used ACMANT 
in homogenizing series. Good performances of homogenizing climatic series with 
ACMANT are noted in the result evaluation from these studies.

Agro-ecological zone Station Long. Lat. Elev. (m) Annual rainfall (mm/year) 

(1971–2013)

Max. Min. Mean

Northern Guinea 

Savannah

Yelwa 4.75°E 10.88°N 244.0 1564.6 388.9 986.5

Kaduna 7.45°E 10.60°N 641.0 1659.8 793.4 1211.1

Yola 12.47°E 9.23°N 190.5 1142.7 468.5 873.4

Southern Guinea 

Savannah

Ilorin 4.58°E 8.48°N 344.0 1539.3 697.7 1177.6

Lokoja 6.73°E 7.80°N 62.5 1767.1 771.7 1196.4

Makurdi 8.53°E 7.75°N 91.4 1617.1 761.5 1182.8

Rain Forest Ibadan 3.90°E 7.43°N 220.7 1967.8 775.7 1328.9

Mangrove Swamp Warri 5.73°E 5.52°N 6.0 3414.4 2051.5 2734.3

Calabar 8.33°E 4.95°N 62.3 4044.9 2109.5 2937.6

Table 1. 
Area of study showing the stations, agro-ecological zones and climate characteristics.
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2.3 Methodology

2.3.1 Growing season onset and cessation dates

The determination of onset and cessation dates of growing season was carried 
out using the methods of [24, 25]. The onset date of growing season was defined by 
[24] for northern Nigeria as the date when accumulated daily rainfall exceeded 0.5 
of the accumulated reference evapotranspiration for the remainder of the season, 
provided that no dry spell of 5 days or more occurred in the week after that date. 
The determination of onset date of rains according to [25] was from the first point 
of maximum positive curvature of the plotted graph of cumulative percentage of 
pentade rainfall, while cessation was from the last point of maximum negative 
curvature of the plotted graph of cumulative percentage of pentade rainfall. The 
method of [25] was initially used to determine the onset dates of growing season, 
while that of [24] was next used to ensure that no dry spell of 5 days or more 
occurred in the week after that date.

2.3.2 Reference evapotranspiration

To determine the critical dry spells during each growing season, the daily refer-
ence evapotranspiration (ETo) was first computed using the FAO Penman-Monteith 
Equation [6]. This equation, given below (Eq. (1)), used the abovementioned data 
with the exception of daily rainfall.
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where T—air temperature at 2 m height (°C), u2—wind speed at 2 m height (ms−1), 
es—saturation vapour pressure (kPa), ea—actual vapour pressure (kPa), (es – ea)—
saturation vapour deficit (kPa), Rn—net radiation at the crop surface (MJm−2 day−1), 
G—soil heat flux density (MJm−2 day−1), Δ—slope vapour pressure curve (kPa °C−1), 
γ—psychrometric constant (kPa °C−1).

The above equation determines the evapotranspiration (ETo) from the hypo-
thetical grass reference surface. The effect of soil heat flux (G) is ignored for daily 
calculations [6] as the magnitude of the heat flux in this case is relatively small. 
The FAO Penman-Monteith method [6] is still used as the sole standard method 
as could be seen in recent research work on reference evapotranspiration included 
in [26, 27], etc. However, since the number of requested climatic variables is often 
not available under limited data conditions [28, 29], other simple ETo equations 
with less number of requested climatic variables have been used to compute ETo 
values that are close to the FAO Penman-Monteith method. These methods are the 
four of the Valiantzas equations, along with the Makkink, Calibrated Hargreaves, 
Abtew, Jensen-Haise, and Caprio equations and could be used as best alternative 
ETo estimation methods. These alternative equations could be used across the dry 
semi-arid and arid zones where water is the most limiting factor to food and fiber 
production [27].

The maize crop variety used in this study is the 118-day one whose phenology is 
as follows: 20 days for initial, 32 days for development, 38 days for mid-season, and 
28 days for late season growth stages. This is based on the what is stated in [6] that 
the length of crop development stages provided in their table is indicative of general 
conditions; the user is therefore strongly encouraged to obtain appropriate local 
information.
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2.3.3 Dry day and critical dry spell definition

It is usual to use rainfall thresholds higher than zero millimeter to define a dry day 
in order to account for the measurement errors or very little amounts of rain that are 
not available for plants or water resources, due to interception and/or direct evapora-
tion [29, 30]. Different precipitation thresholds of 1–10 mm/day but fixed for the 
whole observation period are considered by most authors in analyzing long dry spells 
[30–33]. However, since the evaporation varies throughout the year and for different 
locations, fixed rainfall thresholds are not representative of real ground conditions. 
The net precipitation that is available for plants can be strongly modulated by atmo-
spheric evaporative demands thereby affecting water stress levels by plants and crops 
[34–36]. Meteorological data from different approaches such as potential evaporation 
[37] or the reference evapotranspiration [6] can be used to determine atmospheric 
evaporative demand. Rivoire et al. [38] emphasized the need to take account of the 
atmospheric evaporative demand instead of making use of fixed rainfall thresholds 
for defining a dry day when analyzing dry spells with respect to agricultural impacts in 
particular. A dry day in this work is therefore taken as the day when the rainfall (RR) 
is less than the average reference evapotranspiration, ETo [38, 39]. A threshold of ETo 
is considered to define a dry day when RR–ETo ≦ 0 [38]. A number of these consecu-
tive dry days constitute a spell. The critical dry spells are therefore those that occur 
at germination/emergence and establishment (initial stage), and close to and during 
the tasseling and flowering stage (mid-season stage). However, the critical dry spell 
prediction carried out in this work is for the mid-season stage only. Figure 1 shows 
the time series of rainfall and mean reference evapotranspiration against day of the 
year from around planting date to harvesting date for maize crop for 1973 in Ibadan. 
Four critical dry spells during the mid-season are indicated. The minimum number of 
consecutive dry days that constitute a spell in this work is 3 days [40].

2.3.4 Artificial neural network (ANN) model

2.3.4.1 Model description

Artificial neural network (ANN) model was used in this work for the prediction 
of mid-growing season critical dry spell onset dates and lengths. ANN is a “black 
box” model of a type that is often used to model high-dimensional nonlinear data. It 
is a nonstatistical data modeling tool, which is contained in any version of R statistic 
or Matlab tool box. ANN is a highly interconnected network of machine learning 
algorithm based on the model of a human neuron. It mimics this model or structure 
by distributing its computations to small and simple processing units called artificial 
neurons or nodes [41, 42]. Artificial intelligence (AI) makes it possible for machines 
to learn from experience, adjust to new inputs, and perform human-like tasks. 
According to [42], ANN is data-driven, self-adaptive methods since there are few 
known assumptions about the models for problems under study unlike the tradi-
tional model-based methods. ANN model learns from examples and captures subtle 
functional relationships among the data even if the underlying relationships are 
unknown or hard to describe. This makes ANN very appropriate for problems whose 
solutions require knowledge that is not easy to state explicitly but for which there 
are enough observations [42]. Therefore, they can be treated as one of the multivari-
ate nonlinear nonparametric statistical methods [43, 44]. After learning the data 
presented to them, ANN can generalize and often correctly infer the unseen part 
of a population even if the sample data contain noisy information. Since ANNs can 
compute the value of any continuous function to any desired accuracy as has been 
shown by [45–47], they are considered as universal functional approximators [42].
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ANN is made up of three layers of units, the input, hidden, and output layers. 
The ANN receives the input signal from the external world in the form of a pattern 
and image in the form of a vector. Each of the input is then multiplied by its cor-
responding weights. These weights are the details used by the ANNs to solve a certain 
problem. The activity of the input layer represents the raw information that is fed 
into the network, while the activities of each hidden layer are determined by the 
activities of the input layer and the weights on the connections between the input 
and the hidden layer. The behavior of the output layer depends on the activity of the 
hidden layer and the weights between the hidden and the output layers. To train the 
neural network models, the training parameters for the chosen algorithm must be 
specified in terms of the inputs, the number of hidden and output layer neurons, 
and the activation function of each layer [41, 48]. To fulfill these requirements, the 
correct number of regressor as well as the number of hidden neurons must first be 
selected but there are no specific rules for these selections [49, 50]. In many applica-
tions, the number of neurons for the hidden layer is selected based on trial-and-error 
method usually starting with small initial network [51]. A sample ANN architecture 
for first critical dry spell onset date prediction for Ibadan is shown in Figure 2 having 
one input layer of nine neurons, two hidden layers—first of nine neurons and second 
of two neurons—and one output layer of one neuron. The inputs are multiplied 
by modifiable weights that are crucial parameters of the ANN models for solving a 
problem. ANN model could be run in R software—in R studio [52]. The neuralnet 
package (neuralnet) version 1.33 of August 5, 2016 [53] was used in this work. The 
training of neural networks uses the back-propagation, resilient back-propagation 
with [54] or without weight backtracking [55], or the modified globally convergent 
version by [56]. The package allows flexible settings through custom choice of error 
and activation function and it can combine fast convergence and stability and gener-
ally provides good results [55]. Furthermore, the calculation of generalized weights 
[58] is implemented. In this work, the default neural algorithm was used (i.e., 
“rprop+”). This refers to the resilient back-propagation with weight backtracking 
[54]. Amid the pool of the weight-updating process, the resilient back-propagation 
(RProp algorithm from the “nuerlanet” package in R) was chosen because it can 
combine fast convergence and stability and generally provides good results.

Figure 1. 
Time series of rainfall (RR in mm) and mean reference evapotranspiration (ETo in mm) from the onset date 
of growing season, OGS (in days of year) for 118-day maize crop to its harvesting time for 1973 in Ibadan. 
CDS1(4), CDS2(6), CDS3(9), and CDS4(6) represent the first, second, third, and fourth critical dry spells with 
lengths 4, 6, 9, and 6 days in brackets, respectively. Mean (1971–2013) reference evapotranspiration for growing 
season for maize is approximately 3.72 mm.
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2.3.4.2 Prediction procedure

The data attributes (predictors) used in the neural network model were maxi-
mum, minimum, and mean temperatures (Tmax), (Tmin), and (Tmean), relative 
humidity at 0600 (RH06) and 1500 (RH15) GMT, wind speed at 2 m level (u2), 
sunshine hours (n), net radiation (Rn), and reference evapotranspiration (ETo), 
while the data classes (predictands) were onset dates and lengths of critical dry 
spells. Net radiation and reference evapotranspiration were computed. In this work, 
the 43-year data were partitioned into two: 30 years for training and 13 independent 
years for testing. The test data were kept out of the process of producing the ANN 
model in order to test its predictive power [14]. This corresponds to approximately 
70% (two-thirds) of data for training and 30% (one-third) for testing. Regarding 
the data partitioning, some authors have used two-thirds of data for training and 
one-third for validation and testing [57–59]. Dubey [58] used approximately half 
of one-third of data each for validation and testing. However, Mulualem and Liou 
[14] who worked on the application of artificial neural networks in forecasting a 
standardized precipitation evaporative index (SPEI) for the Upper Blue Nile Basin, 
Ethiopia (using RProp algorithm from the “neuralnet” package in R), partitioned 
their data into training and test sets. This method was applied in this work. The two 
independent datasets were chosen in such a way that early, normal, and late onset 
dates of critical dry spells were reflected in each of them. Likewise, the lowest, 
normal, and highest lengths of critical dry spells were also reflected in each of them. 
The neural network architecture consists of one input layer, one or two hidden 
layers, and one output layer. The input layer (first layer) of neurons consists of the 
nine attributes (predictors). The hidden layers of neurons are two (the second and 
third layers) and in few cases one. The hidden layer neurons are generally chosen 
starting with lower number neurons and varying by trial and error till the configu-
ration that gives minimum root-mean-square error is attained. The output (third or 
fourth layer) layer consists of one neuron of either onset date or length of critical 
dry spell. Two hidden layer networks may provide more benefits for some type of 
problems [60]. Several authors addressed this problem and considered more than 
one hidden layer (usually two hidden layers) in their network design processes.

A cross-correlation analysis was performed to measure the relationship 
between the predictors (attributes) and the predictands (classes). Positive and 
negative relationships were observed, some with weak relationships. Based on 
the cross-correlations, seven different ANN models shown in Table 2 below are 
put forward for each station with a view to measuring their predictive ability by 

Figure 2. 
A sample ANN architecture for first critical dry spell onset date prediction for 2008 for Ibadan, Nigeria.
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comparing predicted values with the observed ones. A measure of ANN most suit-
able model performance on the basis of all statistical measures of the observed and 
predicted critical dry spell onset dates and lengths for the nine stations are shown 
in Tables 3 and 4. Out of the seven models used with these predictors, Model 1 
having nine parameters was noted to be quite suitable for most of the stations, 
while models 2, 3, and 5 having eight, seven, and five parameters respectively were 
more suitable than Model 1 in some cases. Predictions (testings) were made for two 
regular mid-growing season critical dry spells (first and second) for all stations. 
Predictions were made on yearly basis on the twentieth (20th) day after the onset 

Sta. name Most suitable 

model (M) for 

dry spell onset

Neural 

net. Arch.

Lead time 

pred. Range 

(days)

RMSE R2 NSE WIA RSR Prediction error 

margin (days)

Cal M1-On Date1 9–3-1 27–34 1.53 0.75 0.72 0.89 0.50 −3.09 to 3.22

M1-On Date2 9–9-1 41–56 2.93 0.82 0.82 0.95 0.40 −4.56 to 4.89

War M1-On Date1 9–8–2-1 31–43 2.95 0.86 0.77 0.92 0.47 −4.67 to 3.01

M1-On Date2 9–9–2-1 43–66 3.31 0.83 0.80 0.95 0.42 −1.08 to 4.75

Iba M3-On Date1 7–9–2-1 15–26 1.42 0.80 0.64 0.93 0.57 −1.46 to 1.91

M2-On Date2 8–9–9-1 28–37 2.07 0.70 0.65 0.90 0.56 −3.45 to 2.64

Ilo M1-On Date1 9–8–1-1 17–24 1.65 0.70 0.68 0.91 0.53 −3.18 to 2.23

M1-On Date2 9–8–1-1 30–37 1.54 0.86 0.85 0.96 0.37 −2.69 to 3.23

Lok M1-On Date1 9–8–6-1 13–32 2.19 0.79 0.79 0.94 0.44 −3.07 to 3.89

M5-On Date2 5–2-1 28–36 2.05 0.58 0.48 0.88 0.69 −3.55 to 3.15

Mak M1-On Date1 9–9–8-1 20–24 1.12 0.75 0.59 0.82 0.61 −1.47 to 2.04

M1-On Date2 9–8–4-1 26–44 2.70 0.79 0.76 0.94 0.46 −3.64 to 4.02

Yel M1-On Date1 9–8–7-1 18–22 2.40 0.71 0.66 0.91 0.55 −4.04 to 3.42

M1-On Date2 9–3-1 28–41 3.07 0.72 0.72 0.91 0.50 −4.29 to 4.07

Kad M1-On Date1 9–9–2-1 13–28 2.67 0.71 0.65 0.91 0.56 −3.85 to 3.11

M2-On Date2 8–7–1-1 26–34 2.37 0.79 0.74 0.93 0.48 −4.24 to 3.24

Yol M1-On Date1 9–7–1-1 13–25 3.16 0.67 0.57 0.90 0.62 −3.40 to 2.63

M1-On Date2 9–8–8-1 23–35 2.46 0.73 0.64 0.90 0.57 −4.08 to 4.24

Table 3. 
A measure of ANN most suitable model performance on the basis of all statistical measures of the observed and 
predicted critical dry spell onset dates for the nine stations.

Model No. of input 

variable

Max. 

Temp

Min. 

Temp

Mean 

Temp

R. H.  

(06 GMT)

R. H.  

(15 GMT)

Wind Speed 

(2 m)

Sun hr. Net Rad. 

(Rn)

Ref. evap. 

(ETo)

M1 9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

M2 8 ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓

M3 7 ✓ ✓ ✓ ✓ ✓ ✓ — ✓ —

M4 6 ✓ ✓ — ✓ — ✓ — ✓ ✓

M5 5 ✓ ✓ — ✓ — ✓ — ✓ —

M6 4 ✓ ✓ — — — ✓ — ✓ —

M7 3 ✓ — — — — ✓ — ✓ —

Table 2. 
Input variables used in the attempt to get suitable models (M1–M7) for the prediction of onset dates and 
lengths of critical dry spells.
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dates of growing season for Calabar and Warri with use of 10-day average values 
of the attributes (predictors), that is, average taken from the eleventh (11th) day 
through twentieth (20th) day. However, for the remaining seven stations, yearly 
predictions were made for the first and second critical dry spell onset dates and 
lengths on the thirtieth (30th) day after the onset dates of growing season with the 
use of 10-day average values of the attributes (predictors), that is, average taken 
from the twenty-first (21st) day through the thirtieth (30th) day. The choice of the 
10-day average of the predictors and the choice of the beginning date were basi-
cally by trial and error until good predictors were realized. The predictions made 
for the onset dates of critical dry spells were actually for the number of days before 
the occurrence of first and second critical dry spells from the 20th or 30th day 
after the onset dates of growing season. So, the onset dates of the critical dry spells 
in terms of days of the year should be onset dates of growing season (in days of the 
year) plus 20 days (for Calabar and Warri) or 30 days (for the remaining seven sta-
tions) plus the number of days before the occurrence of the critical dry spell. These 
are indicated in Eqs. (2) and (3) respectively below:

For Calabar and Warri Stations (two station):

 ODCDS  (day of year) = OGS (day of year) + 20 + NoD  (2)

Agro-eco. 

zones

Sta. 

name

Most suitable 

model (M) for 

dry spell length

Neural 

net. arch.

RMSE R2 NSE WIA RSR Prediction error 

margin (days)

Mangrove 

Swamp

Cal M1-Len1 9–2–1 0.74 0.81 0.77 0.94 0.45 −0.97 to 1.27

M5-Len2 5–3–1 0.97 0.69 0.67 0.87 0.55 −1.43 to 1.30

War M3-Len1 7–3–1 0.93 0.85 0.82 0.94 0.40 −1.32 to 1.51

M1-Len2 9–5–4–1 0.46 0.92 0.69 0.94 0.53 −0.01 to 1.00

Rain Forest Iba M1-Len1 9–9–1–1 1.49 0.78 0.57 0.86 0.65 −1.71 to 2.02

M1-Len2 9–4–1 1.52 0.75 0.57 0.79 0.62 −2.76 to 2.01

Southern 

Guinea 

Savannah

Ilo M1-Len1 9–4–1 2.05 0.68 0.51 0.84 0.66 −3.38 to 2.68

M2-Len2 8–4–1 0.79 0.93 0.90 0.98 0.30 −2.05 to 1.19

Lok M1-Len1 9–2–1 1.72 0.78 0.58 0.83 0.61 −1.45 to 2.91

M1-Len2 9–2–1 1.61 0.82 0.55 0.87 0.64 −0.84 to 2.90

Mak M1-Len1 9–5–2–1 1.83 0.63 0.55 0.86 0.63 −2.27 to 2.41

M1-Len2 9–5–4–1 1.83 0.71 0.63 0.91 0.58 −3.51 to 3.22

Northern 

Guinea 

Savannah

Yel M1-Len1 9–8–1–1 1.71 0.78 0.64 0.89 0.59 −2.71 to 3.24

M1-Len2 9–3–1 0.90 0.67 0.66 0.89 0.55 −1.33 to 1.51

Kad M1-Len1 9–3–1 1.85 0.76 0.58 0.83 0.61 −3.72 to 1.03

M1-Len2 9–3–1 0.68 0.89 0.83 0.94 0.39 −1.34 to 0.91

Yol M1-Len1 9–3–1 1.65 0.71 0.67 0.87 0.55 −3.47 to 2.48

M5-Len2 5–2–1–1 0.93 0.75 0.62 0.87 0.59 −0.93 to 1.93

Cal, War, Iba, Ilo, Lok, Mak, Yel, Kad, Yol—Calabar, Warri, Ibadan, Ilorin, Lokoja, Makurdi, Yelwa, Kaduna, 
Yola; M1 .. M7—Model1 .. Model7; On Date1, On Date2—First Onset Date, Second Onset Date; Len1, Len2—
First Spell Length, Second Spell Length; RMSE—Root-Mean-Square Error; R2—Coefficient of Determination; 
NSE—Nash-Sutcliffe Coefficient of Efficiency; WIA—Wilmott’s Index of Agreement; RSR—RMSE-Observations 
Standard Deviation Ratio.

Table 4. 
A measure of ANN most suitable model performance on the basis of all statistical measures of the observed and 
predicted critical dry spell lengths for the nine stations.
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For Ibadan, Ilorin, Lokoja, Makurdi, Yelwa, Kaduna, and Yola Stations 
(seven stations):

 ODCDS (day of year) = OGS (day of year) + 30 + NoD  (3)

where CDSOD (day of year)—Critical Dry Spell Onset Date in days of year, OGS 
(day of year)—Onset Date of Growing Season in days of year, and NoD—number 
of days before the occurrence of the critical dry spell.

For any year, the normalized attributes (predictors) were substituted in the 
prediction equations (not shown) derived from the neural network architecture 
involving the input (predictors), hidden, and output (predictands) neurons. 
Normalized values of the predictors were used in the equation to limit the output 
to a range between 0 and 1, making the function useful in the prediction of prob-
abilities. Outputs of hidden layer neurons and output layer neuron were determined 
using Sigmoid Activation Function. The purpose of the sigmoid activation func-
tion is to introduce nonlinearity into the output of a neuron. Neural network has 
neurons that work in correspondence of weight, bias, and activation function. After 
prediction, the predicted values were converted to actual values by the removal of 
the normalization.

3. Results and discussions

3.1 Warri and Calabar

Figure 3(a) and (b) gives the first and second respectively yearly actual and 
predicted values of mid-season critical dry spell onset dates and lengths for Warri 
in the Mangrove Swamp agro-ecological zone. The actual and predicted values of 
the onset dates of first and second critical dry spells are actually the number of days 
before the occurrence of the critical dry spells from 20th day after the onset dates 
of growing season. So, the predicted onset dates of the critical dry spells in terms 
of days of the year should be onset dates of growing season (in days of the year) 
plus 20 days plus the predicted number of days before the occurrence of the critical 
dry spell (Eq. (2)). The prediction lead times for first and second critical dry spell 
onset dates range from 31 to 66 days for Warri and from 27 to 56 days for Calabar 
(figure not shown) as shown in Table 3. The range of errors during testing for onset 
dates and lengths for the first and second critical dry spells is generally ±4 days for 
Warri and for Calabar (figure not shown). The root-mean-square errors (RMSE), 
coefficient of determination (R2), Nash-Sutcliffe Coefficient of Efficiency (NSE), 
Wilmott’s Index of Agreement (WIA), and RMSE-Observations Standard Deviation 
Ratio (RSR) for first and second critical dry spell onset dates for Warri range from 
2.95 to 3.31, 0.83 to 0.86, 0.77 to 0.80, 0.92 to 0.95, and 0.42 to 0.47 days, respec-
tively, while those for Calabar (figure not shown) range from 1.53 to 2.93, 0.75 to 
0.82, 0.72 to 0.82, 0.89 to 0.95, and 0.40 to 0.50 days, respectively (Table 3). The 
RMSE, R2, NSE, WIA, and RSR for the first and second critical dry spell lengths for 
Warri range from 0.46 to 0.93, 0.85 to 0.92, 0.69 to 0.82, 0.94 to 0.94, and 0.40 to 
0.53 days, respectively, while those for Calabar (figure not shown) range from 0.74 
to 0.97, 0.69 to 0.81, 0.67 to 0.77, 0.87 to 0.94, and 0.45 to 0.55 days, respectively 
(Table 4). The neural network architecture for the first and second onset dates and 
lengths of the critical dry spells for both stations are given in Tables 3 and 4.

Ogunrinde et al. [3] who applied ANN for forecasting Standardized Precipitation 
and Evapotranspiration Index (SPEI): A case study of Nigeria got an RMSE value of 
0.7476 for Ikeja, a station in Lagos State, Western Nigeria in the same agro-ecological 



11

Critical Dry Spell Prediction in Rain-Fed Maize Crop Using Artificial Neural Network in Nigeria
DOI: http://dx.doi.org/10.5772/intechopen.100627

zone with Warri and Calabar. The two values are somehow close especially for the 
initial aspect of the range for the critical dry spell lengths even though the forecasts 
in the current work are for the onset dates and lengths of mid-season critical dry 
spells and not for SPEI. Dry spell onset dates and lengths prediction were not carried 
out by these and other researchers. So, on the 20th day after the onset date of grow-
ing season of any year in Warri and Calabar, maize farmers could be given yearly 
advance information on the dates of occurrence of first and second critical dry spells 
and their respective lengths for the mid-season (tasseling and flowering of maize). 
This would enable them make adequate preparations for their farming operations to 
ensure improved maize yield taking cognizance of the error margins.

3.2 Ibadan

The yearly actual and predicted values of the first and second mid-season critical 
dry spell onset dates and lengths are shown in Figure 4(a) and (b) respectively 
for Ibadan in the Rain Forest agro-ecological zone. The actual and predicted values 
of the onset dates of first and second critical dry spells are actually the number of 
days before the occurrence of the critical dry spells from 30th day after the onset 
dates of growing season. So, the actual and predicted onset dates of the critical dry 
spells in terms of days of the year should be onset dates of growing season (in days 
of the year) plus 30 days plus the predicted number of days before the occurrence 
of the critical dry spell (Eq. (3)). The first and second critical dry spell onset date 
prediction lead times range from 15 to 37 days in Ibadan (Table 3). The range of 
errors during testing for onset dates and lengths for the first and second critical dry 
spells is generally ±4 days. The RMSE, R2, NSE, WIA, and RSR for first and second 
critical dry spell onset dates for Ibadan range from 1.42 to 2.07, 0.70 to 0.80, 0.64 
to 0.65, 0.90 to 0.93, and 0.56 to 0.57 days, respectively (Table 3), while those for 
first and second critical dry spell lengths range from 1.49 to 1.52, 0.75 to 0.78, 0.57 to 
0.57, 0.79 to 0.86, and 0.62 to 0.65 days, respectively (Table 4). The neural network 
architecture for first and second onset dates and lengths of the critical dry spells for 
Ibadan are also given in Tables 3 and 4.

Figure 3. 
Yearly prediction of (a) mid-season first critical dry spell onset dates and lengths (b) mid-season second critical 
dry spell onset dates and lengths in Warri. The critical dry spell onset dates are given in terms of the number of 
days before the critical dry spell occurrence from the 20th day after the onset dates of growing season.
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The result of the work of Morid et al. [15] regarding ANN forecast of Effective 
Drought Index (EDI) (6 months in advance) in Mehrabad station using nine input 
models gave validation RMSE values ranging from 0.55 to 1.51. Though the latitudes 
of Ibadan and Mehrabad differ and the target forecasts also differ, the range of 
RMSE values is somewhat close. The predictions of critical dry spell onset dates and 
lengths were not addressed by the researchers.

Therefore, on the 30th day after the onset date of growing season of any year 
in the station, maize farmers could be given advance information on the dates of 
occurrence of first and second critical dry spells and their respective lengths to 
enable them make informed preparations in their farming operations for enhanced 
maize yield taking note of the error margins.

3.3 Makurdi, Ilorin, and Lokoja

Figure 5(a) and (b) shows the first and second respectively yearly actual and 
predicted values of mid-season critical dry spell onset dates and lengths for 
Makurdi in the Southern Guinea Savannah agro-ecological zone. The actual and 
predicted values of the onset dates of first and second critical dry spells are actu-
ally the number of days before the occurrence of the critical dry spells from 30th day 
after the onset dates of growing season. So, the predicted onset dates of the critical 
dry spells in terms of days of the year should be onset dates of growing season (in 
days of the year) plus 30 days plus the predicted number of days before the occur-
rence of the critical dry spell (Eq. (3)). The first and second critical dry spell onset 
date prediction lead times range from 20 to 44 days for Makurdi, those for Ilorin 
(figure not shown) range from 17 to 37 days, while those for Lokoja (figure not 
shown) range from 13 to 36 (Table 3). The range of errors during testing for onset 
dates and lengths of the first and second critical dry spells is generally ±4 days for 
each of the stations—Makurdi, Ilorin (figure not shown), and Lokoja (figure not 
shown). The RMSE, R2, NSE, WIA, and RSR for first and second critical dry spell 
onset dates for Makurdi range from 1.12 to 2.70, 0.75 to 0.79, 0.59 to 0.76, 0.82 to 
0.94, and 0.46 to 0.61 days, respectively, those for Ilorin (figure not shown) range 
from 1.54 to 1.65, 0.70 to 0.86, 0.68 to 0.85, 0.91 to 0.96 and 0.37 to 0.53 days, 

Figure 4. 
Yearly prediction of (a) mid-season first critical dry spell onset dates and lengths (b) mid-season second critical 
dry spell onset dates and lengths in Ibadan. The critical dry spell onset dates are given in terms of the number 
of days before the critical dry spell occurrence from the 30th day after the onset dates of growing season.
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respectively, while those for Lokoja (figure not shown) range from 2.05 to 2.19, 
0.58 to 0.79, 0.48 to 0.79, 0.88 to 0.94, and 0.44 to 0.69 days, respectively(Table 3). 
The RMSE, R2, NSE, WIA, and RSR for first and second critical dry spell lengths 
for Makurdi range from 1.83 to 1.83, 0.63 to 0.71, 0.55 to 0.63, 0.86 to 0.91, and 
0.58 to 0.63 days, respectively; those for Ilorin (figure not shown) range from 0.79 
to 2.05, 0.68 to 0.93, 0.51 to 0.90, 0.84 to 0.98, and 0.30 to 0.66 days, respectively, 
while those for Lokoja (figure not shown) range from 1.61 to 1.72, 0.78 to 0.82, 
0.55 to 0.58, 0.83 to 0.87, and 0.61 to 0.64 days, respectively (Table 4). The neural 
network architecture for first and second onset dates and lengths of the critical dry 
spells for the three stations are given in Tables 3 and 4.

Ogunrinde et al. [3] in their work on ANN for forecasting SPEI: A case study 
of Nigeria (for drought matters) got an RMSE value of 0.5957 for Lokoja station. 
The difference in the values got for critical dry spell length in the present work is 
possibly as a result of different target forecasts—SPEI as distinct from mid-season 
critical dry spell lengths. Therefore, on the 30th day after the onset date of grow-
ing season of any year in the stations, maize farmers could be given yearly advance 
information on the dates of occurrence of first and second critical dry spells and 
their respective lengths. This would enable farmers make necessary plans for their 
farming operations for enhanced maize yield noting the prediction error margins.

3.4 Kaduna, Yelwa, and Yola

The yearly actual and predicted values of first and second mid-season critical 
dry spell onset dates and lengths are presented in Figure 6(a) and (b) respectively 
for Kaduna in Northern Guinea Savannah agro-ecological zone. The actual and 
predicted values of the onset dates of first and second critical dry spells are actually 
the number of days before the occurrence of the critical dry spells from 30th day after 
the onset dates of growing season. So, the predicted onset dates of the critical dry 
spells in terms of days of the year should be onset dates of growing season (in days 
of the year) plus 30 days plus the predicted number of days before the occurrence 
of the critical dry spell (Eq. (3)). The prediction lead times for first and second 

Figure 5. 
Yearly prediction of (a) mid-season first critical dry spell onset dates and lengths (b) mid-season second 
critical dry spell onset dates and lengths respectively in Makurdi. The critical dry spell onset dates are given in 
terms of the number of days before the critical dry spell occurrence from the 30th day after the onset dates of 
growing season.
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critical dry spells range from 13 to 34 days for Kaduna. Those for Yelwa (figure not 
shown) range from 18 to 41 days, while those for Yola (figure not shown) range 
from 13 to 35 days (Table 3). The range of errors during testing for onset dates and 
lengths of the first and second critical dry spells is generally ±4 days for each of the 
stations—Kaduna, Yelwa (figure not shown), and Yola (figure also not shown). 
The RMSE, R2, NSE, WIA, and RSR for onset dates of first and second critical dry 
spells for Kaduna range from 2.37 to 2.67, 0.71 to 0.79, 0.65 to 0.74, 0.91 to 0.93, and 
0.48 to 0.56 days, respectively. Those for Yelwa (figure not shown) range from 2.40 
to 3.07, 0.71 to 0.72, 0.66 to 0.72, 0.91 to 0.91, and 0.50 to 0.55 days, respectively, 
while those for Yola (figure not shown) range from 2.46 to 3.16, 0.67 to 0.73, 0.57 
to 0.64, 0.90 to 0.90, and 0.57 to 0.62 days, respectively (Table 3). The RMSE, R2, 
NSE, WIA, and RSR for first and second critical dry spell lengths for Kaduna range 
from 0.68 to 1.85, 0.76 to 0.89, 0.58 to 0.83, 0.83 to 0.94, and 0.39 to 0.61 days, 
respectively, those for Yelwa (figure not shown) range from 0.90 to 1.71, 0.67 to 
0.78, 0.64 to 0.66, 0.89 to 0.89, and 0.55 to 0.59 days, respectively, while those for 
Yola (figure not shown) range from 0.93 to 1.65, 0.71 to 0.75, 0.62 to 0.67, 0.87 to 
0.87, and 0.55 to 0.59 days, respectively (Table 4). The neural network architecture 
for the first and second onset dates and lengths of the critical dry spells for the three 
stations are also given in Tables 3 and 4.

Mulualem and Liou [14] in their work on ANN in forecasting SPEI for the Upper 
Blue Nile Basin in Ethiopia got RMSE value of 0.428 for Bahdir Dar of almost the 
same latitude with Yelwa, Nigeria. The value of 0.91–1.71 got for critical dry spell 
length got in the current work is somehow close. However, the difference in the 
values could be as a result of different target forecasts—SPEI as distinct from mid-
season critical dry spell lengths. Therefore, on the 30th day after the onset date of 
growing season of any year in the stations, maize farmers could be given advance 
information on the dates of occurrence of first and second critical dry spells and 
their respective lengths to enable them make adequate plans for their farming opera-
tions for improved maize yield. The prediction could be made using ANN on 30th 
day after growing season onset dates for these critical dry spells with 10-day average 
values of the predictors (attributes) taken from 21st to 30th day with minimum lead 

Figure 6. 
Yearly prediction of (a) mid-season first critical dry spell onset dates and lengths (b) mid-season second 
critical dry spell onset dates and lengths respectively in Kaduna. The critical dry spell onset dates are given in 
terms of the number of days before the critical dry spell occurrence from the 30th day after the onset dates of 
growing season.
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times of about 2 weeks and maximum of about 2 month as given above (Table 3). To 
make predictions for any year, the predictors (attributes) are first normalized and 
substituted into the equation (not shown) derived from the neural network architec-
ture involving the input, hidden and output layers, weights, and sigmoid activation 
functions. At the result stage, the normalization is removed to get the actual onset 
dates and lengths of the critical dry spells—predictands (classes).

4. Conclusions and recommendation

The prediction of mid-season critical dry spell onset dates and lengths for 
118 day rain-fed maize crop in Nigeria using ANN has yielded the following useful 
results that include the following: (a) the provision of yearly advance information 
on the number of days before the occurrence of first and second critical dry spells 
and their respective lengths on 20th day after the onset dates of growing season in 
Calabar and Warri; (b) the provision of yearly advance information on the number 
of days before the occurrence of first and second critical dry spell onset dates 
and lengths on 30th day after the onset dates of growing season in Ibadan, Ilorin, 
Lokoja, Makurdi, Yelwa, Kaduna, and Yola in Nigeria. The minimum prediction 
lead time is about 2 weeks, while the maximum is about 2 months. This information 
will aid yearly supplementary irrigation planning, scheduling, and various other 
decision makings related to sustainable agricultural operations for enhanced 118-
day maize yield in the nine stations in Nigeria. For future work, it is recommended 
that more stations and longer years of data be used to ensure adequate training of 
ANN networks to realize better prediction results and gain more insight into dry 
spell occurrences during mid-growing seasons in Nigeria.
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