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Chapter

The Topology of the Configuration
Space of a Mathematical Model for
Cycloalkenes
Yasuhiko Kamiyama

Abstract

As a mathematical model for cycloalkenes, we consider equilateral polygons
whose interior angles are the same except for those of the both ends of the specified
edge. We study the configuration space of such polygons. It is known that for some
case, the space is homeomorphic to a sphere. The purpose of this chapter is three-
fold: First, using the h-cobordism theorem, we prove that the above homeomor-
phism is in fact a diffeomorphism. Second, we study the best possible condition for
the space to be a sphere. At present, only a sphere appears as a topological type of
the space. Then our third purpose is to show the case when a closed surface of
positive genus appears as a topological type.

Keywords: cycloalkene, polygon, configuration space, h-cobordism theorem,
closed surface

1. Introduction

The configuration space of mechanical linkages in the Euclidean space of
dimension three, also known as polygon space, is the central objective in topological
robotics. The linkage consists of n bars of length l1,⋯, ln connected by revolving
joints forming a closed spatial polygonal chain.

The polygon space is quite important in various engineering applications: In
molecular biology they describe varieties of molecular shapes, in robotics they
appear as spaces of all possible configurations of some mechanisms, and they play a
central role in statistical shape theory.

Mathematically, these spaces are also very interesting: The symplectic structure
on the polygon space was studied in the seminal paper [1]. The integral cohomology
ring was determined in [2] applying methods of toric topology. We refer to [3] for
an excellent exposition with emphasis on Morse theory.

Recently, mathematicians are interested in a mathematical model for monocy-
clic hydrocarbons. The model is defined by imposing conditions on the interior
angles of a polygon. The configuration space of such polygons corresponds in
chemistry to the conformations of all possible shapes of a monocyclic hydrocarbon.
Hence the configuration space is interesting both in mathematics and chemistry.

In order to give more detailed account, recall that monocyclic hydrocarbons are
classified into two types: One is saturated type, and the other is unsaturated type.
Mathematicians constructed a mathematical model for each type. We summarize
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the correspondence between chemical and mathematical terminologies in the
following Table 1.

Below we explain Table 1.

i. Monocyclic saturated hydrocarbons aremonocyclic hydrocarbons that contain
only single bonds between carbon atoms.Monocyclic saturated hydrocarbons
are called cycloalkanes. (See Figure 1 for the 6-membered cycloalkane.)

• The mathematical model for cycloalkanes is the equilateral and
equiangular polygons. LetMn θð Þ be the configurations of such n-gons
with interior angle θ. The study of the topological type ofMn θð Þ
originated in [4]. See the next item for more details.

• The topological type ofM4 θð Þ andM5 θð Þ was determined in [4] for
arbitrary θ, and that ofM6 θð Þ was determined in [5] for arbitrary θ.
The paper [4] also determined the topological type ofM7 θð Þ for the
case that θ is the ideal tetrahedral bond angle, i.e. θ ¼
arccos � 1

3

� �
≈109:47°. The result was generalized in [6] for generic θ.

ii. Monocyclic unsaturated hydrocarbons are monocyclic hydrocarbons with
at least one double or triple bond between carbon atoms.

• Hereafter, for simplicity, we consider only the monocyclic unsaturated
hydrocarbons that contain exactly one multiple bond.

• It is not mathematically important whether the multiple bond is a
double or triple bond. Hence we assume that the multiple bond is a
double bond.

Chemistry Mathematics

Monocyclic hydrocarbon Equilateral polygon in 
3

Bond of a monocyclic hydrocarbon Edge of a polygon

Bond angle of a monocyclic hydrocarbon Interior angle of an equilateral polygon

Conformations Configuration space

Cycloalkanes Equilateral and equiangular polygons. Their

configuration space is denoted byMn θð Þ.

Cycloalkenes Equilateral polygons whose interior angles are the same

except for those of the both ends of the specified edge.

Their configuration space is denoted by Cn θð Þ.

Table 1.
The correspondence between chemical and mathematical terminologies.

Figure 1.
Cyclohexane (6-membered cycloalkane).
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• Such monocyclic unsaturated hydrocarbons are called cycloalkenes.
(See Figure 2 for the 6-membered cycloalkene.)

• The mathematical model for cycloalkenes is the equilateral polygons
whose interior angles are the same except for those of the both sides
of the specified edge. Here the specified edge corresponds to the
double bond. Let Cn θð Þ be the configurations of such n-gons with
interior angle θ. (See (1) for more precise definition of Cn θð Þ.) The
study of the topological type of Cn θð Þ originated in [7] and the result
was generalized in [8]. See the next item for more details.

• The following result was proved in [8] (see Theorem 6): There exists

θ0 such that for all θ∈ θ0, n�2
n π

� �
, Cn θð Þ is homeomorphic to Sn�4.

• Except for the above result in [8], we do not know strong results about
the topology of Cn θð Þ.

On the other hand, as a combinatorial result, the necessary and sufficient
condition forMn θð Þ and Cn θð Þ to be non-empty was proved in [9]. (See Theorem 3
about the result for Cn θð Þ.)

As stated in the last item of the above ii, we do not have enough information
about the topology of Cn θð Þ. The purpose of this chapter is to obtain systematic
information about Cn θð Þ. More precisely, we study the following:

Problem 1. (i) We prove that the above homeomorphism in [8] is in fact a
diffeomorphism.

(ii) We study the best possible value about the above θ0 in [8].
(iii) At present, only a sphere appears as a topological type of Cn θð Þ. We

determine the topological type of C6 θð Þ for all θ. The result shows that for some θ,
C6 θð Þ is a closed surface of positive genus.

This chapter is organized as follows. In §2, we state our main results. In §3-§5,
we prove them. In §6, we state the conclusions.

2. Main results

We give the definition of the configuration space. Let θ be a real number
satisfying 0≤ θ≤ π. We set

Cn θð Þ≔ P ¼ u1,⋯, unð Þ∈ S2
� �n j the following i, ii and iiihold

� �
: (1)

i. u1 ¼ 1, 0, 0ð Þ and un ¼ � cos θ,� sin θ, 0ð Þ.

ii.
Pn

i¼1ui ¼ 0:

Figure 2.
Cyclohexene (6-membered cycloalkene).
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iii. ui, uiþ1h i ¼ � cos θ for 1≤ i≤ n� 3, where ,h i denotes the standard inner

product on 
3.

About the conditions in (1), the following explanations are in order.
(See Table 1 for chemical terminologies.)

• The element ui denotes the unit vector in the direction of the edge of a polygon.
Then the condition ii requires the fact that u1,⋯, unð Þ is in fact a polygon.

• We specify un�1 to be the special edge, which corresponds to the double bond
of a cycloalkene. Then the condition iii requires the fact that the interior angles
of an n-gon are θ except for those of the both ends of un�1.

Remark 2. In some papers, Cn θð Þ is defined as

An θð Þ=SO 3ð Þ, (2)

where we set

An θð Þ≔ u1,⋯, unð Þ∈ S2
� �n j 1ð Þ ii, iii and the condition un, u1h i ¼ � cos θhold

� �
:

Let SO 3ð Þ act on An θð Þ diagonally. Then for an element u1,⋯, unð Þ∈An θð Þ, we
may normalize u1 and un to be as in (1) i. Hence (2) in fact coincides with (1).

The following result is known.
Theorem 3 ([9], Theorems A and B). (i) For n≥4, we have Cn θð Þ 6¼ ∅ if and only

if θ belongs to the following interval:

2 arcsin
1

n� 1
,
n� 2

n
π

� �
, if n is odd,

0,
n� 2

n
π

� �
, if n is even:

8
>>><
>>>:

(3)

(ii). Let a be an endpoint of the intervals in (3). Then we have Cn að Þ ¼ onepointf g:
Example 4. For n ¼ 4 or 5, the following results hold, where we omit the cases

which can be read from Theorem 3.

i. For 0< θ< π
2, we have C4 θð Þ ¼ twopointsf g.

ii. The topological type of C5 θð Þ is given by the following Table 2.

Here we define η1 and η2 to be the following Figures 3 and 4, respectively.
The proof of the example will be given at the end of §5.
In [8], the following proposition is proved using the implicit function theorem.
Proposition 5 ([8], Proposition 1). There exists θ0 such that for all θ∈ θ0, n�2

n π
� �

,

the system of equations defined by (1) i , ii and iii intersect transversely. Hence for such θ,
Cn θð Þ carries a natural differential structure.

Range of θ 2 arcsin 1
4 < θ<

π

5
π

5
π

5 < θ<
π

3
π

3
π

3 < θ<
3
5 π

Topological type of C5 θð Þ S1 η1 S1∐S1 η2 S1

Table 2.
The topological type of C5 θð Þ.
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The main result in [8] is the following:
Theorem 6 ([8], Theorem 1). Let θ0 be as in Proposition 5. Then for all

θ∈ θ0, n�2
n π

� �
, Cn θð Þ is homeomorphic to Sn�4.

Remark 7. In [8], Theorem 6 is proved by the following method:We construct a
function f : Cn θð Þ !  and show that f has exactly two critical points. Then Reeb’s

Figure 3.
The space η1.

Figure 4.
The space η2.
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theorem implies Theorem 6. Note that with this method, we cannot improve the
assertion from homeomorphism to diffeomorphism. (See ([10], p. 25) for Reeb’s
theorem and remarks about it.)

The following theorem is the answer to Problem 1 (i).

Theorem A. We equip Sn�4 with the standard differential structure. Let θ0 be as in

Proposition 5. Then for all θ∈ θ0, n�2
n π

� �
, Cn θð Þ is diffeomorphic to Sn�4.

Next we consider Problem 1 (ii). We set

αn ≔ inf θ0 ∈ 0, πð Þ Cn θð Þ ffi Sn�4 holds forallθ∈ θ0,
n� 2

n
πÞ

� 	
:




Here in what follows, the notation X ffi Y means that X is homeomorphic to Y.
Note that among the values of θ0 in Theorem 6, αn is the best possible one.

The following result is known.
Theorem 8 ([11]). (i) We have αn ¼ n�4

n�2 π for 4≤ n≤ 7.

(ii). We have α8 <
5
7 π.

Remark 9. About Theorem 8 (i), we can read α4 and α5 from the above
Example 4, and α6 from Table 4 in Theorem D below.

From Theorem 8, we naturally encounter the following:
Question 10. (i) Is it true that αn ¼ n�4

n�2 π holds for n≥ 4?

(ii) Is it true that αn < n�3
n�1 π holds for n≥4? Note that if (i) is true then (ii) holds

automatically.
The following theorem is the answer to Problem 1 (ii).
Theorem B. For 4≤ n≤ 14, the following Table 3 holds.
The following theorem is the answer to Question 10.
Theorem C. (i) The statement in Question 10 (i) is false for n≥ 8. In fact, we have

n�4
n�2 π < αn for n≥ 8.

(ii) The statement in Question 10 (ii) is false for n≥ 13. In fact, we have n�3
n�1 π < αn for

n≥ 13.
The following theorem is the answer to Problem 1 (iii).
Theorem D. The topological type of C6 θð Þ is given by the following Table 4, where

we omit the cases which can be read from Theorem 3.

n αn
n�4
n�2 π

n�3
n�1 π

n�2
n

π

4 0 0 0:333π 0:500π

5 0:333π 0:333π 0:500π 0:600π

6 0:500π 0:500π 0:600π 0:667π

7 0:600π 0:600π 0:667π 0:714π

8 0:676π 0:667π 0:714π 0:750π

9 0:729π 0:714π 0:750π 0:778π

10 0:767π 0:750π 0:778π 0:800π

11 0:795π 0:778π 0:800π 0:818π

12 0:817π 0:800π 0:818π 0:833π

13 0:834π 0:818π 0:833π 0:846π

14 0:848π 0:833π 0:846π 0:857π

Table 3.
The value of αn for 4≤ n≤ 14.
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Remark 11. (i) As indicated in Problem 1 (iii), not only S2 but also #
3
S1 � S1
� �

appears in Table 4 as a topological type of C6 θð Þ
(ii) We can also determine the topological type of C6

π
2

� �
and C6

π
3

� �
. (See Remark

18 in §5.) In particular, they have singular points.

3. Proof of Theorem A

Following the method of [12], we set

Xn ≔ P, θð Þ∈ S2
� �n � 0,

n� 2

n
π

� �
j P∈Cn θð Þ


 	
: (4)

We define the function μ : Xn !  by

μ P, θð Þ ¼ θ: (5)

Note that for all θ∈ 0, πð �, we have

μ�1 θð Þ ¼ Cn θð Þ: (6)

The following proposition holds:
Proposition 12. (i) Let θ0 be as in Proposition 5. Then the space μ�1 θ0, n�2

n π
� �

is a

manifold, where μ�1 θ0, n�2
n π

� �
denotes the inverse image of the interval.

(ii) Any element of μ�1 θ0, n�2
n π

� �
is a regular point of μ.

(iii) Consider the case n ¼ 8. Then C8
6
8 π
� �

is a non-degenerate critical point of μ.

In order to prove the proposition, we need a lemma. We set

Dn ≔ u1,⋯, un�2, θð Þ∈ S2
� �n�2 � 0, πð Þ j the following iand iihold

n o
:

i. u1 ¼ 1, 0, 0ð Þ:

ii. ui, uiþ1h i ¼ � cos θ for 1≤ i≤ n� 3.

Lemma 13. (i) There is a diffeomorphism

f : S1
� �n�3 � 0, πð Þ!

ffi
Dn:

(ii) We define the map L : Dn !  by

L u1,⋯, un�2, θð Þ ¼ ∥ � cos θ,� sin θ, 0ð Þ þ
Xn�2

i¼1

ui∥
2:

Range of θ 0< θ<
π

3
π

3 < θ<
π

2
π

2 < θ<
2
3 π

Topological type of C6 θð Þ #
3
S1 � S1
� �

#
3
S1 � S1
� �

S2

Table 4.
The topological type of C6 θð Þ.
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Then we have the following commutative diagram:

ð7Þ

Here the maps p and g are defined as follows.

• Let

Pr : S1
� �n�3 � 0, πð Þ !  (8)

be the projection to the 0, πð Þ-component and we denote by p the restriction of Pr to

L ∘ fð Þ�1 1ð Þ:

p≔Prj L ∘ fð Þ�1 1ð Þ:

• The map g is a homeomorphism which will be defined in (13).

(iii) For all θ∈ 0, πð Þ, the restriction of the map g in (7) naturally induces a
homeomorphism

gjCn θð Þ : Cn θð Þ!
ffi
p�1 θð Þ: (9)

Proof of Lemma 13: (i) From an element

eiϕ1 ,⋯, eiϕn�3 , θ
� �

∈ S1
� �n�3 � 0, πð Þ,

we construct the element u1,⋯, un�2, θð Þ∈Dn as follows: In the process

of constructing ui, we also construct the elements vi ∈ S2 such that ui, vih i ¼ 0.
We set

uiþ1 ≔ � cos θð Þui þ sin θ cosϕið Þvi þ sin θ sinϕið Þui � vi (10)

and

viþ1 ≔ � sin θð Þui � cos θ cosϕið Þvi � cos θ sinϕið Þui � vi, (11)

where ui � vi denotes the cross product.
In (10) and (11) for i ¼ 1, we set u1 ≔ 1, 0, 0ð Þ and v1 ≔ 0, 1, 0ð Þ. Then we obtain

u2 and v2. Next using (10) and (11) for i ¼ 2, we obtain u3 and v3. Repeating this
process, we obtain ui and vi for 1≤ i≤ n� 2. Now we define f by

f eiϕ1 ,⋯, eiϕn�3 , θ
� �

≔ u1,⋯, un�2, θð Þ:

From the construction, f is a diffeomorphism.

(ii) We define the map h : Xn ! L�1 1ð Þ by

h u1,⋯, un, θð Þ≔ u1,⋯, un�2, θð Þ: (12)

8
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Since u1,⋯, unð Þ is an element of Cn θð Þ, the right-hand side of (12) is certainly

an element of L�1 1ð Þ. It is clear that h is a homeomorphism. Hence if we define the
map g by

g≔ f�1 ∘ h, (13)

then g is also a homeomorphism. From the construction, it is clear that the diagram
(7) is commutative.

(iii) The item is clear from (6) and the diagram (7).

Proof of Proposition 12: Recall that L ∘ fð Þ�1 1ð Þ in (7) is a subspace of

S1
� �n�3 � 0, πð Þ. In order to prove Proposition 12, we calculate in the universal

covering space. Let

q : 
n�3 � 0, πð Þ ! S1

� �n�3 � 0, πð Þ

be the universal covering space and we define the map

ePr : n�3 � 0, πð Þ ! 

by ePr≔Pr ∘ q, where the map Pr is defined in (8). Then in addition to (7), we have
the following commutative diagram:

ð14Þ

(i) Let x∈
n�3 � 0, πð Þ be any element which satisfies the condition

q xð Þ∈ p�1 θ0,
n� 2

n
π

� �
: (15)

Note that if we use the diagram (14), then (15) is equivalent to saying that

ePr xð Þ∈ θ0,
n� 2

n
π

� �
and L ∘ f ∘ qð Þ xð Þ ¼ 1:

We set

gradx L ∘ f ∘ qð Þ≔ ∂ L ∘ f ∘ qð Þ
∂ϕ1

xð Þ,⋯,
∂ L ∘ f ∘ qð Þ
∂ϕn�3

xð Þ, ∂ L ∘ f ∘ qð Þ
∂θ

xð Þ
� �

: (16)

In order to prove Proposition 12 (i), it will suffice to prove that

gradx L ∘ f ∘ qð Þ 6¼ 0,⋯, 0ð Þ (17)

(a) The case when ePr xð Þ ¼ n�2
n π.

We claim that x has the form

x ¼ 0,⋯, 0,
n� 2

n
π

� �
: (18)

9
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To prove this, recall the homeomorphism gjCn θð Þ was defined in (9). Since

gjCn θð Þ


 ��1
q xð Þð Þ is the regular n-gon, (18) follows.

We shall prove that

gradx L ∘ f ∘ qð Þ ¼ 0,⋯, 0, rð Þ (19)

for some positive real number r.

First, note that the real-valued function L ∘ f ∘ qð Þ ϕ1,⋯,ϕn�3,
n�2
n π

� �
takes the

minimum value 0 at ϕ1,⋯,ϕn�3ð Þ ¼ 0,⋯, 0ð Þ. Hence the first n� 3ð Þ-terms of the
both sides of (19) coincide.

Second, direct computations show that

L ∘ f ∘ qð Þ 0,⋯, 0, θð Þ ¼

4
Xm

i¼1

�1ð Þi sin 2i� 1

2
θ

 !2

, if n ¼ 2mþ 1,

1þ 2
Xm�1

i¼1

�1ð Þi cos iθ
 !2

, if n ¼ 2m:

8
>>>>>><
>>>>>>:

(20)

The number r in (19) equals to the derivative of (20) at θ ¼ n�2
n π. It is easy to

see that

�1ð Þi cos 2i� 1ð Þ 2m� 1ð Þ
4mþ 2

π <0, for1≤ i≤m,

�1ð Þiþ1 sin
i 2m� 2ð Þ

2m
π >0, for1≤ i≤m� 1

8
>><
>>:

(21)

and

Pm

i¼1
�1ð Þi sin 2i� 1ð Þ 2m� 1ð Þ

4mþ 2
π ¼ � 1

2
,

1þ 2
Pm�1

i¼1
�1ð Þi cos i 2m� 2ð Þ

2m
π ¼ 1:

8
>>><
>>>:

(22)

Using (21) and (22), we can check that the derivative of (20) at θ ¼ n�2
n π is

positive, i.e., r is positive. Thus we have obtained (19). This completes the proof of
(17) for the case (a).

(b) The case when ePr xð Þ∈ θ0, n�2
n π

� �
.

By Proposition 5, we have

∂ L ∘ f ∘ qð Þ
∂ϕ1

xð Þ,⋯,
∂ L ∘ f ∘ qð Þ
∂ϕn�3

xð Þ
� �

6¼ 0,⋯, 0ð Þ: (23)

Then using (16), we obtain (17). This completes the proof of (17) for the case (b),
and hence also that of (i).

(ii) In order to prove by contradiction, assume that μ�1 θ0, n�2
n π

� �
contains a

critical point of μ. Then using (7), p�1 θ0, n�2
n π

� �
contains a critical point of p. Lifting

to the universal covering space using (14), there exists an element x∈
n�3 � 0, πð Þ

which satisfies the following two items:

• We have ePr xð Þ∈ θ0, n�2
n π

� �
.

10
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• The point x is a critical point of the function ePr under the constraint

L ∘ f ∘ qð Þ ϕ1,⋯,ϕn�3, θð Þ ¼ 1: (24)

We apply the Lagrange multiplier method to (24). Since ePr ϕ1,⋯,ϕn�3, θð Þ ¼ θ,
there exists λ∈ such that

0,⋯, 0, 1ð Þ ¼ λ gradx L ∘ f ∘ qð Þ: (25)

We compare the first n� 3ð Þ-components of the both sides of (25). Then by
(23), we have λ ¼ 0. But this contradicts the last component of (25). Hence (25)
cannot occur. This completes the proof of (ii).

(iii) Consider the Eq. (24). Using the implicit function theorem, wemay assume that
θ is a function with variables ϕi 1≤ i≤ n� 3ð Þ: θ ¼ θ ϕ1,⋯,ϕn�3ð Þ. Note that

ePr ϕ1,⋯,ϕn�3, θ ϕ1,⋯,ϕn�3ð Þð Þ ¼ θ ϕ1,⋯,ϕn�3ð Þ:

Hence it will suffice to prove the following result for n ¼ 8:

∂
2θ ϕ1,⋯,ϕn�3ð Þ

∂ϕi∂ϕ j

0,⋯, 0ð Þ
 !

1≤ i,j≤ n�3

������

������
6¼ 0, (26)

where jj denotes the determinant. Computing by the method of second implicit

derivative, we see that the value of the left-hand side of (26) for n ¼ 8 is 1�
ffiffi
2

p

16384.

Hence (26) holds for n ¼ 8. This completes the proof of (iii), and hence also that of
Proposition 12.

In order to prove Theorem A, we recall the following:
Theorem 14 ([13], Corollary B). For d≥ 2, let M be a d-dimensional smooth

manifold without boundary and F : M !  a smooth function. We set max F Mð Þ ¼ m
and assume that m is attained by unique point z∈M. Let a∈ satisfy the following four
conditions:

i. a<m.

ii. F�1 a,m½ � is compact.

iii. There are no critical points in F�1 a,m½ Þ.

iv. d 6¼ 5.

Then there is a diffeomorphism F�1 að Þ ffi Sd�1.
Remark 15. For the proof of Theorem 14, the h-cobordism theorem (see [14],

p. 108, Proposition A) is crucial. Hence we cannot drop the condition d 6¼ 5.
Proof of Theorem A: First, we consider the case n 6¼ 8.

• For F in Theorem 14, we consider

μ : μ�1 θ0,
n� 2

n
π

� �
! :

More precisely, we denote the restriction of μ in (5) to μ�1 θ0, n�2
n π

� �
by the same

symbol μ. Note that from the definition of F, z in Theorem 14 is Cn
n�2
n π

� �
.

11
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• By Proposition 12 (i), μ�1 θ0, n�2
n π

� �
is in fact a manifold.

• For a in Theorem 14, we consider any element θ in θ0, n�2
n π

� �
.

Below we check that the conditions i, ii, iii and iv in Theorem 14 are satisfied.
The items i and ii are clear. The item iii follows from Proposition 12 ii. The item iv
follows from the following argument: Since dim Xn ¼ n� 3, we have
dim μ�1 θ0, n�2

n π
� �

6¼ 5 if and only if n 6¼ 8.

Now we can apply Theorem 14 and obtain that μ�1 θð Þ is diffeomorphic to Sn�4 if
θ satisfies that θ0 < θ< n�2

n π. By (6), this is equivalent to saying that Cn θð Þ is also
diffeomorphic to Sn�4. This completes the proof of Theorem A for n 6¼ 8.

Second, we consider the case n ¼ 8. If we apply the Morse lemma to Proposition

12 (iii), then we obtain that μ�1 θð Þ is diffeomorphic to S4 if θ satisfies that

θ0 < θ< 6
8 π. Hence C8 θð Þ is also diffeomorphic to S4. This completes the proof of

Theorem A for n ¼ 8.

4. Proofs of Theorems B and C

Proof of Theorem B: In ([8], Lemma 1), certain conditions on an element
u1,⋯, unð Þ of Cn θð Þ are listed. For example, a condition is given by

u2 ¼ un: (27)

Let Λ be the set of the conditions. For λ∈Λ, we set

Θλ ≔ inf fθ0 ∈ 0,
n� 2

n
π

� �
∣ forall θ∈ θ0,

n� 2

n
π

� �
, Cn θð Þdoes not

containan element which satisfies the conditionλg:
(28)

Using this, we set

βn ≔ max Θλ j λ∈Λf g: (29)

Then it is proved in ([8], Proposition 1) that

αn ¼ βn: (30)

We explain how to compute Θλ. As an example of λ, we consider the condition
(27). We construct the continuous function

Rλ : 0, πð Þ !  (31)

which satisfies the following two properties:

a. We have Rλ θð Þ≥0 for all θ.

b. An element θ∈ 0, πð Þ satisfies Rλ θð Þ ¼ 0 if and only if Cn θð Þ contains an
element which satisfies the condition (27).

In order to construct Rλ in (31), we first fix θ and define the space Yn θð Þ as
follows:
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Yn θð Þ≔ u1,⋯, unð Þ∈ S2
� �n j the following iand iihold

� �
:

i. u1 ¼ 1, 0, 0ð Þ and u2 ¼ un ¼ � cos θ,� sin θ, 0ð Þ.

ii. ui, uiþ1h i ¼ � cos θ for 2≤ i≤ n� 3.

Second, we define the function rλ : Yn θð Þ !  as follows: For u1,⋯, unð Þ∈Yn θð Þ,
we set

rλ u1,⋯, unð Þ≔
Xn

i¼1

ui

�����

�����: (32)

Third, we define Rλ in (31) by

Rλ θð Þ≔ min rλ Yn θð Þð Þ:

Below we check the above properties a and b of Rλ.
The item a is clear.
In order to prove the item b, we claim the following identification holds:

r�1
λ 0ð Þ ¼ u1,⋯, unð Þ∈Cn θð Þ j u2 ¼ unf g: (33)

In fact, an element u1,⋯, unð Þ∈Yn θð Þ belongs to r�1
λ 0ð Þ if and only if (1) ii holds.

Hence (33) follows.
Now the item b is clear from (33). Thus we have checked the above properties a

and b.
Next using the properties a and b, we can describe Θλ in (28) as

Θλ ¼ max θ∈ 0, πð Þ j Rλ θð Þ ¼ 0f g: (34)

From the constructions in (10) and (11), we have

Yn θð Þ ffi S1
� �n�4 � S2:

Using this fact, we can compute the right-hand side of (34) for n≤ 14.
By a similar method, we compute Θλ for each λ∈Λ. Then from the definition of

βn in (29), we can determine βn. Finally, using (30), we obtain αn. This completes
the proof of Theorem B.

Remark 16. In the above proof of Theorem B, the identification (33) is crucial.
Although r�1

λ 0ð Þ is a critical submanifold of the function rλ in (32), this fact allows
us to compute the right-hand side of (34) for n≤ 14. See §6 (ii) for further remarks.

Proof of Theorem C: The theorem is clear from Table 3.

5. Proof of Theorem D

The following proposition is a refinement of Proposition 12 for n ¼ 6.
Proposition 17. (i) The space X6 is a manifold, where Xn is defined in (4).
(ii) The interior angle θ is a critical point of μ if and only if θ equals to π

3,
π
2 or

2
3 π.

Proof:We can prove the proposition is the same way as in Proposition 12. Since
the dimension is low, we can perform direct computations.
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We apply the first fundamental theorem of Morse theory to Proposition 17. Then
we obtain the following assertion: If θ1 and θ2 belong to the same interval from the
three intervals 0, π

3

� �
, π

3 ,
π
2

� �
and π

2 ,
2
3 π

� �
, then we have C6 θ1ð Þ ffi C6 θ2ð Þ.

The homeomorphism (9) tells us that in order to determine the topological type
of C6 θð Þ, it will suffice to determine the topological type of p�1 θð Þ for n ¼ 6. For a
fixed ψ ∈ 0, 2π½ �, we set

Mθ ψð Þ≔ eiϕ1 , eiϕ2 , eiϕ3 , θ
� �

∈ p�1 θð Þ j ϕ1 ¼ ψ
� �

:

Since Mθ ψð Þ is a one dimensional object, it is not to difficult to draw its figure.
The results are given as follows.

(i) The case when π
2 < θ< 2

3 π.

There exists ω in 0, πð Þ such that the following homeomorphism holds:

Mθ ψð Þ ffi
onepointf g, if ψ ¼ ω or 2π � ω,

∅, ifω<ψ < 2π � ω,

S1, otherwise:

8
><
>:

From this, we have p�1 θð Þ ffi S2. The figure of C6 θð Þ is given by the following
Figure 6.

(ii) The case when π
3 < θ< π

2.

There exists ω in 0, πð Þ such that the following homeomorphism holds:

Mθ ψð Þ ffi
σ, if ψ ¼ ω or 2π � ω:

S1, otherwise,



(35)

Here we set

σ≔ ⋃
2

i¼1
x, yð Þ∈

2 j x2 þ i2 y2 ¼ 1
� �

:

(The figure of σ is given by the following Figure 5(b).)
We claim that the four intersection points inMθ ωð Þ∪Mθ 2π � ωð Þ are saddle points

of p�1 θð Þ. In fact, for a sufficiently small positive real number ε, the following Figure 5
(a)–(c) give the shape ofMθ ω� εð Þ,Mθ ωð Þ andMθ ωþ εð Þ, respectively. (The
deformation of the shape ofMθ ψð Þ when ψ is near 2π � ω is also given by Figure 5.)
Now from Figure 5, we see that the four intersection points are in fact saddle points.

Since we identify Mθ 0ð Þ with Mθ 2πð Þ, (35) and Figure 5 give the homeomor-

phism p�1 θð Þ ffi #
3
S1 � S1
� �

. The figure of C6 θð Þ is given by the following Figure 7.

(iii) The case when 0< θ< π
3.

The topological type of Mθ ψð Þ is the same as (35). Hence the argument in (ii)
remains valid.

Remark 18. We determine the topological type of C6
π
2

� �
and C6

π
3

� �
.

(i) The figure of C6
π
2

� �
is given by the following Figure 8.

(a) (c)(b)

Figure 5.
(a) Mθ ω� εð Þ; (b) Mθ ωð Þ; (c) Mθ ωþ εð Þ.
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Thus C6
π
2

� �
is homeomorphic to the orbit space S2= �, where the equivalence

relation is generated by

�1, 0, 0ð Þ � 1, 0, 0ð Þ, 0,�1, 0ð Þ � 0, 1, 0ð Þ and 0, 0,�1ð Þ � 0, 0, 1ð Þ:

In particular, C6
π
2

� �
has three singular pints.

As θ approaches π
2 from below, each center of the three handles in Figure 7

shrinks. And when θ ¼ π
2, each center pinches to a point and we obtain Figure 8. If θ

increases further from π
2, then the pinched point separates and we obtain Figure 6.

(ii) The figure of C6
π
3

� �
is given by the following Figure 9.

The space C6
π
3

� �
contains subspaces

N1, N2 and N3 (36)

which satisfy the following three properties:

• N1 ffi S1 � S1, :N2 ffi S1 � S1 and N3 ffi #
2
S1 � S1
� �

• ⋃
3

i¼1
Ni ¼ C6

π
3

� �
:

• ⋃
i< j

Ni ∩N j

� �
ffi ⋃

3

i¼1
x, yð Þ∈

2 j x2 þ i2 y2 ¼ 1
� �

:

Figure 6.
The space C6 θð Þ for π

2
< θ< 2

3
π.
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Figure 7.
The space C6 θð Þ for π

3
< θ< π

2
, where we identify the opposite boundaries.

Figure 8.
The space C6

π
2

� �
, where we identify the opposite vertices.
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Figure 9.

The space C6
π
3


 �
.

Figure 10.

The space C6
π
3
� ε


 �
.
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The figure of C6
π
3 � ε
� �

is given by Figure 10 above.

As θ approaches π
3, a cross-section of the four tubes in Figure 7 becomes a union

of two circles: In the notation of (36), one circle becomes a handle of N3. And the
other circle is a subspace of N1 ∪N2.

On the other hand, the hole of the center of Figure 7 becomes a subspace of
N1 ∪N2.

Figure 12.
The space X5.

Figure 11.
The space X4.
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Proof of Example 4:We can prove the example in the same way as in Theorem
D. We can also prove by the following method. Recall that the space Xn was defined
in (4). The figures of X4 and X5 are given by Figures 11 and 12 above, respectively.

The identification (6) tells us that each level set of Figure 11 gives C4 θð Þ, and
that of Figure 12 gives C5 θð Þ. Thus we obtain Example 4.

6. Conclusions

i. We have the following comments about the proof of Theorem A. Recall that
for the proof of Theorem A given in §3, we used Proposition 5 but we did
not use Theorem 6. In other words, we did not use Reeb’s theorem. Instead,
we used Theorem 14, for which the h-cobordism theorem is crucial. From
the computations for small n, it seems that (26) holds for all n. If we could
prove this, then we obtain a proof which uses only the Morse lemma. We
pose the following question: Is it possible to prove (26) for all n?

ii. We have the following comments about the proof of Theorem B. Recalling
(23) and (24), we consider the following system of equations:

∂ L ∘ f ∘ qð Þ
∂ϕ1

xð Þ,⋯,
∂ L ∘ f ∘ qð Þ
∂ϕn�3

xð Þ
� �

¼ 0,⋯, 0ð Þ (37)

and

L ∘ f ∘ qð Þ ϕ1,⋯,ϕn�3, θð Þ ¼ 1: (38)

If we could solve the system of Eqs. (37) and (38) with respect to the variables
ϕ1,⋯,ϕn�3 and θ, then we could determine for which θ, Cn θð Þ has a singular point
and the set of singular points of Cn θð Þ. In particular, we obtain Proposition 5. But it
is not easy to solve a system of equations even if we can use a computer. Hence, as
we remarked in Remark 16, we have given the proof of Theorem B such as in §4.
We pose the following question: Is it possible to solve the system of Eqs. (37) and
(38) with respect to the variables ϕ1,⋯,ϕn�3 and θ?
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