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Chapter

Relaxation Dynamics of Point
Vortices
Ken Sawada and Takashi Suzuki

Abstract

We study a model describing relaxation dynamics of point vortices, from quasi-
stationary state to the stationary state. It takes the form of a mean field equation of
Brownian point vortices derived from Chavanis, and is formulated by our previous
work as a limit equation of the patch model studied by Robert-Someria. This model
is subject to the micro-canonical statistic laws; conservation of energy, that of mass,
and increasing of the entropy. We study the existence and nonexistence of the
global-in-time solution. It is known that this profile is controlled by a bound of the
negative inverse temperature. Here we prove a rigorous result for radially symmet-

ric case. Hence E=M2 large and small imply the global-in-time and blowup in finite
time of the solution, respectively. Where E and M denote the total energy and the
total mass, respectively.

Keywords: point vortex, quasi-equilibrium, relaxation dynamics

1. Introduction

Our purpose is to study the system

ωt þ ∇ � ω∇⊥ψ ¼ ∇ � ∇ωþ βω∇ψð Þ in Ω� 0,Tð Þ,

∂ω

∂ν
þ βω

∂ψ

∂ν

�

�

�

�

∂Ω

¼ 0, ωjt¼0 ¼ ω0 xð Þ
(1)

with

�Δψ ¼ ω in Ω, ψ j∂Ω ¼ 0, β ¼ �

Ð

Ω
∇ω � ∇ψ

Ð

Ω
ω ∇ψj j2

, (2)

where Ω⊂R2 is a bounded domain with smooth boundary ∂Ω, ν is the outer unit
normal vector on ∂Ω, and

∇ ¼

∂

∂x1
∂

∂x2

0

B

B

@

1

C

C

A

, ∇⊥ ¼

∂

∂x2

�
∂

∂x1

0

B

B

@

1

C

C

A

, x ¼ x1, x2ð Þ: (3)

The unknown ω ¼ ω x, tð Þ∈R stands for a mean field limit of many point
vortices,
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ω x, tð Þdx ¼
X

N

i¼1

αiδxi tð Þ dxð Þ: (4)

It was derived, first, for Brownian point vortices by [1, 2], with β ¼ β tð Þ standing
for the inverse temperature. Then, [3, 4] reached it by the Lynden-Bell theory [5] of
relaxation dynamics, that is, as a model describing the movement of the mean field
of many point vortices, from quasi-stationary state to the stationary state. This
model is consistent to the Onsager theory [6–12] on stationary states and also the
patch model proposed by [13, 14], that is,

ω x, tð Þ ¼
X

Np

i¼1

σi1Ωi tð Þ xð Þ, (5)

where Np, σi, and Ωi tð Þ denote the number of patches, the vorticity of the i-th
patch, and the domain of the i-th patch, respectively [15–17].

This chapter is concerned on the one-sided case of

ω0 ¼ ω0 xð Þ>0: (6)

If this initial value is smooth, there is a unique classical solution to (1)–(4) local in
time, denoted by ω ¼ ω x, tð Þ, with the maximal existence time T ¼ Tmax ∈ 0,þ∞ð �.
More precisely, the strong maximum principle to (1) guaranttes

ω ¼ ω x, tð Þ>0 on Ω� 0,T½ Þ: (7)

Then, the Hopf lemma to the Poisson equation in (2) ensures

∂ψ

∂ν

�

�

�

�

∂Ω

<0, (8)

and hence the well-definedness of

�β ¼

Ð

Ω
∇ω � ∇ψ

Ð

Ω
ω ∇ψj j2

: (9)

We confirm that system (1)–(3) satisfies the requirements of isolated system
of thermodynamics. First, the mass conservation is derived from (1) as

d

dt

ð

Ω

ω ¼ 0, (10)

because

ν � ∇⊥ψ
�

�

∂Ω
¼ 0 (11)

holds by (2). Second, the energy conservation follows as

1

2

d

dt
∥∇ψ∥22 ¼ ∇ψ ,∇ψ tð Þ ¼ ωt,ψð Þ

¼ ω∇⊥ψ ,∇ψ
� �

� ∇ωþ βω∇ψ ,∇ψð Þ

¼ � ∇ω,∇ψð Þ � β

ð

Ω

ω ∇ψj j2 ¼ 0

(12)
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by (1) and (2), because

∇⊥ψ � ∇ψ ¼ 0, (13)

where ,ð Þ denotes the L2 inner product. Third, the entropy increasing is
achieved, writing (1) as

ωt ¼ ∇ � ω �∇⊥ψ þ ∇ logωþ βψð Þ
� �

,
∂

∂ν
logωþ βψð Þ

�

�

�

�

∂Ω

¼ 0: (14)

In fact, it then follows that

ð

Ω

ωt logωþ βψð Þ ¼

ð

Ω

ω∇⊥ψ � ∇ logψ þ βψð Þ � ω ∇ logωþ βψð Þj j2 dx (15)

with

ð

Ω

ω∇⊥ψ � ∇ logωþ βψð Þ ¼

ð

Ω

∇ω � ∇⊥ψ

¼

ð

∂Ω

ων � ∇⊥ψ �

ð

Ω

ω∇ � ∇⊥ψ
� �

¼ 0

(16)

from (11) and

∇⊥ � ∇ ¼ ∇ � ∇⊥ ¼ 0: (17)

Since

ð

Ω

ωt logω ¼
d

dt

ð

Ω

ω logω� 1ð Þ,

ð

Ω

ωtψ ¼
1

2

d

dt
∥∇ψ∥22 ¼ 0, (18)

We thus end up with the mass conservation

M ¼

ð

Ω

ω, (19)

the energy conservation

E ¼ ∥∇ψ∥22 ¼ ψ ,ωð Þ, (20)

and the entropy increasing

d

dt

ð

Ω

ω logω� 1ð Þ ¼ �

ð

Ω

ω ∇ logωþ βψð Þj j2 ≤0: (21)

Henceforth, C>0 stands for a generic constant. In the previous work [4] we
studied radially symmetric solutions and obtained a criterion for the existence of
the solution global in time. Here, we refine the result as follows, where B 0, 1ð Þ
denotes the unit ball.

Theorem 1 Let

Ω ¼ B 0, 1ð Þ, ω0 ¼ ω0 rð Þ, ω0r <0, 0< r ¼ ∣x∣ ≤ 1: (22)
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Then there is C0 >0 such that

C0∥ω0∥
3
2 ≤Eω ) T ¼ þ∞, ∥ω �, tð Þ∥

∞
≤C, t≥0, (23)

where

ω ¼ min
Ω

ω0 >0: (24)

Theorem 2 Under the assumption of (22) there is δ0 >0 such that

E

M2 < δ0 ) T < þ∞: (25)

Remark 1 Since

∥ω0∥
3
2 ¼

ð

Ω

ω2
0

� �3=2

≥ ω2=3

ð

Ω

ω
4=3
0

� �3=2

¼ ω

ð

Ω

ω
4=3
0

� �3=2

≥ω Ωj j�1=2
ð

Ω

ω0

� �2

¼ ω Ωj j�1=2M2

(26)

the assumption (23) implies

E

M2 ≥C0 Ωj j�1=2: (27)

Therefore, roughly, the conditions E=M2 ≫ 1 and E=M2 ≪ 1 imply T ¼ þ∞ and
T < þ∞, respectively.

Remark 2 The assumption (22) implies

β ¼ β tð Þ<0, 0≤ t<T, (28)

and then we obtain Theorem 1. In other words, the conclusion of this theorem arises
from (28), without (22).

Remark 3 Since

E

M2 ¼

Ð

Ω
∇ψj j2

Ð

Ω
ω

� �2 (29)

it holds that

E

M2 ¼ ∥∇c∥22, c ¼
�Δð Þ�1

ω0
Ð

Ω
ω0

¼
ψ0

Ð

∂Ω
� ∂ψ0

∂ν

, (30)

where ψ0 ¼ �Δð Þ�1
ω0.

The system (1)–(4) thus obays a profile of the micro-canonical ensemble. In a
system associated with the canonical ensemble, the inverse temperature β is a
constant in (1) independent of t, with the third equality in (2) elimiated:

ωt þ ∇ � ω∇⊥ψ ¼ ∇ � ∇ωþ βω∇ψð Þ,
∂ω

∂ν
þ βω

∂ψ

∂ν

�

�

�

�

∂Ω

¼ 0, ωjt¼0 ¼ ω0 xð Þ>0

�Δψ ¼ ω, ψ j∂Ω ¼ 0:

(31)
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Then there arise the mass conservation

d

dt

ð

Ω

ω ¼ 0, (32)

and the free energy decreasing

d

dt

ð

Ω

ω logω� 1ð Þ þ
β

2
∇ψj j2 dx ¼ �

ð

Ω

ω ∇ logωþ βψð Þj j2 ≤0: (33)

The system (31) without vortex term,

ωt ¼ ∇ � ∇ωþ βω∇ψð Þ,
∂ω

∂ν
þ βω

∂ψ

∂ν

�

�

�

�

∂Ω

¼ 0, ωjt¼0 ¼ ω0 xð Þ>0

�Δψ ¼ ω, ψ j∂Ω ¼ 0:

(34)

is called the Smoluchowski-Poisson equation. This model is concerned on the
thermodynamics of self-gravitating Brownian particles [18] and has been studied in
the context of chemotaxis [19–23]. We have a blowup threshold to (34) as a conse-
quence of the quantized blowup mechanism [19, 23]. The results on the existence of
the bounded global-in-time solution [24–26] and blowup of the solution in finite
time [27] are valid even to the case that β is a function of t as in β ¼ β tð Þ. provided

with the vortex term ∇ � ω∇⊥ψ on the right-hand side. We thus obtain the following
theorems.

Theorem 3 It holds that

�β tð Þ≤ δ, ∥ω0∥1 < 8πδ�1 ) T ¼ þ∞, ∥ω �, tð Þ∥
∞
≤C (35)

in (31), where δ>0 is arbitrary.
Theorem 4 It holds that

�β tð Þ≥ δ, ∥ω0∥1 > 8πδ�1 ) ∃ω0 >0, ∥ω0∥1 > 8πδ�1 such that T < þ∞ (36)

in (31), where δ>0 is arbitrary.
Remark 4 In the context of chemotaxis in biology, the boundary condition of ψ is

required to be the form of Neumann zero. The Poisson equation in (34) is thus replaced by

�Δψ ¼ ω�
1

∣Ω∣

ð

Ω

ω,
∂ψ

∂ν

�

�

�

�

∂Ω

¼ 0 (37)

or

�Δψ þ ψ ¼ ω,
∂ψ

∂ν

�

�

�

�

∂Ω

¼ 0 (38)

by [28] and [29], respectively. In this case there arises the boundary blowup, which
reduces the value 8π in Theorems 3–4 to 4π. The value 8π in Theorems 3–4, therefore, is a
consequence of the exclusion of the boundary blowup [30]. This property is valid even for
(37) or (38) of the Poisson part, if (22) is assumed.

Remark 5 The requirement to ω0 in Theorem 4 is the concentration at an interior
point, which is not necessary in the case of (22). Hence Theorems 3 and 4 are refined as

�β tð Þ≤ δ, ∥ω0∥1 < 8πδ�1 ) T ¼ þ∞, ∥ω �, tð Þ∥
∞
≤C (39)
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and

�β tð Þ≥ δ, ∥ω0∥1 > 8πδ�1 ) T < þ∞, (40)

if (22) holds in (35). The main task for the proof of Theorems 1 and 2, therefore,
is a control of β ¼ β tð Þ in (1).

This paper is composed of four sections and an appendix. Section 2 is devoted to
the study on the stationary solutions, and Theorems 1 and 2 are proven in Sections 3
and 4, respectively. Then Theorem 4 is confirmed in Appendix.

2. Stationary states

First, we take the canonical system (31) with β independent of t. By (32) and
(33), its stationary state is defined by

logωþ βψ ¼ constant, ω ¼ ω xð Þ>0,

ð

Ω

ω ¼ M: (41)

Then it holds that

ω ¼
Me�βψ

Ð

Ω
e�βψ

(42)

and hence

�Δψ ¼
Me�βψ

Ð

Ω
e�βψ

, ψ j∂Ω ¼ 0: (43)

There arises an oredered structure arises in β<0, as observed by [11], as
a consequence of a quantized blowup mechanism [19, 20, 31]. In the micro-
canonical system (1) and (2), the value β in (43) has to be determined by E
besides M.

Equality (21), however, still ensures (41) and hence (42) in the stationary state
even for (1)–(3). Writing

v ¼ �βψ , μ ¼
�βM
Ð

Ω
e�βψ

, (44)

we obtain

�Δv ¼ μev in Ω, vj∂Ω ¼ 0,
E

M2 ¼
∥∇v∥22
Ð

Ω
� ∂v

∂ν

� �2 (45)

by (30) and (43).
This system is the stationary state of (1) and (2) introduced by [4]. The first two

equalities

�Δv ¼ μev, vj∂Ω ¼ 0 (46)

comprise a nonlinear elliptic eigenvalue problem and the unknown eigenvalue μ
is determined by the third equality,

6
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E

M2 ¼
∥∇v∥22
Ð

Ω
� ∂v

∂ν

� �2 : (47)

The elliptic theory ensures rather deailed features of the set of solutions to (46).
Here we note the following facts [31].

1.There is μ ¼ μ Ωð Þ>0 such that the problem (46) does not admit a solution for
μ> μ.

2.Each μ≤0 admits a unique solution.

3.Each 0< δ< μ admits a constant C ¼ C δð Þ>0 such that ∥v∥
∞
≤C for any

solution v ¼ v xð Þ.

4.There is a family of solutions μ, vð Þf g such that μ↓0 and ∥v∥
∞
! þ∞.

We show the following theorem, consistent to Theorem 2.

Theorem5 IfΩ ¼ B 0, 1ð Þ⊂R2, there is δ>0 such that any solution v, μð Þ to (45) admits

E

M2 ≥ δ: (48)

Proof: If μ ¼ 0, it holds that v ¼ 0. We have �v>0 exclusively in Ω, provided
that �μ>0, respectively. By the elliptic theory [32], therefore, any solution v to
(46) is radially symmetric as in v ¼ v rð Þ, r ¼ ∣x∣. We have, furthermore, �vr <0 in
0< r≤ 1, if �μ>0, respectively.

Then it holds that ψ ¼ ψ rð Þ, and hence

�
1

r
rψ rð Þr ¼ ω in 0< r≤ 1, ψ jr¼1 ¼ 0 (49)

by (42) and (43), which implies

�rψ r rð Þ ¼

ðr

0
sω sð Þds>0, 0< r≤ 1: (50)

We thus obtain μ 6¼ 0, in particular.
If μ<0 we have β>0 by (44), and therefore, ψ r >0 in 0< r≤ 1 by vr >0 there. It

is a contradiction, and hence μ>0. In this case, the solution v ¼ v rð Þ to (46) is
explicit [31]. The numbers of the solution is 0, 1, and 2, according to μ> 2, μ ¼ 2,
and 0< μ< 2, respectively, and if 0< μ≤ 2 the solutions v ¼ v� are given as

v� rð Þ ¼ log
8γ�r

1þ γ�r
2ð Þ2

, γ� ¼
4

μ
1�

μ

4
� 1�

μ

2

� �1=2
	 


: (51)

In fact, we have γþ ¼ γ� for μ ¼ 2.
This solution is parametrized by

σ ¼

ð

Ω

μev ∈ 0, 8πð Þ: (52)

Hence each 0< σ < 8π admits a unique solution v, μð Þ to (46), and v ¼ vþ and
v ¼ v� according as σ ≥ 4π and σ ≤ 4π, respectively. It holds also that μ↓0 if either

7
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σ↑ 8π or σ↓0. Thus we have only to confirm that E=M2 is bounded, both as σ↑ 8π
and σ↓0.

As σ↑ 8π, we have

v ¼ vþ xð Þ ! 4 log
1

∣x∣
locally uniformly on Ωn 0f g (53)

and hence

∥∇v∥22 ! þ∞,

ð

∂Ω

�
∂v

∂ν
! 8π, (54)

which implies

lim
σ↑ 8π

E

M2 ¼ þ∞: (55)

As σ↓0, on the other hand, we have

v ¼ v� xð Þ ! 0 uniformly in Ω: (56)

Since μ↓0, furthermore, there arises that

γ ¼ γ� ¼
4

μ
1�

μ

4
� 1�

μ

2

� �1=2
	 


¼ μ 1þ o 1ð Þð Þ: (57)

It holds also that

v rð Þ ¼ log
8γ

μ
� 2 log 1þ μr2

� �

(58)

and hence

vr rð Þ ¼ �
4μr

1þ μr2ð Þ2
¼ �4μr 1þ o 1ð Þð Þ uniformly on Ω: (59)

Then, (59) implies

∥∇v∥22 ¼ 2π

ð1

0
v2rr dr ¼ 2π � 16μ2 �

ð1

0
r3 dr � 1þ o 1ð Þð Þ

¼ 8πμ2 1þ o 1ð Þð Þ

(60)

as well as

ð

∂Ω

�
∂v

∂ν

� �2

¼ 16μ2 � 2π 1þ o 1ð Þð Þ: (61)

It thus follows that

lim
σ↓0

E

M2 ¼
1

4
(62)

and hence the conclusion. □

8
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3. Proof of Theorem 1

The first observation is the following lemma.
Lemma 1 Under the assumption of (22), it holds that

β ¼ β tð Þ<0, ωr r, tð Þ<0, 0< r≤ 1, 0≤ t<T: (63)

Proof:We have (7) and hence

ψ r r, tð Þ<0, 0< r≤ 1, 0≤ t<T (64)

by (49), which implies, in particular,

β ¼ �
∇ω,∇ψð Þ
Ð

Ω
ω ∇ψj j2

<0 (65)

at t ¼ 0 by (22).
Since ω ¼ ω r, tð Þ and ψ ¼ ψ r, tð Þ, we obtain ∇⊥ψ ¼ 0, and hence

ωt ¼ ωrr þ
1

r
ωr þ βψ rωr � βω2 (66)

by (1). Then z ¼ ωr satisfies

zt ¼ zrr �
1

r2
zþ

1

r
zr þ βψ rrzþ βψ rzr � 2βωz, 0< r≤ 1, 0≤ t<T

zjr¼0 ¼ 0, zjt¼0 ¼ ω0r rð Þ<0, 0< r≤ 1
(67)

and

z ¼ �βωψ r, r ¼ 1, 0≤ t<T: (68)

Putting

m tð Þ ¼ min
∂Ω

z �, tð Þ ¼ ωr �, tð Þjr¼1, (69)

we obtain m 0ð Þ<0 from the assumption. If there is 0< t0 < such that

m tð Þ<0, 0≤ t< t0 <T, m t0ð Þ ¼ 0, (70)

we obtain z r, tð Þ>0 for 0≤ t< t0, 0< r≤ 1, and t ¼ t0, 0< r< 1 by the strong
maximum principle. By (64), we have (65) for 0≤ t≤ t0, that is,

β ¼ �

Ð 1
0ψ rzr dr

Ð 1
0ωψ

2
rr dr

<0, 0≤ t≤ t0, (71)

and hence

z ¼ �βωψ r <0 r ¼ 1, t ¼ t0, (72)

a contradiction. It holds that z ¼ ωr <0 for 0≤ t<T, r ¼ 1, and hence

β ¼ �

Ð 1
0ψ rωrrdr
Ð 1
0ωψ

2
rr dr

<0, 0≤ t<T: □ (73)
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The proof of Theorem 3 relies on the fact

β≥ � C,

ð

Ω

ω logω� 1ð Þ≤C ) T ¼ þ∞, ∥ω �, tð Þ∥
∞
≤C: (74)

This property is known for the Smoluchoski-Poisson equation (34), but the
proof is valid even to (31) with vortex term. Having (21), therefore, we have to
provide the inequality β≥ � C.

The inequality β<0, on the other hand, is sufficient for the following
arguments.

Lemma 2 If β≤0, 0≤ t<T, it holds that

ω≥ω � min
Ω

ω0 >0 on Ω� 0,T½ Þ: (75)

Proof: Since (17) we obtain

ωt þ ∇⊥ψ � ∇ω ¼ Δωþ β∇ψ � ∇ωþ βΔψ

¼ Δωþ β∇ψ � ∇ω� βω2

≥Δωþ β∇ψ � ∇ω in Ω� 0,Tð Þ

(76)

with

�
∂ω

∂ν
¼ βω

∂ψ

∂ν
>0 on ∂Ω� 0,T½ Þ (77)

by (8). Then the result follows from the comparison theorem. □

Lemma 3 Under the assumption of the previous lemma, there is C0 ¼ C0 Ωð Þ>0
such that

C0∥ω0∥
3
2 ≤Eω ) ∥ω �, tð Þ∥2 ≤∥ω0∥2, � β tð Þ≤ α �

∥ω0∥
2
2

Eω
, 0≤ t<T: (78)

Proof: Using (11) and (17), we obtain

ð

Ω

∇ � ω∇⊥ψ
� �� �

ω ¼

ð

Ω

ω∇ω � ∇⊥ψ ¼
1

2

ð

Ω

∇ω2 � ∇⊥ψ

¼ �
1

2

ð

Ω

ω2∇ � ∇⊥ψ ¼ 0:

(79)

Hence (1) with (2) implies

1

2

d

dt
∥ω∥22 þ ∥∇ω∥22 ¼ �β

ð

Ω

ω∇ψ � ∇ω ¼ �
β

2
∇ψ ,∇ω2
� �

¼ �
β

2

ð

∂Ω

ω2 ∂ψ

∂ν
þ
β

2
Δψ ,ω2
� �

≤ �
β

2
∥ω∥33

(80)

by β≤0 and (88). Since

ð

Ω

∇ω � ∇ψ ¼

ð

∂Ω

ω
∂ψ

∂ν
þ

ð

Ω

ω �Δψð Þ≤

ð

Ω

ω2 (81)

10

Vortex Dynamics - From Physical to Mathematical Aspects



follows from (8), furthermore, it holds that

�β ¼

Ð

Ω
∇ω � ∇ψ

Ð

Ω
ω ∇ψj j2

≤ω�1 �
∥ω∥22

∥∇ψ∥22
¼

1

Eω
∥ω∥22: (82)

Then ineqality (80) induces

1

2

d

dt
∥ω∥22 þ ∥∇ω∥22 ≤

1

2Eω
∥ω∥22 � ∥ω∥

3
3: (83)

Here we use the Gagliardo-Nirenberg inequality (see (4.16) of [19]) in the
form of

∥ω∥33 ≤C∥ω∥H1 � ∥ω∥22 ¼ C∥ω∥22 ∥∇ω∥2 þ ∥ω∥2ð Þ, (84)

to obtain

1

2

d

dt
∥ω∥22 þ ∥∇ω∥22 ≤

C

Eω
∥ω∥42 ∥∇ω∥2 þ ∥ω∥2ð Þ

≤
1

2
∥∇ω∥22 þ

C2

8 Eωð Þ2
∥ω∥82 þ

C

2Eω
∥ω∥52

(85)

and hence

d

dt
∥ω∥22 þ ∥∇ω∥22 ≤

C

Eω
∥ω∥52

C

Eω
∥ω∥32 þ 1

� �

: (86)

Then, Poincaré-Wirtinger’s inequality ensures

d

dt
∥ω∥22 þ μ∥ω∥22 ≤

C

Eω

C

Eω
∥ω∥62 þ ∥ω∥32

� �

∥ω∥22, (87)

where μ ¼ μ Ωð Þ>0 is a constant.
Writing

y tð Þ ¼
C

Eω
∥ω∥32, (88)

we obtain

d

dt
∥ω∥22 þ μ∥ω∥22 ≤ y2 þ y

� �

∥ω∥22, (89)

and therefore, if

y2 þ y< μ=2 (90)

holds at t ¼ 0, it keeps to hold that

d

dt
∥ω∥22 ≤0 (91)

and (90) for 0≤ t<T. Then, we obtain
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∥ω �, tð Þ∥2 ≤∥ω0∥2, 0≤ t<T, (92)

and hence

�β tð Þ≤
∥ω0∥

2
2

Eω
¼ α, 0≤ t<T (93)

by (82).
The condition y 0ð Þ< μ

2 means

C0∥ω0∥2 ≤Eω (94)

for C0 >0 sufficiently large, and hence we obtain the conclusion. □

Proof of Theorem 1: By the parabolic regularity, it suffices to show that

∥ω �, tð Þ∥
∞
≤C, 0≤ t<T (95)

under the assumption. We have readily shown

∥ω �, tð Þ∥2 ≤C, 0≤ � β tð Þ≤C, 0≤ t<T (96)

by Lemma 3. Then, the conclusion (95) is obtained similarly to (34). See [26] for
more details.

In fact, we have

ð

Ω

∇ � ω∇⊥ψ
� �� �

ωp ¼ �

ð

Ω

ω∇⊥ψ � ∇ωp ¼ �p

ð

Ω

ωp∇⊥ψ � ∇ω

¼ �
p

pþ 1

ð

Ω

∇⊥ψ � ∇ωpþ1 ¼
p

pþ 1

ð

Ω

ωpþ1∇ � ∇⊥ψ
� �

¼ 0

(97)

for p>0 by (11) and (34). Then it follows that

1

pþ 1

d

dt

ð

Ω

ωpþ1 þ
4p

pþ 1ð Þ2
∥∇ω

pþ1
2 ∥22 ¼ �β

ð

Ω

ω∇ψ � ∇ωp

¼ �β �
p

pþ 1

ð

Ω

∇ψ � ∇ωpþ1 ≤ � β
p

pþ 1

ð

Ω

ωpþ1 �Δψð Þ

¼ �β
p

pþ 1

ð

Ω

ωpþ1 ≤C

ð

Ω

ωpþ2

(98)

by β<0 and (8). Then, Moser’s iteration scheme ensures (95) as in [33].

4. Proof of Theorem 2

We begin with the following lemma.
Lemma 4 Under the assumption of (22), it holds that

�β tð Þ≥ δ, 0≤ t<T, M ¼ ∥ω0∥1 >
8π

δ
) T < þ∞ (99)

in (31), where δ>0 is a constant.
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Proof:We have ω ¼ ω r, tð Þ and ψ ¼ ψ r, tð Þ for r ¼ ∣x∣ under the assumption,
which implies ∇⊥ψ ¼ 0. Then we obtain

∇ � ω∇⊥ψ ¼ ∇ω � ∇⊥ψ ¼ 0 (100)

by (17). It holds also that

∇ � ω∇ψð Þ ¼ ∇ � ωψ r

x

r

� �

¼ ∇ �
x

r

� �

ωψ r þ
x

r
� ∇ ωψ rð Þ

¼
1

r
ωψ r þ ωψ rð Þr ¼

1

r
rωψ rð Þr,

(101)

and therefore, there arises that

ωt ¼
1

r
rωr þ βrωψ rð Þr, ωr þ βωψ rjr¼1 ¼ 0: (102)

from (31).
Then (102) implies

d

dt

ð1

0
ωr3 dr ¼

ð1

0
ωtr

3 dr ¼

ð1

0
rωr þ βrωψ rð Þrr

2 dr

¼ �

ð1

0
2r2 ωr þ βωψ rð Þ dr

¼ �2r2ω
�

�

r¼1

r¼0
þ

ð1

0
4rω� 2βωψ rr

2 dr:

(103)

Here we use (50) derived from the Poisson part of (31), that is,

�rψ r r, tð Þ ¼ A r, tð Þ �

ðr

0
sω s, tð Þds: (104)

Putting

λ ¼

ð1

0
ωr dr ¼

M

2π
, (105)

we obtain

d

dt

ð1

0
ωr3 dr ¼ �2ωjr¼1 þ 4λþ 2β

ð1

0
AAr dr

¼ �2ωjr¼1 þ 4λþ βA2
�

�

r¼1

r¼0

¼ �2ωjr¼1 þ 4λþ βλ2

<4λ β þ
M

8π

� �

≤ 4λ �δþ
M

8π

� �

:

(106)

Since �δþ M
8π <0, therefore, T ¼ þ∞ is impossible, and we obtain T < þ∞. □

Lemma 5 Under the assumption (22), there is δ>0 such that

E

M2 < δ, β tð Þ≤0, 0≤ t<T ) β tð Þ≤ �
1

CE1=2
0≤ t<T: (107)
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Proof: First, Lemma 1 implies

ω≥ω ∗ � ωjr¼1: (108)

Second, we have

ð

Ω

∇ψ � ∇ω ¼

ð

∂Ω

∂ψ

∂ν
ωþ

ð

Ω

�Δψð Þω ¼ ω ∗

ð

∂Ω

∂ψ

∂ν
þ ∥ω∥22

¼ ω ∗

ð

Ω

Δψ þ ∥ω∥22 ¼ ∥ω∥22 � ω ∗M,

(109)

and hence

�β ¼

Ð

Ω
∇ψ � ∇ω

Ð

Ω
ω ∇ψj j2

¼
∥ω∥22 � ω ∗M
Ð

Ω
ω ∇ψj j2

: (110)

Here, we use the Gagliardo-Nirenberg inequality in the form of

∥w∥24 ≤C∥w∥2∥w∥H1 , (111)

which implies

ð

Ω

ω ∇ψj j2 ≤∥ω∥2∥∇ψ∥
2
4 ≤C∥ω∥2∥∇ψ∥2∥∇ψ∥H1

≤CE1=2∥ω∥22

(112)

by the elliptic estimate of the Poisson equation in (2),

∥ψ∥H2 ≤C∥ω∥2: (113)

We have, on the other hand,

ω ∗M≤
M

E

ð

Ω

ω ∇ψj j2 (114)

by (110), and therefore,

�β≥
1

CE1=2
�

E

M
≥

1

2CE1=2
, (115)

provided that

E

M2 <
1

2C

� �2

: (116)

Then the conclusion follows. □

Proof of Theorem 2: By Lemma 5, there is δ0 > such that

E

M2 < δ ) �β≥
1

CE1=2
� δ1, (117)
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and then, Lemma 4 ensures

M>
8π

δ1
) T < þ∞: (118)

The assumption in (118) means

E

M2 <
1

8πc

� �2

, (119)

and hence we obtain the conclusion. □

Appendix Proof of Theorem 4

This theorem is valid to the general case of Ω and ω0 without (22). We assume
δ ¼ 1 without loss of generation, so that

β≤ � 1: (120)

We follow the argument [27] concerning (34) with the Poisson part replaced by

(42) or (43). Thus we have to take case of the vortex term ∇ � ω∇⊥ψ , time varying
β ¼ β tð Þ, and the Dirichlet boundary condition in (31).

We recall the cut-off function used in [34] (see also Chapter 5 of [19]). Hence

each x0 ∈Ω and 0<R≤ 1 admit φ ¼ φx0,R ∈C2
Ω
� �

with

∂φ

∂ν

�

�

�

�

∂Ω

¼ 0, 0≤φ≤ 1, φ ¼ 1 in Ω∩ B x0,R=2ð Þ, φ ¼ 0 in Ωn B x0,Rð Þ,

(121)

and

∣∇φ∣ ≤CR�1φ1=2, ∣∇2φ∣ ≤CR�2φ1=2: (122)

In more details, we take a cut-off function, denoted by ψ, satisfying (121), using
a local conformal mapping, and then put φ ¼ ψ4.

Let

φ∈C2
Ω
� �

,
∂φ

∂ν

�

�

�

�

∂Ω

¼ 0: (123)

be given. First, we have

d

dt

ð

Ω

ωφ ¼

ð

Ω

ω∇⊥ψ � ∇φ� ∇ωþ βω∇ψð Þ � ∇φ dx

¼

ð

Ω

ω∇⊥ψ � ∇φþ ωΔφ� βω∇ψ � ∇φ dx

(124)

by (11). It holds that
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ð

Ω

ω∇ψ � ∇φ ¼

ðð

Ω�Ω

ω x, tð Þ ∇xG x, x0ð Þ � ∇φ xð Þ½ �ω x0, tð Þ dxdx0

¼

ðð

ΩΩ

ω x, tð Þφx0,2R x0ð Þ ∇xG x, x0ð Þ � ∇φ xð Þ½ �ω x0, tð Þ dxdx0

þ

ðð

Ω�Ω

ω x, tð Þ 1� φx0,2R x0ð Þ
� �

∇xG x, x0ð Þ � ∇φ xð Þ½ �ω x0, tð Þ dxdx0

¼ I þ II:

(125)

Let, furthermore, x0 ∈Ω and 0<R≪ 1 in the above equality. Then,

φ ¼ x� x0j j2φx0,:R (126)

satisfies the requirement (123).
It holds that

∇φ ¼ 2 x� x0ð Þφx0,R þ x� x0j j2∇φx0,R (127)

and hence

∣∇φ∣ ≤C∣x� x0∣ φx0,Rþjx� x0jR
�1φ

1=2
x0,R

� �

≤C∣x� x0∣φ
1=2
x0,R

: (128)

We obtain, furthermore,

∣x0 � x0∣ ≥ 2R, ∣x� x0∣ ≤R ) ∣x� x0∣ ≥R, (129)

and hence

∣∇xG x, x0ð Þ∣ ≤CR�1 (130)

in this case. Then it follows that

∣II∣ ≤CR�1M

ð

Ω

∣x� x0∣φ
1=2
x0,R

ω x, tð Þ dx≤CR�1M3=2A1=2, (131)

where

A ¼

ð

Ω

x� x0j j2φx0,Rω: (132)

We have, on the other hand,

I ¼

ðð

Ω�Ω

ω x, tð Þφx0,2R x0ð Þ ∇xG x, x0ð Þ � ∇φ xð Þ½ �ω x0, tð Þ dxdx0

¼
1

2

ðð

ΩΩ

φx0,2R x0ð Þ∇φ xð Þ � ∇xG x, x0ð Þ þ φx0,2R xð Þ∇φ x0ð Þ � ∇x0G x, x0ð Þ
� �

ω⊗ω,

(133)

where G ¼ G x, x0ð Þ is the Green’s function to

�Δψ ¼ ω, ωj∂Ω ¼ 0 (134)

and
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ω⊗ω ¼ ω x, tð Þω x0, tð Þ dxdx0: (135)

Here we use the local property of the Green’s function

G x, x0ð Þ ¼ Γ x� x0ð Þ þ K x, x0ð Þ, K ∈C2
Ω� Ω
� �

∩C2
Ω�Ω
� �

, (136)

where

Γ xð Þ ¼
1

2π
log

1

∣x∣
(137)

stands for the fundamental solution to �Δ.
Let

ρ2x0,R x, xðÞ ¼ φx0,2R x0ð Þ∇φ xð Þ � ∇xK x, x0ð Þ þ φx0,2R∇φ x0ð Þ � ∇x0K x:x0ð Þ:
�

(138)

Since (128) implies

∣φx0,2R x0ð Þ∇φ xð Þ∣ ≤Cφx0,2R x0ð Þ∣x� x0∣φ
1=2
x0,R

xð Þ

≤C∣x� x0∣φ
1=2
x0,R

xð Þ,
(139)

it holds that

∣ρ1x0,R x, x0ð Þ∣ ≤C jx� x0jφ
1=2
x0,R

xð Þþjx0 � x0jφ
1=2
x0,R

x0ð Þ
� �

: (140)

Then, we obtain

I ¼
1

2

ðð

Ω�Ω

ρ0x0,R x, x0ð Þω⊗ωþ III (141)

with

∣III∣ ≤CM3=2A1=2 ≤CR�1M3=2A1=2, (142)

where

ρ0x0,R x, x0ð Þ ¼ ∇Γ x� x0ð Þ � φx0,2R x0ð Þ∇φ xð Þ � φx0,2R xð Þ∇φ x0ð Þ
� �

: (143)

Here, we have

∇Γ xð Þ ¼ �
x

2π xj j2
, (144)

and therefore,

ρ0x0,R x, x0ð Þ ¼ ρ2x0,R x, x0ð Þ þ ρ3x0,R x, x0ð Þ (145)

fo

ρ2x0,R x, x0ð Þ ¼ �
1

2π

x� x0

x� x0j j2
φx0,2R x0ð Þ � ∇φ xð Þ � ∇φ x0ð Þð Þ (146)

ρ3x0,R x, x0ð Þ ¼ �
1

2π

x� x0

x� x0j j2
φx0,2R x0ð Þ � φx0,2R xð Þ
� �

� ∇φ xð Þ: (147)
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Since (128) implies

∣ρ3x0,R x, x0ð Þ∣ ≤CR�1∣∇φ xð Þ∣ ≤CR�1∣x� x0∣φ
1=2
x0,R

xð Þ, (148)

there arises that

I ¼
1

2

ðð

Ω�Ω

ρ2x0,R x, x0ð Þ ω⊗ωþ IV, (149)

with

∣IV∣ ≤CR�1M3=2A1=2, (150)

similarly.
We have, furthermore,

∇φ xð Þ � ∇φ x0ð Þ ¼ 2 x� x0ð Þφx0,R xð Þ þ 2 x0 � x0ð Þ φx0,R xð Þ � φx0,R x0ð Þ
� �

þ x0 � x0j j
2
∇φx0,R xð Þ � ∇φx0,R x0ð Þ
� �

þ x� x0j j2 � x0 � x0j j
2

� �

∇φx0,R xð Þ,

(151)

and hence

ρ2x0,R x, x0ð Þ ¼ �
1

π
φx0,2R x0ð Þφx0,R xð Þ þ ρ4x0,R x, x0ð Þ þ ρ5x0,R x, x0ð Þ þ ρ6x0,R x, x0ð Þ (152)

with

∣ρ4x0,R x, x0ð Þ∣ ≤C x� x0j j
�1
φx0,2R x0ð Þ∣x0 � x0kφx0,R xð Þ � φx0,R x0ð Þ∣

≤CR�1∣x0 � x0∣φx0,2R x0ð Þ,
(153)

∣ρ5x0,R x, x0ð Þ∣ ≤C x� x0j j
�1
φx0,2R x0ð Þ x0 � x0j j

2
∣∇φx0,R xð Þ � φx0,R x0ð Þ∣

≤CR�2 x0 � x0j j
2
φx0,2R x0ð Þ

≤CR�1∣x0 � x0∣φx0,2R x0ð Þ,

(154)

and

∣ρ6x0,R x, x0ð Þ∣ ≤C∣x� x0 φx0,2R x0ð Þkx� x0
�

�

�

�

2
� x0 � x0j j

2
∣ � ∣∇φx0,R xð Þ∣

≤CR�1 jx� x0j þ jx0 � x0jð Þφx0,R xð Þφx0,2R x0ð Þ

≤C R�1jx� x0jφx0,R xð Þ þ R�1jx0 � x0jφx0,2R x0ð Þ
� �

(155)

by

kx� x0j
2 � x0 � x0j j

2
∣ ¼ ∣ x� x0, xþ x0 � 2x0ð Þ∣ ≤ ∣x� x0∣ jx� x0j þ jx0 � x0jð Þ:

(156)

The residual terms are thus treated similarly, and it follows that

I þ
1

2π

ð

Ω

ωφx0,R �

ð

Ω

ωφx0,2R

�

�

�

�

�

�

�

�

≤CR�1M3=2A1=2, (157)

which results in
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ð

Ω

ω∇ψ � ∇φþ
1

2π

ð

Ω

ωφx0,R �

ð

Ω

ωφx0,2R

�

�

�

�

�

�

�

�

≤CR�1M3=2A1=2: (158)

We can argue similarly to the vortex term in (124). This time, from

∇⊥
Γ xð Þ � x ¼ 0 (159)

it follows that

ð

Ω

ω∇⊥ψ � ∇φ

�

�

�

�

�

�

�

�

≤CR�1M3=2A1=2: (160)

Concerning the principal term of (124), we use

Δφ ¼ 4φx0,R þ 4 x� x0ð Þ � ∇φx0,R þ x� x0j j2Δφx0,R: (161)

From

∣ x� x0ð Þ � ∇φx0,R∣ ≤CR�1∣x� x0∣φ
1=2
x0,R

(162)

and

�x0j j2Δφx0,R

�

�

�

�≤CR�2 x� x0j j2φ
1=2
x0,R

≤CR�1∣x� x0∣φ
1=2
x0,R

,
(163)

it follows that

ð

Ω

ωΔφ� 4

ð

Ω

ωφx0,R

�

�

�

�

�

�

�

�

≤C

ð

Ω

R�1∣x� x0∣φx0,Rω

≤CR�1M1=2A1=2:

(164)

Let M1 ¼ Mx0,R and M2 ¼ Mx0,2R for

Mx0,R ¼

ð

Ω

ωφx0,R: (165)

Then, using (120), we end up with

dA

dt
≤4M1 �

M2
1

2π
þ CR�1 M3=2 þM1=2

� �

A1=2 þ C M2 �M1ð Þ: (166)

Inequalilty (166) implies T < þ∞ if A 0ð Þ≪ 1, as is observed by [27] (see also
Chapter 5 of [19]). Here we describe the proof for completeness.

The first observation is the monotoniity formula

d

dt

ð

Ω

ωφ

�

�

�

�

�

�

�

�

≤C MþM2
� �

∥∇φ∥C1 , (167)

derived from (124) and the symmetry of the Green’s function: G x, x0ð Þ ¼
G x0, xð Þ. The proof is the same as in (34) and is omitted.
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Second, we put I1 ¼ Ix0,R and I2 ¼ Ix0,2R for

Ix0,R ¼

ð

Ω

x� x0j j2ωφx0,R: (168)

Then it holds that

M2 �M1 ≤

ð

R< ∣x�x0∣< 2R
φx0,2Rω

≤ 2R�1

ð

Ω

∣x� x0∣φx0,2Rω≤ 2M1=2R�1I
1=2
2

(169)

and

A2 ¼ A1 þ

ð

Ω

x� x0j j2 φx0,2R � φx0,R

� �

ω

≤A1 þ 4R2

ð

Ω

φx0,2R � φx0,R

� �

ω,

(170)

which implies

dA1

dt
≤ 4M1 �

M2
1

2π
þ CR�1 M3=2 þM1=2

� �

A
1=2
1

þC M3=2 þM1=2
� �

ð

Ω

φx0,2R � φx0,R

� �

ω

	 
1=2

:

(171)

Here, we use (167) to ensure

d

dt
4M1 �

M2

2π

� �

�

�

�

≤C MþM2
� �

R�2

�

�

�

�

(172)

and

d

dt

ð

Ω

φx0,2R � φx0,R

� �

ω

�

�

�

�

�

�

�

�

≤C MþM2
� �

R�2: (173)

Then, it follows that

4M1 �
M2

1

2π
≤ 4M1 0ð Þ �

M1 0ð Þ2

2π
þ CBa R�1t1=2

� �

(174)

and

ð

Ω

φx0,2R � φx0,R

� �

ω≤

ð

Ω

φx0,2R � φx0,R

� �

ω0 þ CBa R�1t1=2
� �

≤ 2R�2A2 0ð Þ þ CBa R�1t1=2
� �

(175)

for

B ¼ M3=2 þM1=2, a sð Þ ¼ s2 þ s: (176)
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Thus we obtain

dA1

dt
≤4M1 0ð Þ �

M1 0ð Þ2

2π
þ CR�1BA

1=2
1 þ CBA2 0ð Þ1=2 þ CBa R�1t1=2

� �

¼ J 0ð Þ þ CBa R�1t1=2
� �

þ CBR�1A
1=2
1

(177)

for

J ¼ 4M1 �
M2

1

4π
þ CBR�1A

1=2
2 : (178)

Assume M1 0ð Þ> 8π, and put

�4δ ¼ 4M1 0ð Þ �
M1 0ð Þ2

2π
<0: (179)

Let, furthemore,

1

R2

ð

Ω

x� x0j j2φx0,2Rω0 ≤ η: (180)

Now we define s0 by

CBa s0ð Þ ¼ δ (181)

in (177), and take 0< η≪ 1 such that

η≤ δs20: (182)

Then, if R and T0 satisfy R�2T0 ¼ ηδ�1, it holds that

A1 0ð Þ≤R2η< 2δT0: (183)

Making 0< η≪ 1, furthermore, we may assume

J 0ð Þ þ CBR�1A1 0ð Þ1=2 ≤ � 4δþ CBR�1A2 0ð Þ1=2

≤ � 4δþ CBη1=2 ≤ � 3δ,
(184)

which results in

dA1

dt
≤ J 0ð Þ þ CBa R�1T

1=2
0

� �

þ BR�1A1 tð Þ1=2

¼ J 0ð Þ þ δþ CBR�1A
1=2
1 , 0≤ t<T0, (185)

provided that T ≥T0.
A continuation argument to (184)–(185) guarantees

dA1

dt
≤ � 2δ, 0≤ t<T0, (186)

and then we obtain
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A1 T0ð Þ≤A1 0ð Þ � 2δT0 <0 (187)

by (183), a contradiction. □
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