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Chapter

Relaxation Dynamics of Point
Vortices

Ken Sawada and Takashi Suzuki

Abstract

We study a model describing relaxation dynamics of point vortices, from quasi-
stationary state to the stationary state. It takes the form of a mean field equation of
Brownian point vortices derived from Chavanis, and is formulated by our previous
work as a limit equation of the patch model studied by Robert-Someria. This model
is subject to the micro-canonical statistic laws; conservation of energy, that of mass,
and increasing of the entropy. We study the existence and nonexistence of the
global-in-time solution. It is known that this profile is controlled by a bound of the
negative inverse temperature. Here we prove a rigorous result for radially symmet-
ric case. Hence E/M? large and small imply the global-in-time and blowup in finite
time of the solution, respectively. Where E and M denote the total energy and the
total mass, respectively.

Keywords: point vortex, quasi-equilibrium, relaxation dynamics

1. Introduction

Our purpose is to study the system

w+V-oVty =V - (Vo + poVy) in Qx (0,T),

dw oy (1
= +ﬂa)a £ =0, w,_,=wo(x)
with
) jQVa) - Vy
Ay =w in Q, ylu=0, f=-"""—73, (2)
jga)‘Vl//|

where Q C R? is a bounded domain with smooth boundary 9%, v is the outer unit
normal vector on 0Q, and

0 0
ox ox

V= 01 , Vi= 82 s x = (x1,%2). (3)
0x7 0x1

The unknown w = w(x,t) €R stands for a mean field limit of many point
vortices,
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N

o(x,t)dx =Y a6y (dx). (4)

i=1

It was derived, first, for Brownian point vortices by [1, 2], with # = §(t) standing
for the inverse temperature. Then, [3, 4] reached it by the Lynden-Bell theory [5] of
relaxation dynamics, that is, as a model describing the movement of the mean field
of many point vortices, from quasi-stationary state to the stationary state. This
model is consistent to the Onsager theory [6-12] on stationary states and also the
patch model proposed by [13, 14], that is,

Np
w(x,t) = Z oilo, @ (%), (5)
i1

where N, o;, and €;(t) denote the number of patches, the vorticity of the i-th
patch, and the domain of the i-th patch, respectively [15-17].
This chapter is concerned on the one-sided case of

wo :a)o(x)>0. (6)
If this initial value is smooth, there is a unique classical solution to (1)-(4) local in

time, denoted by @ = w(x,t), with the maximal existence time T' = Tyax € (0, +o0].
More precisely, the strong maximum principle to (1) guaranttes

w=wxt)>0 onQx [0,T). (7)

Then, the Hopf lemma to the Poisson equation in (2) ensures

W o, (8)
ov 90
and hence the well-definedness of
Vw -V
—p = J“fligl (9)
jgw|VW|

We confirm that system (1)-(3) satisfies the requirements of isolated system
of thermodynamics. First, the mass conservation is derived from (1) as

d
%Lza) =0, (10)

because

v-Viy|, =0 (11)

holds by (2). Second, the energy conservation follows as

1d

E%IIVMI% = (Vy, Vy,) = (o, y)

= ~(Va, V) = B oluf = 0
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by (1) and (2), because
Viy - Vy =0, (13)

where (, ) denotes the L? inner product. Third, the entropy increasing is
achieved, writing (1) as

0
w, =V -o(=Vty + V(logw + py)), a—y(loga)—l—ﬂy/) = 0. (14)
0Q

In fact, it then follows that

J w(logw + py) = J oViy - V(logy + py) — w|V(logw + py)|* dx  (15)
Q Q

with

J oVry - V(logw + py) = J Vo - Viy
Q Q

(16)
:J a)y~Vlw—J oV - (VJ'I//) =
0Q Q
from (11) and
Vi.v=v.vt=0. (17)
Since
d 1d )
Lwt logw = %La)(logw -1), Lwtw =5 IVyll5 =0, (18)
We thus end up with the mass conservation
M = J w, (19)
Q
the energy conservation
E=Vyl = (v, o), (20)
and the entropy increasing
d 2
—J a)(loga)—l):—J o|V(loga + fy)|? <O0. (21)
dt Jo o

Henceforth, C> 0 stands for a generic constant. In the previous work [4] we
studied radially symmetric solutions and obtained a criterion for the existence of
the solution global in time. Here, we refine the result as follows, where B(0,1)
denotes the unit ball.

Theorem 1 Let

Q=B(0,1), wo=wo(r), wor<0, 0<r=l|x|<1. (22)
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Then therve is Co > 0 such that

Collwoll3 <Ew = T = +oo, |lo(-1)llo<C, £>0, (23)
where
® = min wo > 0. (24)
Q

Theorem 2 Under the assumption of (22) there is 5o > O such that
E
IW<50:>T< + oo. (25)

Remark 1 Since

32 AL
ol = (J a%) > (@“j o )
Q Q
3/2

) , (26)
= a)(J a)g/3) > w|Q| 72 (J a)0> = o|Q| V*M?
Q Q
the assumption (23) implies
E .
~p 2ol (27)

Therefore, roughly, the conditions E/M? > 1 and E/M?* < 1imply T = o0 and
T < + oo, respectively.
Remark 2 The assumption (22) implies

p=pr)<0, 0<t<T, (28)

and then we obtain Theorem 1. In other words, the conclusion of this theorem arises
from (28), without (22).
Remark 3 Since

M2 2
(fgw)
it holds that
E ~A)t
L veg, o= Vo (30)
M fﬂwo fag v

where wy = (—A) 'wy.

The system (1)-(4) thus obays a profile of the micro-canonical ensemble. In a
system associated with the canonical ensemble, the inverse temperature f is a
constant in (1) independent of ¢, with the third equality in (2) elimiated:

1 0w oy

o, +V-oViy=V-(Vo+ poVy), —+po—| =0, o),_q=wo(x)>0

ov oV |50

Ay =w, yl)n=0.

(31)
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Then there arise the mass conservation

d
%J'Qa) = 0, (32)
and the free energy decreasing
d p 2 - 2
—| o(logw —1)+= |Vy|* dx = —| w|V(logw + )| <0. (33)
dt Jo 2 Q

The system (31) without vortex term,

dy

Wl = 0, ®|_y=wo(x)>0

ow
w; =V - (Vo + poVy), E-l—ﬁa)
—Ay =w, yl,n=0.

is called the Smoluchowski-Poisson equation. This model is concerned on the
thermodynamics of self-gravitating Brownian particles [18] and has been studied in
the context of chemotaxis [19-23]. We have a blowup threshold to (34) as a conse-
quence of the quantized blowup mechanism [19, 23]. The results on the existence of
the bounded global-in-time solution [24-26] and blowup of the solution in finite
time [27] are valid even to the case that  is a function of ¢ as in f = f(t). provided
with the vortex term V - @V on the right-hand side. We thus obtain the following
theorems.

Theorem 3 It holds that

—p(t) <6, llwoll, <878 ' = T = o0, |lo(-1)]l.,<C (35)

in (31), where 6> 0 is arbitrary.
Theorem 4 It holds that

—p(t) =68, |lwolly>876 1 = we >0, |lwoll;>878 1 such that T < + oo (36)
in (31), where 6> 0 is arbitrary.

Remark 4 In the context of chemotaxis in biology, the boundary condition of y is
required to be the form of Neumann zero. The Poisson equation in (34) is thus replaced by

1 oy
—AI//:a)——J w, —| =0 (37)
|Q| Q (31/ 0
or
0
—Ay +y = w, Mo—o (38)
oV | yo

by [28] and [29], respectively. In this case there arises the boundary blowup, which
reduces the value 8 in Theorems 3—4 to 4x. The value 8z in Theorems 3—4, therefore, is a
consequence of the exclusion of the boundary blowup [30]. This property is valid even for
(37) or (38) of the Poisson part, if (22) is assumed.

Remark 5 The requirement to wq in Theorem 4 is the concentration at an interior
point, which is not necessary in the case of (22). Hence Theorems 3 and 4 are refined as

() <5, llall; <8251 = T = +oo, |lo(1)[l,<C (39)
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and
—p(t) 26, |lwolly>8m6 = T < + oo, (40)

if (22) holds in (35). The main task for the proof of Theorems 1 and 2, therefore,
is a control of f = f(¢) in (1).

This paper is composed of four sections and an appendix. Section 2 is devoted to
the study on the stationary solutions, and Theorems 1 and 2 are proven in Sections 3
and 4, respectively. Then Theorem 4 is confirmed in Appendix.

2. Stationary states

First, we take the canonical system (31) with § independent of ¢. By (32) and
(33), its stationary state is defined by

logw + py = constant, @ = w(x)>0, ng = M. (41)
Then it holds that
w = ]f\% (42)
and hence
—szﬁj—:’;ﬁ, Vo = 0. )

There arises an oredered structure arises in < 0, as observed by [11], as
a consequence of a quantized blowup mechanism [19, 20, 31]. In the micro-
canonical system (1) and (2), the value f in (43) has to be determined by E
besides M.

Equality (21), however, still ensures (41) and hence (42) in the stationary state
even for (1)-(3). Writing

i
= By, = 44
v=—Py, u e v (44)
we obtain
E Vol
—Av=pe’ in Q, v[,,=0 —= vl (45)

M (- %)

by (30) and (43).
This system is the stationary state of (1) and (2) introduced by [4]. The first two
equalities

—Av = pe’, v|o=0 (46)

comprise a nonlinear elliptic eigenvalue problem and the unknown eigenvalue u
is determined by the third equality,
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E _ |IVoll3
M (-2

T o

(47)

The elliptic theory ensures rather deailed features of the set of solutions to (46).
Here we note the following facts [31].

1. There is g = u(Q) > 0 such that the problem (46) does not admit a solution for
U>H.

2.Each ¢ <0 admits a unique solution.

3.Each 0 < 6 < admits a constant C = C(6) > 0 such that ||v||,, < C for any
solution v = v(x).

4.There is a family of solutions {(4,v)} such that 4 | 0 and |[v||,, — +oo.

We show the following theorem, consistent to Theorem 2.
Theorem 5IfQ = B(0, 1) C R there is 5 > 0 such that any solution (v, u) to (45) admits

E
7 > 5. (48)

Proof: If u = 0, it holds that v = 0. We have v > 0 exclusively in Q, provided
that £ > 0, respectively. By the elliptic theory [32], therefore, any solution v to
(46) is radially symmetric as in v = v(r), r = |x|. We have, furthermore, +v, <0 in
0 <r<1,if > 0, respectively.

Then it holds that w = y/(r), and hence

1

—;(Vl//,,)yza) in 0<r< 1, y|_,=0 (49)

by (42) and (43), which implies

—ry,(r) = Josa)(s)ds >0, O<r<1l (50)

We thus obtain y # 0, in particular.

If 4 < 0 we have > 0 by (44), and therefore, y, > 0 in 0 <7 <1by v, > 0 there. It
is a contradiction, and hence y > 0. In this case, the solution v = v(r) to (46) is
explicit [31]. The numbers of the solution is 0, 1, and 2, according to u>2, u = 2,
and 0 <y <2, respectively, and if 0 < 4 <2 the solutions v = v are given as

8yt 4{ K K 1/2}
ve(r) = log — =, ={1-E+(1-5)" } 51
s = log o = 1= (1-5) (51)

In fact, we have y, =y_ foru = 2.
This solution is parametrized by

o= J ue’ € (0, 8x). (52)
Q

Hence each 0 < ¢ < 87 admits a unique solution (v, 1) to (46), and v = v and
v = v_ according as ¢ > 4z and o < 4, respectively. It holds also that 4 | 0 if either
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o 1 8noro | 0. Thus we have only to confirm that E /M? is bounded, both as ¢ 1 87
and o { O.
As ¢ 1 8z, we have

v=0v,(x) — 4log|?1| locally uniformly on Q\ {0} (53)
and hence
ov
IVoll; — oo, J —— — 8z, (54)
o OV

which implies

E
o_lirnélﬂlw = +o0. (55)

As ¢ | 0, on the other hand, we have
v=v_(x) — 0 uniformly in Q. (56)

Since pu | 0, furthermore, there arises that

S PR N SRR

y=y_ = p {1 7 <1 2) } =u(l1+o0(1)). (57)

It holds also that
v(r) = log 8 _ 2log (14 pr*) (58)

U
and hence
4ur . —

0, (r) = ———F——= = —4ur(l1+o(1 uniformly on Q. 59
() = s = (L o(0) y (59)

Then, (59) implies

1 1
Vo5 = 2nJ VX dr =27 - 1647 J 7 dr-(1+0(1))
0

0 (60)
= 8ru*(1+0(1))
as well as
o\ 2
(J — —) =164 - 27(1 4 0(1)). (61)
0Q 01/
It thus follows that
. E 1
im =3 (62)
and hence the conclusion. O
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3. Proof of Theorem 1

The first observation is the following lemma.
Lemma 1 Under the assumption of (22), it holds that

p=p1t) <0, ,(r,t)<0, 0<r<l, 0<t<T.
Proof: We have (7) and hence
w,(r,t)<0, 0<r<1l, 0<t<T
by (49), which implies, in particular,

(Vo, Vy)

<0
an)|Vl//|2

ﬂ:_

att = 0 by (22).
Since w = w(r,t) and y = y(r,t), we obtain V*y = 0, and hence

1
W = Wy + ;CUV + py, 0, — ﬁa)z
by (1). Then z = w, satisfies
1 1
2t = Zpy —V—Zz—I—;z,—i—ﬂl//wz—i—ﬂt//,,z,, —2pwz, O0<r<l, 0Lt<T
Zl,_o=0, gl,_o = wor(r)<0, 0<r<1
and
z2=—poy,, r=1, 0<t<T.

Putting

m(t) = ngglzn Z("t) = wr('at)‘rzl’

we obtain 72(0) < 0 from the assumption. If there is 0 <%y < such that

m(t) <0, 0<t<to<T, m(ty)=0,

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

we obtain z(r,¢) > 0 for 0 <t <tg, 0<r<1, and t =to, 0 <7 <1by the strong

maximum principle. By (64), we have (65) for 0 <t <t,, that is,

1
d
g _dowErdr oo

fg wylr dr
and hence
z2=—poy,<0 r=1, t=to,
a contradiction. It holds that 2 = w, < 0 for 0 <t < T, r = 1, and hence

B Jg W, rdr

<0, 0<t<T. ]
J";a)q/fr dr

p=

(71)

(72)

(73)
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The proof of Theorem 3 relies on the fact

p> —C, J o(logw —1)<C =T = +oo, |w(-1)].,<C. (74)
Q

This property is known for the Smoluchoski-Poisson equation (34), but the

proof is valid even to (31) with vortex term. Having (21), therefore, we have to
provide the inequality f> — C.

The inequality < 0, on the other hand, is sufficient for the following
arguments.

Lemma 2 If <0, 0<t<T, it holds that

i on Qx [0,T) (75)
Q
Proof: Since (17) we obtain
w; + Viy - Vo = Aw + fVy - Vo + Ay
= Aw + pVy - Vo — o’ (76)
>Aw+ pVy -Vo in Qx (0,7T)
with
0
_9% o™ 50 on a0 x [0,T) (77)
ov ov

by (8). Then the result follows from the comparison theorem. ]
Lemma 3 Under the assumption of the previous lemma, there is Cy = Co(€2) >0
such that

2
@
Collool <Ew = llo(0)l <llwoll, —p)a="2202 o<r<r. (78)

@

Proof: Using (11) and (17), we obtain

J, v f@viv]o- |

1
oV - Vly/ = —J Vo’ - Vlu/
Q 2 )

) (79)
= ——J @’V - Viy = 0.
2)o
Hence (1) with (2) implies
1d
i 1018+ Vol == 0¥y Vo= = (v, va?)
2dt o 2
p dy P p (80
P 20 P 2 P 3
| oS sty < Ko
by # <0 and (88). Since
J Va)-Vy/:J w%-I-J a)(—Ay/)SJ w* (81)
Q o o Q Q

10
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follows from (8), furthermore, it holds that

Vo - Vy _ wl|3 1
gtV Vv el 1 e (82)
Jow! V| IVyll;  Ee
Then ineqality (80) induces
1d 1
= %uwu% + IVoll3 < 2E—w||w||%- loll3. (83)

Here we use the Gagliardo-Nirenberg inequality (see (4.16) of [19]) in the
form of

lwll3 < Cllwllg - llwll; = Cllolly(IVoll, + lloll,), (84)
to obtain
1d C
23101+ IVl < ol (IVoll, + loll)
1 C? C (5
< Z|Voli + —— ol + —— ol
S IVl + 5o ol + 5 ol
and hence
d C C
Ellwllﬁ +IVoll3 < @lelg(gllwllg + 1)- (86)
Then, Poincaré-Wirtinger’s inequality ensures
d c/cC
a1l + pllolz < 2 (E—Q loll3 + ||w||§) leoll, (87)
where y = u(Q) > 0 is a constant.
Writing
C
y(t) = z-lloll, (88)
we obtain
d
21l + ol < 07 +y) ol (89)
and therefore, if
¥ +y<n/2 (90)
holds at ¢ = 0, it keeps to hold that
d
Z ol <0 (91)

and (90) for 0 <t < T. Then, we obtain

11
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”w(',t)HZS”a)O”Z: OSt<T} (92)
and hence
lwoll;
—p(t) < Ey 0<t<T (93)
by (82).
The condition y(0) < § means
Collwoll, <Ew (94)
for Cy > 0 sufficiently large, and hence we obtain the conclusion. ]

Proof of Theorem 1: By the parabolic regularity, it suffices to show that
lo(50)lle<C, 0<E<T (95)
under the assumption. We have readily shown
lo(,t)l,<C, 0< —B(t)<C, 0<t<T (96)

by Lemma 3. Then, the conclusion (95) is obtained similarly to (34). See [26] for
more details.
In fact, we have

J [V- (lel//)}wp = —J oViy Vol = —pJ Viy Vo
Q Q

Q

- _Z%LVLW - Vol :pLHLwP“V (Viy) =0
(97)

for p > 0 by (11) and (34). Then it follows that

1 d 4p ptl
——— | o Vo 2 2:—J Vy - Vo
p—f—ldtJQ +(10+1)2” w75 ﬂQa) 174

N L . +1 _ L +1/
B ﬁpﬂJgV‘” M7 ﬁp+1L‘”p 4v)

14 +1 +2
=—pL | & <C| o
ﬂp‘f’lL - J

Q
(98)
by <0 and (8). Then, Moser’s iteration scheme ensures (95) as in [33].
4. Proof of Theorem 2
We begin with the following lemma.
Lemma 4 Under the assumption of (22), it holds that
—pt)>6, 0<t<T, M:||a)0||1>8—;:>T< + o0 (99)

in (31), where 6> 0 is a constant.

12
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Proof: We have @ = w(r,t) and w = w(r,t) for r = |x| under the assumption,
which implies V*y = 0. Then we obtain

V-oViy =V -Viy =0 (100)

by (17). It holds also that

V- (oVy) =V- (wwr%c) = (V -;)wwﬁ;-v(w%)

(101)
1 1
- ;a)l//r + ((Ul//,,);, - ;(le//r)r’
and therefore, there arises that
1
Wy = ;(Va)y + proy,),, o, + poy,|,_, = 0. (102)
from (31).
Then (102) implies
4 1 1
—J wr® dr = J o dr = J (ra, + prow,) r* dr
dt )o 0 0
1
= —J 2% (w, + poy,) dr (103)
0
= —2720)!:;0 + L4Va) — 2wy, v* dr.
Here we use (50) derived from the Poisson part of (31), that is,
—ry,(r,t) = A(r,t) = J sa(s,t)ds. (104)
0
Putting
1
M
i:Jwr dr = —, (105)
0 272'
we obtain
d 1 1
%Jocm’3 dr = —2w|,_, + 41+ ZﬁJOAAV dr
= 20|, + 44+ A",
et A o (106)

= 2w|,_, + 44+ pi?

M M
<4iMp+— |4 —-6+—).
87 87

Since —6 + é”—” <0, therefore, T = +oo is impossible, and we obtain T'< + oco. []
Lemma 5 Under the assumption (22), there is 5 > O such that

E 1
1\7<5’ p)<0, 0<t<T = p(t) < ~Cpil 0<t<T. (107)

13
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14

Proof: First, Lemma 1 implies
W20 = 0|,

Second, we have

dy oy 2
Vl//-Va):J —a)+J —Al//a):a)*J —+ ||o||
JQ o oV Q( ) aQ OV 2

_ w*J Ay + Nl = ]2 — o.M,
Q

and hence

Vv Vo ol; - o.M

_IB — —
Igw|VW|2 jgw|VW|2

Here, we use the Gagliardo-Nirenberg inequality in the form of
w3 < Cllwllllwllgs,

which implies
J oV < ol I Vw2 < Clloll | Vil [ Vil g
Q
< CE"*||w]|?

by the elliptic estimate of the Poisson equation in (2),

Iyl < Cllell,

We have, on the other hand,
M
. M< —J w|Vy |
E )

by (110), and therefore,

1 E 1

P2 g T M pcE

E _(1 2
M? \2C) -
Then the conclusion follows.
Proof of Theorem 2: By Lemma 5, there is 6o > such that

provided that

E
W<5i—ﬂ2 =1,

CE1/2

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)
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and then, Lemma 4 ensures

8
M>6—7[:>T< + oo. (118)
1

The assumption in (118) means

E 12

and hence we obtain the conclusion. ]

Appendix Proof of Theorem 4

This theorem is valid to the general case of Q and w, without (22). We assume
6 = 1 without loss of generation, so that

p< —1. (120)

We follow the argument [27] concerning (34) with the Poisson part replaced by
(42) or (43). Thus we have to take case of the vortex term V - @V=y, time varying
p = p(t), and the Dirichlet boundary condition in (31).

We recall the cut-off function used in [34] (see also Chapter 5 of [19]). Hence
each xo €Q and 0 <R <1admit ¢ = ¢, p € C*(Q) with

d
a—‘” =0, 0<@p<1, @=11in Qn B(xo,R/2), ¢ =0 in Q\ B(xo,R),
Vg
(121)
and
Vol <CR 92, |V2p| <CR*¢"/?. (122)

In more details, we take a cut-off function, denoted by v, satisfying (121), using
a local conformal mapping, and then put ¢ = y*.
Let

op

peC*(Q), —
(@) ol

=0. (123)

be given. First, we have

d

—J wgon oVty - Vo — (Vo + poVy) - Vo dx
dat Jo o

(124)

J oViy - Vo + whp — poVy - Ve dx
Q

by (11). It holds that

15
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ng v JJ (U(.c,t)[ixG(x,x’). qu(x)]a)(x/,t) dxdx’
QxQ
JJQQCO( ,t> xO’ZR( /)[ x (:’x,)' iq)(x)]a)(x’,t) dxdx’

+JJQXQCU(9CJ)(1 — Pro k() [VxG(x,x) - Vo (x)|w(x',t) dxdx’

(125)

=I1+1I
Let, furthermore, xo € Q and 0 <R <« 1 in the above equality. Then,
9 = I — %0/ "0y, & (126)
satisfies the requirement (123).
It holds that
Vgo = 2(x - x0)¢xo,R + |x - x0|2V¢X0,R (127)
and hence
[Vl < Clx = %ol (0, 2+ — %0 R g1/% ) < Cl — oyl . (128)
We obtain, furthermore,
Ix" —x0| >2R, |x —x0| <R = |x — x| >R, (129)
and hence
|V.G(x,x")| <CR™! (130)
in this case. Then it follows that
1] < CR‘lMJ I — xolgy pw(x,t) dx < CRTIMP2AY2, (131)
Q
where
A= Jg|x — xo\z(pr’Ra). (132)

We have, on the other hand,

I= ”QXQa)(x,t)(pr’ZR(x/)[VxG(x,x') Vo(x)|o(x',t) dxdx'

(133)

1
— iJJ [ﬁ”xo,ZR(x’)Vgo(x) . VxG(x,x,) + (pr,ZR(x)VQO(X/) . Vx’G(x, x/)j|a) ® o,
Q0
where G = G(x,x’) is the Green’s function to
_Al// = w, w|0§2 e O (134)

and

16
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oQ®w = w(x,t)w(x',t) dxdx'.
Here we use the local property of the Green’s function
G(x,x') =T(x —x') + K(x,x'), KeC*(QxQ)nC*(Q x Q),

where
1 1

stands for the fundamental solution to —A.
Let

Pror (6:%() = Py s () V() + ViK (56, %) + ¢ s Vop (') - Vi K (x.x").

Since (128) implies

102, 22K ) V()] < Capy 2 (') — X0l %5 (x)

1/2
<Clx — x0|(px{),R(x),
it holds that
2 2
o3, & (65 %")] < C(\x — X0l % () +x' — ol (x’)) :

Then, we obtain

1
I= i” pgo,R(x,x')a)®a)+IH
QxQ
with
\III| < CM?/?AY? < CRMP/2AV?,
where

po g3, x") = VI(x — ')+ (9 2 (") V() — 0y 2 () Vep(x')).

Here, we have

X

and therefore,
PSO,R(x,x/) = pazco,R(x’x/) + Pfco,R(x,xl)

fo

1 x—x'

2 / / /
, - ___ - 7 (Vv -V

pxo,R(‘x x) ) ’ /|2 goxo,ZR(x) ( ¢(x) ¢(x ))

1 x—x'

2 ((pxo,ZR(x/) - (pxo,ZR(x>) : V(p(x)

3 AN
Pk X ) =

17

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)
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Since (128) implies
P2, 2 (3,x")] < CR|Vg(x)| < CR M — x4 (x), (148)

there arises that

I = i” pfm,R(x,x’) oQ@w+1V, (149)
QxQ
with
IIV| < CRMP/2AY?, (150)

similarly.
We have, furthermore,

V() = V(') = 200 = x' ), o () + 20" = 20) (5, 0 (%) — 9o e ()
' = 0l (Vo 2(%) = Voo, o)) + (e = 0 = [’ = 0] Vop ),
(151)
and hence

1

piO,R(x,x’) — _;QOxO,ZR(x,)QOxQ,R(x) —I—p;O,R(x,x’) +,035¢0,R(x’x,) +p§0,R(x’x/> (152)
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with

-1
|pi0’R(x,x’)| <Clx — x| ¢x0,2R(x/>|x, - x0||€0xo,R(x) - €0xo,R(x/)|

(153)
<CR '’ — xolgy, 2r (%),
-1 2
102, g6, X" ) < Cle — x| 2p(x)|x" — 20| [ Vo, r(X) — Py 2 ()]
<CR2[x — x0[ g op (%) (154)
<CR Y&’ — xolgy, 2r (%),
and
2 2
108, r (06, x")| S Clx — &, 2 () Ix — x0|” — %" — x0]| - [V, g ()]
<CR M(|x — xo| + |x" — x0]) @y 2 (%) Py 2r () (155)

<C(R™x — x0lge, (%) + R — X0 gy, 22 (x))

by
I — x0f* — &' — x0/’] = |(x — &, 5 + ' — 2x0)| < | — x|(|x — %0 + |x' — x0]).
(156)
The residual terms are thus treated similarly, and it follows that
1
‘1 + —J OPy, R J W@y, | SCRIMP2AY2, (157)
2z Q ’ Q ’

which results in
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<CR 'M3/241/2, (158)

1
oVy - Vo + — 0Py | OPy 2R
2
Q Q Q

We can argue similarly to the vortex term in (124). This time, from
Vir(x) -x =0 (159)

it follows that

<CR 'M3/241/2, (160)

J oViy - Vo
Q

Concerning the principal term of (124), we use

From
-1 1/2
|(x —x0) - Voo, gl SCR | — x0l9p 2 (162)
and
“_x0|2A(pxo,R‘ < CR‘2|x - x0|2(ﬂalch
(163)
_ 1/2
< CR M — xolgy/ %,
it follows that
J O)A(p - 4J WPy R SCJ R_llx - xOl(pxo,Rw
Q Q Q (164)
< CR*lMl/ZAl/Z.
Let M; = M,, g and M, = M, or for
Mipi = | o (165)
Q
Then, using (120), we end up with
dA M; ~1(pp3/2 1/2\\ 21/2
= <4My -1+ CR (M M >A +C(M, — My). (166)
V1

Inequalilty (166) implies T < + oo if A(0) <1, as is observed by [27] (see also
Chapter 5 of [19]). Here we describe the proof for completeness.
The first observation is the monotoniity formula

d
% | ool <cor 1)1Vl (167)
Q

derived from (124) and the symmetry of the Green’s function: G(x,x’) =
G(x',x). The proof is the same as in (34) and is omitted.

19
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Second, we put I; = I, g and I, = I, 2z for

LR = J | —xolza)(pr’R.
Q

Then it holds that
M; — M; < J Dy 2RD
R<|x—x9|<2R
3 2R_1J I = Xolpy apew < 2M'*R 7L
Q
and

Ay =Aq+ Jg\x - xo|2((ﬂx0,2R — Py R) @

<A+ 4R2JQ (@x028 — Pro.R) @

which implies

dAq M? _ 1/2
A a4, — 14 R 1(M3/2 M2\ AY
dt — 1 o + * ) 1

12
+C(M3/z +M1/2> {J (e, 28 — gng)R)a)} .
Q
Here, we use (167) to ensure

o\ AMr— o <C(M+M*)R™?

d M?
2r

and

d

%J (@x0, = Pxor)@| SC(M + M?)R 2.
Q

Then, it follows that

M? M;(0)?
4M,; — —L <4M,(0) —
Yo T 1(0) 2

+ CBa (R_ltm)

and

JQ (<0x0,2R - (ﬂxo,R)w < JQ ((pr,ZR — (pr,R)a)o + CBa (R_1t1/2>

<2R"24,(0) + CBa (R‘1t1/2>
for

B=M"24+MYV2  a(s) =5 +s.

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)
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Thus we obtain

dA M;(0)?
d—tl <4M;(0) — 12( L CR'BA}* + CBA,(0)"* + CBa (R—1t1/2>
" (177)
= J(0) + CBa (R_ltm) + CBR14Y?
for
M2
J = 4M; — 4—; + CBR A (178)
Assume M;(0) > 8z, and put
M;(0)
—45 = 4M;(0) — 10 o, (179)
2z
Let, furthemore,
1 2
R Q|x — %0 Pxy, 0000 <11 (180)
Now we define 5o by
CBa(so) = 6 (181)
in (177), and take 0 <7 <1 such that
n< 85 (182)
Then, if R and T satisty R 2Ty = 5é71, it holds that
A1(0) <R*; <25T,. (183)
Making 0 <5 <« 1, furthermore, we may assume
J(0) + CBRA1(0)"? < — 45 + CBR 'A,(0)"/?
(184)
< — 45+ CBy'/? < — 35,
which results in
dA
= <J(0) + CBa (R—lT})/Z) + BR1A(r)?
—J(0)+ 6+ CBRIAY?, 0<t<T,, (185)
provided that T > T.
A continuation argument to (184)—-(185) guarantees
dA
d—tlg —25, 0<t<Ty, (186)

and then we obtain

21
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Al(To) SAl(O) —206Ty<0 (187)

by (183), a contradiction. O
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