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Chapter

A New Functional Clustering
Method with Combined
Dissimilarity Sources and
Graphical Interpretation
Wenlin Dai, Stavros Athanasiadis and Tomáš Mrkvička

Abstract

Clustering is an essential task in functional data analysis. In this study, we
propose a framework for a clustering procedure based on functional rankings or
depth. Our methods naturally combine various types of between-cluster variation
equally, which caters to various discriminative sources of functional data; for
example, they combine raw data with transformed data or various components of
multivariate functional data with their covariance. Our methods also enhance the
clustering results with a visualization tool that allows intrinsic graphical interpreta-
tion. Finally, our methods are model-free and nonparametric and hence are robust
to heavy-tailed distribution or potential outliers. The implementation and perfor-
mance of the proposed methods are illustrated with a simulation study and applied
to three real-world applications.

Keywords: depth, insurance, intrinsic graphical interpretation, robustness,
statistical rankings

1. Introduction

Cluster analysis is a critical step in exploratory data analysis intended to identify
homogeneous subgroups among observations. Cluster analysis is also widely used
for functional data in tasks such as the classification of electrocardiogram curves in
the diagnosis of cardiovascular ischemic diseases [1] and the extraction of repre-
sentative wind behavior [2, 3]. The various functional data clustering methods
described in the literature can generally be categorized into two subgroups:
distance-based methods and filtering-based methods.

The distance-based methods involve the construction of a distance matrix with a
specific metric; the clustering results may be derived with hierarchical or centroid-
based clustering tools [3, 4]. The filtering-based methods involve the approxima-
tion of the curves with linear combinations of finite basis functions, such as splines
and functional principal components, and the cluster analysis is conducted based on
the coefficients or scores of finite dimensions [5–7]. The focus of this study is on
distance-based methods. In this paper, we propose a new family of clustering
algorithms based on the chosen functional ordering. The dissimilarity matrix is
constructed via the chosen functional ordering, which is applied to the set of
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differences of all pairs of the functional data under investigation. Various functional
ordering can be chosen, but we concentrate on orderings with intrinsic graphical
interpretation. But any ordering that treats the sources equally can be used, includ-
ing the modified band depth [8] and the simplicial band depth [9]. The choice of
functional ordering with intrinsic graphical interpretation allows us to show the
resulting clusters and a central region that attains a natural interpretation. I.e., All
functions contained in the central region do not leave the plot of the central region,
and all functions not contained in the central region leave the plot of the central
region in at least one point. It has to be mentioned that the classical functional
orderings mentioned above do not satisfy this natural condition, and therefore we
will concentrate on functional orderings defined in [10].

Functional data differ in various ways, such as in magnitude, shape, phase, and
dependence structure, and hence they are difficult to analyze when clusters exist
from multiple perspectives. The existing methods either focus on a single type of
variation or pool the various sources of variation with weightings that rely on a
delicate selection procedure. Without balancing, the clustering results could be
dominated by the component with the greatest absolute variation. In order to
achieve some balancing between the various sources, it is possible to standardize the
curves before applying existing methods, such as k-means or model-based methods.
By “standardization”, we mean that the marginal empirical distributions are stan-
dardized so that they have zero mean and unit variance. This approach is used in the
simulation study in order to compare the performance of existing methods with the
proposed methods.

Since the proposed procedure applies functional ordering, such that every part of
the function is treated equally, the different sources of variation are combined in an
equal manner. For univariate cases, it may combine the raw curves and the deriva-
tives equally to measure the magnitude and shape variation simultaneously. For
multivariate cases, it may combine the marginal curves and the covariance functions
equally to account for both marginal and joint variation among curves. Furthermore,
the proposed method provides a reasonable graphical interpretation of the clustering
result. Finally, it inherits the robustness of functional orderings and can stably
recover the clusters when abnormal observations contaminate the data.

The remainder of this paper is organized as follows. In Section 2, we define the
new proposed procedure with an arbitrary functional ordering. Further, we review
several functional orderings already defined in [10] which satisfy the intrinsic
graphical interpretation. Finally, we study the metric properties of derived dissim-
ilarity. In Section 3, we describe the simulation studies we conducted to assess the
performance of the proposed methods and compare them with some existing com-
petitors in cases where the combination of the various sources is of interest. In
Sections 4–6, we demonstrate the effectiveness of our method with three real-world
examples. The proposed methods will be available soon in the R package GET.

2. Description of methods

2.1 Dissimilarity matrix

Assume that the functions f i xð Þ, i ¼ 1, … , s are observed at a fixed set of points
x1, … , xd, so that the functions can be represented as d-dimensional vectors Ti, i ¼
1, … , s. If the functions of interest are not observed at the same set of points, a
nonparametric smoothing method can be applied to address the situation.

To induce dissimilarity measure from functional ordering, we construct the set
of functional differences:
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D f ¼ df ii0 ¼ f i xð Þ � f 0i xð Þ, i, i0 ¼ 1, … , s
� �

:

We remark here that df � 0 is an element of D f . We then apply a functional

ordering to D f and obtain the induced measure of centrality of df ii0 ¼ f i xð Þ � f 0i xð Þ

asMii0. Finally, the dissimilarity between f i xð Þ and f i0 xð Þ is defined as dii0 ¼ 1�Mii0,

and this forms the dissimilarity matrix of f i
� �s

i¼1
. Such an ordering can take the

form of any functional depth notions or rankings in the literature, such as the band
depth and modified band depth [8], the simplicial band depth [9], the spatial
functional depth [11], or the curve depth [12]. These notions naturally give equal
treatment to the variations at each design point, compared with the norm-based
methods such as L1 or L2 distances.

After a dissimilarity matrix is established, the partitioning around medoids
procedure can be used to determine the given number of clusters. This produces a
family of clustering algorithms that depends on the choice of the functional
ordering.

In the following, we will discuss the possible choices of functional ordering.
First, we assume functional orderings, which take different sources of the data
variability equally. We call such ordering combined functional ordering. Such an
approach is useful when the investigator wants to join different information about
the data and combine them in one universal procedure. Second, we review several
functional orderings which satisfy the intrinsic graphical interpretation.

Our proposed procedure then consists of the following steps:

1.Choose the appropriate data sources (e.g., raw data, derivative and second
derivative)

2.Choose the functional ordering, which allows for intrinsic graphical
interpretation and which gives the same weight to every chosen source (e.g.,
the studentized maximum ordering, the area rank ordering).

3.Compute the dissimilarity matrix

4.Apply partitioning around medoids

5.Plot the resulted clusters together with their central region with intrinsic
graphical interpretation.

2.2 Combined functional ordering

We consider now functions Ti xð Þ, i ¼ 1, … , s0 and specify their combined
functional ordering. Various perspectives, such as different magnitudes and
different shapes of the functions, can be used to order the functions. Here we
provide a general method to combine these different perspectives in an equal
manner. As suggested by [13], data transformation is an effective method to
convert different types of variation into types that are easy to handle by the
functional depth. Hence, various transformations could be applied to the raw
functions to obtain the transformed data sets of interest, such as V1, … ,Vk. These
transformations are computed in the same fixed set of points x1, … , xd; for instance,
shifting each curve to zero means eliminates the magnitude variation, normalizing
the centered curves by their L2 norms, respectively, to extract pure shape informa-
tion. In the case of multivariate functional data, each component of the data and
their transformation could be treated similarly. Also, the covariance function
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between the components can be added to take into account the dependence
structure.

We denote with Vk Tij

� �

the resultant curves of Tij via the transformation Vk,
and we can express the long vector as:

Ti ¼ V1 Ti1ð Þ, … ,V1 Tidð Þ, … ,Vk Ti1ð Þ, … ,Vk Tidð Þð Þ, i ¼ 1, … , s0 (1)

We can then apply to them the corresponding ordering and hence construct the
dissimilarity matrix. Note that each of the orderings to be introduced considers each
element equally by ranking or scaling, so the desired perspectives of ordering are
considered and treated equally in such a combined ordering. To enhance the inter-
pretability of the clustering results, we focus only on the notions that satisfy the
intrinsic graphical interpretation.

2.3 Functional ordering with intrinsic graphical interpretation

The following definition specifies the properties of the global envelope that has an
intrinsic graphical interpretation with respect to an ordering. This definition was
already used in [10] to define global envelope tests and central regions with graph-
ical interpretation.

Definition 1: Assume a general ordering ≺ of the vectors Ti, i ¼ 1, … , s0, that is
induced by a univariate measure Mi. That is, Mi ≥M j iff Ti ≺T j, which means that
Ti is less extreme or as extreme as T j. (The smaller the measure Mi, the more

extreme Ti.) The 100 1� αð Þ% global envelope T
αð Þ
low j,T

αð Þ
upp j

h i

has intrinsic graphical

interpretation (IGI) with respect to the ordering ≺ if:

1.m αð Þ ∈ℝ is the largest of the Mi such that the number of those i for which

Mi <m αð Þ is less than or equal to αs0;

2.Tij <T αð Þ
low j or Tij >T αð Þ

upp j for some j ¼ 1, … , d iff Mi <m αð Þ for every i ¼ 1, … , s0;

3.T αð Þ
low j ≤Tij ≤T αð Þ

upp j for all j ¼ 1, … , d iff Mi ≥m αð Þ for every i ¼ 1, … , s0.

Let us call the ordering with intrinsic graphical interpretation such ordering, for
which exists a global envelope with IGI with respect to this ordering. Remark here
that m αð Þ is not exactly the α quantile of Mi and that points 2 and 3 are equivalent.

We kept points 2 and 3 to show the interpretability of the IGI. The simple ordering

criterion based on L
∞
distance, Mi ¼ max j∣Tij � T:j∣, clearly satisfies such a prop-

erty, but it does not account for the changes in the marginal distribution of T:j for
different values of j [14, 15]. To address this problem, Myllymäki et al. [14] pro-
posed studentized and directional quantile scaling of the maximum ordering, which
also satisfies IGI. Furthermore, [15, 16] simultaneously defined extreme rank length
ordering, which is based on the number of the most extreme pointwise ranks and
satisfies IGI. Finally, [10] extended this family with continuous rank ordering,
which is based on the continuous extension of pointwise ranking, and area rank
ordering, which is based on the area with the most extreme continuous ranks. To
the best of our knowledge, no other functional (respective multivariate) orderings
satisfy IGI.

The definitions of all previously mentioned orderings are given in [10]. For the
sake of completeness, we provide here a short list of these definitions.
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2.3.1 Extreme rank length ordering

Let r1j, r2j, … , rs0j be the raw ranks of T1j,T2j, … ,Ts0j, such that the smallest Tij

has rank 1. In the case of ties, the raw ranks are averaged. The two-sided pointwise
ranks are then calculated as Rij ¼ min rij, s0 þ 1� rij

� �

. Consider now the vectors of

pointwise ordered ranks Ri ¼ Ri 1½ �,Ri 2½ �, … ,Ri d½ �

� �

, where Ri 1½ �, … ,Ri d½ �

� �

¼

Ri1, … ,Ridf g and Ri k½ � ≤Ri k0½ � whenever k≤ k0. The extreme rank length measure of

the vectors Ri is equal to:

Ei ¼
1

s0

X

s0

i0¼1

Ri0 ≺Rið Þ (2)

where

R0
i ≺Ri ⇔∃n≤ d : Ri0 k½ � ¼ Ri k½ �∀k< n, Ri0 n½ � <Ri n½ �:

The division by s0 leads to normalized ranks that obtain values between 0 and 1.
Consequently, the ERL measure corresponds to the extremal depth as defined
in [16].

Let eα be defined according to point 1 of Definition 2.3, and let Iα ¼

i∈ 1, … , s0 : Ei ≥ e αð Þ

� �

be the index set of vectors less extreme than or as extreme as

eα. Then, the 100 1� αð Þ% global extreme rank length envelope (or global extreme
rank length central region) induced by Ei is:

T αð Þ
lowk ¼ min

i∈ Iα
Tik and T αð Þ

uppk ¼ max
i∈ Iα

Tik fork ¼ 1, … , d: (3)

2.3.2 Global continuous rank ordering

The continuous rank measure is:

Ci ¼ min
j¼1, … d

cij= s0=2d e,

where cij are the pointwise continuous ranks defined as:

cij ¼
X

i0
1 Ti0j >Tij

� �

þ
T iþ1½ �j � Tij

T iþ1½ �j � T i�1½ �j
for i : Tij 6¼ max

i0
Ti0j

andTij >median Tij

� �

,

cij ¼ exp �
Tij � T i�1½ �j

T i�1½ �j � min
i

Tij

0

@

1

A for i : Tij ¼ max
i0

Ti0j,

cij ¼
X

i0
1 Ti0j <Tij

� �

þ
Tij � T i�1½ �j

T iþ1½ �j � T i�1½ �j
for i : Tij 6¼ min

i0
Ti0j

andTij <median Tij

� �

,

cij ¼ exp �
T iþ1½ �j � Tij

max
i

Tij � T iþ1½ �j

0

@

1

A for i : Tij ¼ min
i0

Ti0j:

cij ¼ Rij for Tij ¼ median Tij

� �

,
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Here, T i�1½ �j and T iþ1½ �j denote the values of the functions, which are in a j-th

element below and above Tij, respectively (i.e., T i�1½ �j ¼ max i0:Ti0 j <Tij
Ti0j and

T iþ1½ �j ¼ min i0:Ti0 j >Tij
Ti0j).

The 100 1� αð Þ% global continuous rank envelope induced by Ci is constructed
in the same manner as the global extreme rank length envelope.

2.3.3 Global area rank ordering

The area rank measure:

Ai ¼
1

s0=2d ed

X

j

min Ri, cij
� �

,

where.
Ri ¼ min j Rij

� �

and Rij are two-sided pointwise ranks defined above. The
100 1� αð Þ% global area rank envelope induced by Ai is constructed in a manner
similar to that of the global extreme rank length envelope.

2.3.4 Studentized maximum ordering

Because we construct a symmetric set of functions to compute the dissimilarity
matrix, here we use only the symmetric studentized ordering. The above orderings
are based on the whole distributions of T�j, j ¼ 1, … , d. It is also possible to approx-
imate the distribution from a few sample characteristics. The studentized maximum
ordering approximates the distribution of T�j, j ¼ 1, … , d by the sample mean T0j

and sample standard deviation sd T�j

� �

. The studentized measure is:

Si ¼ max
j

Tij � T0j

sd T�j

� �

�

�

�

�

�

�

�

�

�

�

: (4)

The 100 1� αð Þ% global studentized envelope induced by Si is defined by:

T lð Þ
low j ¼ T0j � sαsd T�j

� �

and T lð Þ
upp j ¼ T0j þ sαsd T�j

� �

for j ¼ 1, … , d, (5)

where sα is taken according to point 1 of IGI.

2.4 Dissimilarity matrix based on the combined ordering

In this section, we validate the dissimilarity matrix construction defined in
Section 2.1 for studentized measure by showing that dii0 ¼ Sii0 is a metric and for
global area rank measure by showing that dii0 ¼ 1� Aii0 is a semi-metric. The latter
means that the dii0 ¼ 1� Aii0 satisfies all properties of metric, except for the trian-
gular inequality, which is violated in specific cases. The metric properties are usu-
ally required when choosing the distance measure, but it is not necessary for the
partitioning around medoids algorithm, which is used to calculate the clusters
afterward. Furthermore, our simulation study demonstrates that these specific
cases, where the triangular inequality of global area rank measure is not satisfied,
are not realized by functions appearing in real data studies. Furthermore, we pro-
vide a thorough check of satisfaction of the triangular inequality for global area rank
measure in our implementation of the algorithm. Thus in practice, a user can check
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this feature of the metric for particular data of interest. For any dataset considered
by us in simulation and data studies, the triangular inequality was satisfied.

Theorem 1.1: Define the distance between Ti and Ti0 as:

dii0 ¼ 1� Aii0 ,

where Aii0 is the global area rank measure of Ti � Ti0 on D f . Then dii0 satisfies for

any i, i0:

1.Non-negativity: dii0 ≥0;

2.Identity of indiscernibles: dii0 ¼ 0 iff Ti ¼ Ti0 ;

3.Symmetry: dii0 ¼ di0i.

Proof:
Non-negativity: For the set D f , there are s

0 curves. The set D f contains a zero

element, which is the deepest point of D f . I.e. 0 is median in every coordinate. For the

area ordering of these curves, we have that two-sided pointwise ranks of curve Ti � Ti0 is
Rii0j ≤ s0=2d e and Rii0 ¼ min j Rii01, … ,Rii0df g≤ s0=2d e. Hence, we have Aii0 ≤ 1, i.e.,

dii0 ≥0.
Identity of indiscernibles: dii0 ¼ 0⇔Aii0 ¼ 1⇔ Rii0j ¼ s0=2d e for every j = 1,… , d

⇔ Ti � Ti0 is the deepest curve of D f ⇔ Ti ¼ Ti0 .

Symmetry: This property holds implicitely due to the symmetry of D f .

The fourth property of the metric, i.e.

4.Triangle inequality: dii0 þ di0k ≥ dik, for any i, i0 and k,

is not satisfied when Ti � ti for every i. The results of our simulation study
suggest that if the system of data provides enough crossings of functions, then
the triangle inequality is satisfied.

Theorem 1.2: Define the distance between Ti and Ti0 as:

dii0 ¼ Sii0 ,

where Sii0 is the studentized measure of Ti � Ti0 on D f . Then dii0 is a valid metric.

Proof:
The first three properties obviously hold for the studentized difference distance. We

prove the triangle inequality for dii0 . Note that df � 0 is an element of D f , and hence the

sample mean T0j ¼ 0 for j ¼ 1, … , d. Lets denote the sample standard deviation of the

j-th element of D f by sd D�j

� �

. Then, we have:

dik ¼ max
j

Tij � Tkj � 0

sd D�j

� �

�

�

�

�

�

�

�

�

�

�

≤ max
j

Tij � Ti0j

sd D�j

� �

�

�

�

�

�

�

�

�

�

�

þ
Ti0j � Tkj

sd D�j

� �

�

�

�

�

�

�

�

�

�

�

( )

≤ max
j

Tij � Ti0j

sd D�j

� �

�

�

�

�

�

�

�

�

�

�

þ max
j

Ti0j � Tkj

sd D�j

� �

�

�

�

�

�

�

�

�

�

�

¼ dii0 þ di0k:

This completes the proof.
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3. Simulation study

This section describes the intensive simulation studies we conducted to assess
the empirical performance of the proposed clustering methods and compares this
performance with those of the existing methods when the clusters demonstrate
differences from various perspectives. For comparison, we also consider two clus-
tering methods for functional data: the k-means methods available in the R package
fda.usc [17] and the model-based clustering methods proposed by [18], which are
available in the R package fdapace [19]. For the fairness of comparison, the stan-
dardization procedure is applied to normalize the empirical marginal distributions
as described in Section 1 so that they can be combined equally.

Specifically, we consider the following five models on t∈ 0, 1½ �:

• Class 1: X Tð Þ ¼ 2T þ e Tð Þ;

• Class 2: X Tð Þ ¼ 2� 2T þ e Tð Þ;

• Class 3: X Tð Þ ¼ 2 1 T >Uð Þ þ e Tð Þ;

• Class 4: X Tð Þ ¼ 1:5þ 2 1 T >Uð Þ þ e Tð Þ;

• Class 5: X Tð Þ ¼ 3� 2:5T þ e Tð Þ.

Here, U follows a uniform distribution on 0:5, 0:6½ �, and e Tð Þ is generated from a
Gaussian process with zero mean and covariance function γ s, tð Þ ¼

σ2 exp �ϕ t� sj jνf g, where σ2 ¼ 0:2, ϕ ¼ 2 and ν ¼ 1.
In addition, to assess the robustness of the proposed methods, we also consider

another situation by replacing e Tð Þ with a multivariate-t distribution with two
degrees of freedom, t2 μ,Σð Þ, where μ ¼ 0, and Σ is generated with γ s, tð Þ. The heavy

Figure 1.
Top panel: Realizations of two settings. Bottom panel: Adjusted Rand index of four clustering methods with the
two settings.
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tail property of the marginal distribution allows the data to be viewed as contami-
nated by some outliers, which are commonly encountered in practice. We generate
100 samples for each of the five classes with 20 equally spaced design points; as a
result, 500 curves are clustered into five groups. The top panel of Figure 1 demon-
strates one realization of the simulated samples under two settings. To account for
both the magnitude and the shape variation among clusters, we make two

Figure 2.
Clusters for setting 1 visualized on raw curves (top panel) and normalized curves (bottom panel). In each
panel, from top to bottom: Area, studentized, k-means, and model based.
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transformations suggested by [13] to the raw curves, shifting the curves so that each
has a zero mean and then normalizing the centered curves by their L2 norm. We
then bind the three components together as long vectors for clustering. For each
run, we use the true number of clusters for all four methods and calculate the
adjusted Rand index [20] to compare their clustering results. We repeat the
procedure 100 times, and the results are reported in the bottom panel of Figure 1.

Figure 3.
Clusters setting 2 visualized on raw curves (top panel) and normalized curves (bottom panel). In each panel,
from top to bottom: Area, studentized, k-means, and model based.

10
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Note that in all cases of the simulation study, the triangular inequality of the area
measure was satisfied for all combinations of curves.

Under the first setting, data are generated from a Gaussian process. With regard
to the adjusted Rand index, the four methods are quite comparable but the proposed
methods are slightly better than the other two. However, our methods recover
much better the characteristics of the true clusters; see Figure 2, which illustrates
one clustering result for each of the four methods with both raw curves and nor-
malized curves. In contrast, the k-means method merges classes 2 and 5, and the
model-based method merges classes 1 and 3.

As for the second setting, in which the marginal distribution becomes heavy-
tailed, our methods obtain more robust clustering results than the other two
methods and reach higher adjusted Rand indexes (Figure 3). The model-based
method relies heavily on the Gaussian assumption and thus shows less satisfactory
behavior. Again, our methods still accurately recover the patterns of each cluster,
whereas the other two methods completely fail to reveal reasonable group struc-
tures. Specifically, both k-means and the model-based methods suggest a cluster
with only a few curves, which indicates a clear misinterpretation of the situation.

4. Clustering of insurance penetration

Insurance consumption indicates the equilibrium of supply and demand of
insurance products. For a given insurance market, the collection of total (Life and
non-Life) yearly insurance consumption observations helps to explain the variation
of insurance market development over time. A common measure of insurance
consumption, and hence of insurance development, is insurance penetration (IP),
defined as the ratio of insurance premiums on GDP. The pattern of the develop-
ment variation is evident when one views the IP as a function of time, known as the
IP curve.

In their effort to promote the European single insurance market through the
integration process, European policymakers put emphasis on homogeneity and
convergence aspects of development patterns of European insurance markets. That
is equivalent to saying that they are interested in identifying a single group (cluster)
of countries whose IP curves exhibit similarity in magnitude and shape. The clus-
tering of European countries in terms of their IP curves provides a method for
testing the magnitude and shape similarity of the insurance industry in Europe. In
particular, functional clustering methods are appropriate for our data, given the
time dependency in the observations.

IP curves (time-series data on IP) originated from the Swiss Re (2016) Database
were analyzed by the proposed functional clustering (FC) method based on Area
measure. The exploration concentrated on the IP curves of 34 European countries
(EU and non-EU members) observed over 13 years between 2004 and 2016, that is,
before, during, and post-financial and sovereign debt crises.

The FC method extracts the partitioning information from both the magnitude
and the shape of IP curves. While the magnitude is captured in the IP curves, the
shape is not straightforward to be detected. To this end, we performed two types of
transformations on the raw IP curves to reveal their shape. First, the raw IP curves
were centred relative to each country’s average IP rate to mitigate the widely
different magnitudes in the IP data. After this, the resulting centred IP curves were
then normalized with their L2 norms to a unit norm (to have a length of 1). These
transformations are proposed to extract shape information by [13] By normalizing
the centred IP curves in this manner, we eliminate their amplitude signal, while we
are only left with the shape signal of the raw IP curves.
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For the FC method to run properly, the most suitable number of clusters must be
determined. We chose 6 clusters even if the median value of all methods presented
in the NBclust library of the R software is 5. Our choice is justified as it better serves
the analysis and the characterization of the produced clusters.

Given the IP curves of each cluster, the FC method also provides a graphical
representation, through the central regions, of the deepest central IP curves within
each cluster. We are interested in the so-called marginal plot style approach of the
clustering solution. This means that the central regions are computed separately for
magnitude and shape to better express each cluster component’s shape. Remark
here that the proposed method also allows showing the central region with respect
to the combined ordering with respect to the magnitude and shape together. The
appearance of clusters is demonstrated by the deepest IP curve (solid curve) that
corresponds to the medoid IP curve and the envelope of 50% central IP curves (gray
area) that reflects the band where 50% of the IP curves surrounding the deepest are
varied. See Figures 4 and 5. Note that the fraction of combinations of countries
satisfying the triangular inequality with Area measure was 1 with respect to all
combinations. With this visualization, we can describe the clusters that are pro-
duced by the FC method as follows:

Cluster 1: Developed insurance markets with middle-to-high IP levels and
decreasing IP patterns in the whole period. This cluster includes Belgium, France,
Ireland, Austria*, the UK, Portugal, Switzerland, Malta, Slovakia, and Germany.
Cluster 2: Developing insurance markets with low-to-middle IP level and increasing
IP pattern until 2010 and varying (decreasing) thereafter. This cluster of countries
consists of Cyprus*, Turkey, Greece, and Luxemburg. Cluster 3: Developed insur-
ance markets with middle-to-high IP levels and increasing IP patterns in the whole
period. This cluster unites Finland*, Italy, Spain, Denmark, and the Netherlands.
Cluster 4: Developing insurance markets with low-to-middle IP levels and increas-
ing IP pattern until 2009 and decreasing thereafter. The within-cluster countries are
Croatia*, Slovenia, Iceland, the Czech Republic, Sweden, and Romania. Cluster 5:
Developing insurance markets with low-to-middle IP levels and almost quadratic IP

Figure 4.
Clustering results of the IP curves: Magnitude plot.
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pattern and vertex point in 2008. In this cluster, we see countries such as Russia*,
Ukraine, and Norway. Cluster 6: Least Developed insurance markets with low IP
level and increasing IP pattern followed by a decreasing one initiated in 2007, right
on the start of the financial crisis. Members of this cluster are countries such as
Lithuania*, Bulgaria, Hungary, Estonia, Serbia, and Poland. The * symbol denotes
the medoid IP curve produced by the clustering for each cluster.

The results bring to surface first the difficulty of the European insurance industry
to converge and to exhibit homogeneity among national insurance markets during
the whole period. A fact that otherwise could lead to the building of single European
insurance industry. Second and final, the differential behavior of European insurance
markets under different phases of the macroeconomic environment. For instance,
Least Developed non-EU insurance markets faced shrink challenges, especially dur-
ing and after the financial and sovereign debt crises period. The same challenge with a
time lag of approximately two years was obvious for some Developing insurance
markets. Russia and Ukraine had their insurance markets running in parallel and
separated from the other two Developing insurance markets to follow their own
smile-shaped development pattern. A slight improvement in insurance activity was
also observed for the remaining Developing insurance markets that lasted almost
until the end of the sovereign debt crisis in 2011. However, this improvement was
offset by their unstable development pattern thereafter. Over the past years, the
overall development of Developed insurance markets has decreased, due to a con-
traction in life insurance business. However, few of them managed to succeed in an
increasing pattern with varying IP rate changes over the years.

5. Clustering of population growth data

Over the last century, the world has seen rapid population growth. Particularly,
the global population more than quadrupled. The magnitude of the population rate
of change from one year to another is found by the fold change ratio (FCR). Fold

Figure 5.
Clustering results of the IP curves: Shape plot.

13

A New Functional Clustering Method with Combined Dissimilarity Sources and Graphical…
DOI: http://dx.doi.org/10.5772/intechopen.100124



change is calculated simply as the ratio of the year-end over the year-start popula-
tion of a certain country. We refer to the evolution of FCR over the course of time as
the population growth rate (PGF) curve. In this example, our objective is to find
clusters of world countries in which their PGF curves share similar magnitude and
shape properties. We use the output of the FC method based on Area measure for
clustering world countries. This output will also give a hint towards the distribution
of the world population and provide the trends or the dynamics that are defining
our world, such that policymakers can set sustainable development goals for our
societies.

Thus, we consider the world population data (United Nations 2016), which was
analyzed by [21]. This dataset includes estimates of the total population (both
sexes) in 233 countries, areas, or regions in July 1950–2015. Motivated by these
estimates and the arguments needed for the execution of the FC method, we follow
three steps. In the first step, we perform the preprocessing of the dataset by
selecting those countries with populations of more than one million in July 1950. In
total, 134 countries are included in our analysis. For each of these countries, we
collect 65 data points that correspond to the FCR of each year interval and propose
connecting them to make the PGF curve. In the second step, we derive the shape
information from the L2 normalization of the shifted PGF curves towards their
center. This particular step is the one that provides the set of PGF pattern (PGFP)
curves. In the last step, we specify the input argument for the number of clusters
which is required by FC method to start. The optimal number of clusters was
arrived at by calculation of the median value of all methods presented in NBclust
library of the R software. Based on the result of this calculation, the chosen number
of clusters was three.

Figure 6 satisfies the marginal plot style approach followed in our case studies
by presenting the output of the FC method in a two-panel display. The first panel is
dedicated to magnitude clustering (it helps discern broad trends in PGF curves),
and the second to the shape clustering (it helps identify patterns of pace for popu-
lation rate of change). The first plot of each panel is the plot of the median curves of
the clusters. Remark that the fraction of combinations of countries satisfying the
triangular inequality with Area measure was 1 with respect to all combinations.

Next, we present both the derived clusters and their characterization, which is
based on the United Nations (UN) geographical region and classification of econo-
mies. For instance, we see that the population growth rates in Cluster 1 appear to
follow an increasing trend or at least maintain a certain degree of stability because
of a natural increase and migration. Most countries in this cluster have a developing
economy and are mainly located in Sub-Saharan Africa. However, three European
countries (Ireland, Norway and Spain) with developed economies are also members
of this cluster of countries. In contrast, the other two characteristic population
growth trends that are present in both Clusters 2 and 3 paint a picture of a stagnat-
ing or shrinking population in the future, the only difference being that the popu-
lation in Cluster 3 has a faster speed of shrinkage than in Cluster 2. The most
populated cluster (that is Cluster 2 with 64 curves) is mostly associated with
another set of developing economies (such as those of Brazil, China and Singapore)
located, this time, in Latin America and the Caribbean along with East Asia and
Pacific. Additionally, the only developed economy that appears to reside in this
cluster is that of the United States, while few economies in transition that belong
to the Commonwealth of Independent States (such as those of Azerbaijan,
Kazakhstan) make their presence visible for a first time.

Finally, Cluster 3 has united mostly the developed economies of Europe and East
Asia and Pacific along with the economies in transition of South-Eastern Europe
(Albania, Serbia and North Macedonia). Moreover, the population of few
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developing economies that are located, for example, at Cuba, Jamaica, Puerto Rico,
Ghana and Mozambique, have distinguished themselves from the vast majority of
developing economies in Cluster 1 or Cluster 2 by following the population behavior
of developed economies.

In conclusion, developing economies and economies in transition are split
between two clusters, while the majority of the developed economies belong to one
cluster. Based on the characterization of these clusters, it is understood that coun-
tries with developing economies experience population growth (or at least popula-
tion stability). However, the more the economy of a country is developed, the more

Figure 6.
Clustering results for the population curves. Top panel: Magnitude plot; bottom panel: Shape plot.
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its population growth change decreases. This decrease, in certain cases, might have
even a severe negative effect on a country’s future projected population size.
Whereas, in some other cases, the effect of this decrease is smoother without
forcing the population size to reach record lows.

6. Multivariate clustering of insurance penetration with ratio of life and
total insurance

The insurance industry generates a large volume of multivariate functional data
from the simultaneously obtained measurements on variables related to life, non-
life, and total insurance activities. In our case of interest, two main country-specific
variables that include data on premiums are available. The first is the total IP (TIP)
that represents the development of total activities. While the second is the R ratio of
life IP to TIP that represents the development of the share of life premiums in total
premiums.

Since the insurance industry of a country can be represented by the bivariate vari-
ables of TIP and R, it is important to take into account the dependence between them.
We compute a variable that describes this dependence through the covariance function:

Cov tð Þ ¼ sign IP tð Þ �m1 tð Þð Þ R tð Þ �m2 tð Þð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∣ IP tð Þ �m1 tð Þð Þ R tð Þ �m2 tð Þð Þ∣
p

,

where m1 tð Þ is the mean IP over all countries and m2 tð Þ is the mean R over all
countries and represents the development of the link between total and life share
dynamics.

There is no doubt that the development of total activities is different from
that of life share. Nevertheless, it may be assumed that a common development
coordinates these differential developments of different insurance variables.
Then, it is of great interest to identify groups of insurance markets with similar
joint development patterns. With this consideration in mind, we aim to discover
whether the European insurance market is homogeneous when national insurance
developments are jointly differential by developing their total activities and their
life share.

We obtained again insurance data from Swiss Re (2016) database and for the
same European (EU and non-EU) countries as in univariate case. In particular, we
employ a dataset of our main variables for 34 European countries sampled at annual
frequency between 2004 and 2016. That is to say that the data for each variable can
be viewed as curves. Yet, except for the curves related to TIP and R variables, we
also included the computed curves for the Cov variable in our dataset and ended up
with a set of three-dimensional vectors of curves.

Viewing the curves for each variable as a set of curves, a three-component list of
curve sets is constructed to serve as an input for the FC method. This time, the
optimal number of clusters is three and consistent with the median value of all
methods presented in the NBclust library of the R software. Our proposed method
concentrates on visualizing, in the marginal plot style approach, clusters of multi-
variate insurance functional data with regard to their magnitudes and covariance
function (Figures 7–9).

The clustering results are summarized as follows:

Cluster 1: Countries of high TIP and high R with no correlation whatsoever
between the two variables throughout the study period.

Cluster 2: Countries of high TIP and high R with a positive correlation between
the two variables throughout the study period.
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Cluster 3: Countries of low TIP and low R with no correlation whatsoever
between the two variables throughout the study period.

Additionally, the FC method suggests that the total and life share developments
in Cluster 1 and Cluster 3 have independent paths since curves for Cov variable
almost coincide with the x-axis of Figure 9. Simultaneously, it succeeded not to
clustered them together due to different magnitude levels. On the contrary, in

Figure 8.
Clustering results for bivariate curves of TIP and R: R plots.

Figure 7.
Clustering results for bivariate curves of TIP and R: TIP plots.
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Cluster 2, the curves for Cov variable are positioned above x-axis, which means that
total and life share are dependent functions (positively correlated) over the years.

The functional cluster analysis revealed some differences in the dynamics of
insurance markets in Europe. The clustering results clearly reject the hypothesis on
the homogeneity of the European insurance market. Europe continues in a two-
speed insurance market, with countries with high development and independent
paths of total and life insurance business, and others with low. For both speed
markets, detecting an increasing pattern in total insurance business does not guar-
antee that the life premiums will also follow at the same time the same pattern. Any
similarity in their patterns could be explained by socio, economic, demographic, or
other factors and not by the total business pattern itself. However, there is another
high-speed market where the increase of total insurance business in the economy is
an additional factor that accelerates the development of life business share.

7. Conclusions

In this study, we introduce a new class of functional cluster analysis methods
based on functional orderings.We intended to work with methods that allow intrinsic
graphical interpretation to obtain a natural interpretation of clusters via their central
regions. Therefore, we propose the use of a studentized measure that forms a metric
on the set of functional differences. Also, We suggest the use of the area measure,
which orders the functions according to the area of the most extreme continuous rank
and considers the entire distribution of the functions. This measure does not form a
metric on any set of functions, but the simulation study results and the real data study
suggest that it is a metric on any real data set of functions. The check for the
satisfaction of the triangular inequality is provided for the given set of functions.

This study’s primary aim is to introduce methods that combine the various
functional information sources equally. It is possible to study clustering while
showing equal concern for both magnitude and shape, as shown in the first and

Figure 9.
Clustering results for bivariate curves of TIP and R: Covariance plots.
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second data examples. In other words, it is possible to study the clustering of
multivariate functions when the marginal functions are taken equally. It is also
possible to add to the study term, which summarizes the covariance between the
marginals of the multivariate function, as shown in the third data example.

The simulation study suggests that the proposed method is robust and more
powerful than studied alternatives that give equal treatment to various sources. The
studied alternatives are the K-means method, with pre-standardization of every
coordinate by its mean and variance, and the model-based method, which assumes
a normal distribution of data and considers marginals means, variances, and the
covariance function.

Our proposed methods consider the covariance structure of the functional data
via the ordering of the entire functional differences. Our proposed methods are also
nonparametric and, as such, have no model requirement. Our simulation study also
showed that our proposed methods are quite robust to heavy-tailed functions,
which can be considered as a type of functional cluster outlier. The data studies
show that our methods can cluster the functions with respect to magnitude and
shape and that it provides a sensible graphical interpretation of the resulting clus-
ters. The third example shows that the clusters can be also constructed with respect
to the covariance of the marginals in the multivariate function. This study does not
examine methods to choose the number of clusters in an optimal manner, and this
problem is left to the user’s choice or further development.
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