
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Chapter

Middleware Solutions for the
Internet of Things: A Survey
Mehdia Ajana El Khaddar

Abstract

The Internet of Things (IoT), along with its wider variants including numer-
ous technologies, things, and people: the Internet of Everything (IoE) and the
Internet of Nano Things (IoNT), are considered as part of the Internet of the future
and ubiquitous computing allowing the communication among billions of smart
devices and objects, and have recently drawn a very significant research attention.
In these approaches, there are varieties of heterogeneous devices empowered by
new capabilities and interacting with each other to achieve specific applications in
different domains. A middleware layer is therefore required to abstract the physical
layer details of the smart IoT devices and ease the complex and challenging task
of developing multiple backend applications. In this chapter, an overview of IoT
technologies, architecture, and main applications is given first and then followed by
a comprehensive survey on the most recently used and proposed middleware solu-
tions designed for IoT networks. In addition, open issues in IoT middleware design
and future works in the field of middleware development are highlighted.

Keywords: Internet of Things (IoT), WSNs, radio frequency identification (RFID),
virtual machine, events, services, middleware architecture, context awareness,
ubiquitous computing, machine-to-machine (M2M) communication

1. Introduction

Nowadays, various new generation-connected objects or things are invading our
daily lives including sensors, radio frequency identification (RFID) tags, smartphones,
wearables, and actuators among others, due to the emergence of new technologies.
With the development of cloud computing and wireless technologies, and the emer-
gence of new connected devices at a decreasing price, the IoT market is expected to
grow rapidly fostering the development of applications in different domains, including
but not limited to healthcare, manufacturing, logistics and transportation, traffic
management, home automation, smart cities, smart grids, smart agriculture, etc. [1].
These applications will use the raw data generated by the different connected things/
objects and provide new services in the targeted domains [2]. The Global System for
Mobile Communications Association (GSMA) forecasts that “by 2025, the IoT connec-
tions will reach almost 25 billion globally” [3]. These predictions are therefore high-
lighting the role of IoT in providing new ways of communication over the Internet.

The IoT network is considered a heterogeneous network with a complex structure,
connecting a wide range of devices using different evolving technologies such as
Bluetooth, ZigBee, Wi-Fi, 3G, 4G, 5G. The ubiquitous computing environment of IoT
connecting heterogeneous devices, technologies, and applications, and generating a

Middleware Architecture

2

large number of events continuously brings in important and new challenges, such as
interoperability, security, confidentiality, privacy, and energy-efficient operations [4].
For example, location tracking by the IoT devices may be allowed by some people to get
personalized services; however, it may violate their privacy. The middleware, which
is a software application, can hide the things details from the applications by commu-
nicating with the heterogeneous connected devices/things, filtering the raw captured
data, and processing them before dissemination to the connected applications, and
therefore easing the backend applications’ development and offering multiple com-
mon services [5]. The middleware can also deal with the interoperability, security, and
privacy issues facing the IoT. The IoT middleware development is an active research
area; there exist many middleware solutions addressing the IoT environment require-
ments in terms of context awareness, scalability, interoperability across heterogeneous
things, device management, data storage and management, security, privacy, and
service deployment. A major challenge faced by application developers today is finding
the most appropriate IoT middleware solution in terms of the provided functionalities
that should meet the application requirements and the underlying used technologies.
Therefore, the existing works on IoT middleware architecture need to be analyzed to
address their existing technical challenges, issues, and gaps in this domain and suggest
further improvements. This chapter provides a detailed overview of existing middle-
ware solutions for IoT and is organized as follows: Section 2 provides background
about IoT characteristics, architecture, and applications, and gives an overview of the
IoT middleware general architecture. Section 3 presents the IoT middleware design
considerations and requirements. Section 4 provides a comprehensive review of
currently existing research work in designing IoT middleware platforms. Section 5
discusses criteria for choosing the right platform according to the application require-
ments, along with some open issues and challenges, and the last Section 6 provides
some concluding comments recommending future research directions in this area.

2. Background

2.1 IoT architecture and applications

The Internet of Things (IoT) consists of two words: The “Internet” is defined
“a network of networks and a global system of interconnected computer networks
that use TCP/IP as a standard Internet Protocol (IP) to connect millions of users
and multiple private, public, academic, business, and government networks,” and
“Things” include “any real-world object/physical element such as home appliances,
clothes, smartphones, etc. or living things like people, animals, or plants” [6].
The International Telecommunication Union (ITU) considers IoT as “a worldwide
network of interconnected objects, allowing anything and anyone to be connected,
anytime and anyplace using any network and any service” [7]. Therefore, in IoT,
many heterogeneous devices will be connected to the Internet and will provide a
large volume of data and even services. The major components of IoT include wire-
less sensors and actuators networks, machine-to-machine (M2M) communications,
and RFID/near-field communication (NFC) as shown in Figure 1.

2.1.1 IoT infrastructure characteristics

2.1.1.1 Heterogeneous intelligent devices

In IoT, heterogeneous devices in terms of features, capacities, sensor comput-
ing natures (high end, middle end, and low end), costs, embedded intelligence

3

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

(adapting to the context, environment, and circumstances), and from different
vendors are expected to communicate and exchange information [8]. Also, new
types of devices are emerging continuously in the future as new technologies are
developed [8]. Figure 2 shows the main technologies used in IoT.

2.1.1.2 Context and location awareness

The different connected devices/things capture large volumes of data that need
further processing; it should be filtered, interpreted, and put in a context to have a
meaning. Context awareness helps to make the interpretation of data easier by adding
context information to the raw data captured by the IoT things, which allows perform-
ing M2M communication that is considered a core element in an IoT environment [9].

Figure 1.
IoT major components.

Figure 2.
IoT technologies.

Middleware Architecture

4

Also, the spatial/location information about things is important to understand their
interactions with other surrounding things (e.g., objects and people) [10].

2.1.1.3 Limited resources

IoT devices including small embedded sensors, RFID tags and readers, actuators,
etc., are constrained in terms of processing, communication capacity, battery, and
memory [8]. Also, the cost of these devices may increase when their performance
increases in terms of processing, communication capacity, or the use of the battery
to power them (e.g., active RFID tags are more expensive than the passive ones [5]).

2.1.1.4 Voluminous data and a continuous generation of spontaneous events

There are trillions of connected objects that are exchanging and storing hun-
dreds of Exabytes of noisy data in IoT, and therefore forming an ultra-large-scale
network [11]. These sudden interactions among things will also continuously gener-
ate events causing network congestion [11].

2.1.1.5 Dynamic distributed infrastructure

The IoT network is considered as an ad hoc network; there is no dedicated server
for managing the resources of devices/things, and devices can join or leave the
network anytime they want, or they can disconnect due to battery power shortage
or connectivity problems. Cooperation between nodes will be needed to keep an
active and stable network, and support multiple applications’ development [11].
Therefore, the IoT network is considered a globally distributed network like the
Internet and a local one within an application domain/context.

2.1.2 IoT applications characteristics

2.1.2.1 Diverse application domains

The IoT applications can be developed to cater to the needs of different domains
and environments, having different requirements and deployment architectures,
such as logistics and supply chain management, healthcare, environmental moni-
toring, smart home/buildings, smart agriculture [6]. Figure 3 gives an overview of
the potential IoT applications.

2.1.2.2 Real-time delivery of data and services

IoT applications in some specific domains such as transportations and healthcare
need to communicate real-time data and deliver on-time services to avoid critical
situations [6].

2.1.2.3 Security and privacy concerns

In the IoT network, the security of applications and communications among
the different nodes should be considered, along with the privacy of people’s
captured data such as location, daily activities, buying habits [12]. An efficient
and scalable security mechanism should be implemented considering the ad hoc
nature of the IoT network, and also, the privacy issues should be considered not
to prohibit the deployment of applications that violate citizen’s privacy by the
law [12].

5

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

2.2 IoT middleware platform general architecture

Given the IoT infrastructure and applications’ characteristics stated above, and
based on my previous research work done on middleware architecture for RFID
[5], context aware, and ubiquitous computing [13], an IoT middleware solution can
generally provide the following functionalities:

• Device abstraction, discovery, management, and control: It includes interop-
eration among the heterogeneous connected devices/things using different
standards. Application programming interfaces (APIs) are used for abstracting
the communication with the physical layer and also for disseminating data and
services to the different connected backend applications, hiding all details and
complexities.

• Data management and dissemination: It provides the different data preprocess-
ing functionalities, such as filtering, duplicate removal, aggregation.

• Context detection and processing

• Security, privacy, and business rules processing

• Application abstraction

The IoT middleware architecture is depicted in Figure 4. The main layers
include device abstraction and resource management layer, which handle the
interoperability and interaction with the heterogeneous devices, and manage the
low-level hardware parameters such as the used protocols, communication technol-
ogies, standards, and air interface; data management layer is responsible for storing

Figure 3.
IoT potential applications.

Middleware Architecture

6

and processing (filtering, aggregation, inference, etc.) the raw data captured by the
different devices/things; event management and context detection layer include
the application of policies and business rules requested by the applications (e.g.,
security and privacy rules); and application abstraction layer allows the communi-
cation of applications with the different devices and helps them to get the desired
processed data and generated events from the middleware.

3. IoT middleware design considerations and requirements

The role of a middleware platform is to provide a software layer shielding the
complexities of the hardware layer including the operating systems from the applica-
tions and allowing the applications’ developers to be concentrated mainly on the
requirements/problem to be solved. As described in Section 2, in the context of IoT,
there is a considerable variation in the used technologies, standards, and network
communications. We describe herein, a set of design considerations and require-
ments for a middleware to suit the IoT infrastructure and application characteristics.

3.1 Resource discovery and management

Since the IoT infrastructure is dynamic by its nature, the IoT middleware
should provide an automatic device discovery and enable the IoT heterogeneous
hardware devices (e.g., RFIDs, sensors, smartphones) to detect their neighbors in
the network and show their presence and available resources to them. In this case,
the middleware should consider the characteristics of the resource-constrained IoT
devices and be scalable in terms of the number of connected devices in the network.
The middleware should also manage the devices, monitor their resource usage,
and resolve any resource conflicts when potential and spontaneous new devices are
connected to satisfy the application requirements.

3.2 Data management, context awareness, and event management

The IoT middleware should provide data management and processing function-
alities to the backend applications; these include but are not limited to data detec-
tion and acquisition from the different connected devices/things, data preliminary

Figure 4.
IoT middleware architecture.

7

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

processing, such as filtering, duplicate removal, compression, aggregation, and data
storage. The IoT middleware should also manage the high number of generated
events in an IoT environment, such as real-time dissemination of events to the appli-
cations, event transformation based on contextual/location data, and inferences.

The IoT-middleware should provide context detection and processing for it to
adapt to smart applications requirements; it should collect context data and then
process them to generate inferences and decisions. This could be achieved by using
different techniques such as knowledge database, data mining algorithms, semantic
context aware multimodal visualization approach, and the use of optimized mes-
sage communication between the middleware users.

3.3 Scalability and adaptability

The IoT network can include a large number of connected things/devices and
provide multiple services; therefore, the IoT middleware should be scalable allow-
ing the growth of the IoT network, including the emergence of new heterogeneous
devices that could be monitored, added, or removed without any impact on exist-
ing middleware functionalities, the provision of new services/functionalities, the
addition/removal of network nodes, and the connection of multiple interesting
applications in the middleware services without complexity. The use of IPv6, loose
coupling, and virtualization are considered as useful ways for improving scalability
in middleware solutions. Also, the use of a service-oriented architecture (SOA)
makes the middleware flexible to the applications’ requirements in terms of new
services. The IoT middleware should also be dynamically adaptive to the different
circumstances and changes in the IoT environment.

3.4 Real-time data capture and services

The IoT network deals with multiple real-time/time-critical applications
requiring a timeliness delivery of processed data and services without any delay, for
example, healthcare applications; therefore, the middleware should provide real-
time services and information to these applications. In this case, the middleware
should manage the large data volumes detected from the multiple connected devices
and therefore use novel methods to detect, process, and disseminate these data to
the interested applications. The challenge of transaction handling, indexing, and
querying these data should also be handled. This could be ensured through the use
of agents, query processors, notification managers, etc.

3.5 Reliability and availability

Every component or layer in the IoT middleware should be operational including
communication, data processing, events management, technologies, devices con-
nectivity, and application management, even when failures occur. It should provide
a stable service for applications/users even at times of failure. The middleware must
also be available at all times for mission-critical applications that require a high fault
tolerance, for example, medical applications; in the case of failure, the recovery
time should be reduced to cater to the applications’ availability requirements.

3.6 Security and privacy

The IoT middleware should consider the security and privacy rules and policies
required by the connected applications. The use of context awareness in the middle-
ware can disclose some personal information about individuals such as location;

Middleware Architecture

8

therefore, it needs to protect people’s privacy using policies/rules/ontologies depending
on the applications’ specific needs [12]. Also, most of IoT middleware solutions are
evolving into the cloud, which requires more mechanisms to be put in place to deal with
the security and privacy issues, making users safe and protecting their personal data.

3.7 Ease of use and deployment

The IoT middleware should be lightweight, and easily used and deployed by the
end-users of devices or applications without any complicated setup procedures.

3.8 Distributed implementation

If the IoT infrastructure is distributed, the middleware implementation should
also be distributed, for example, when the devices, applications, and users are
located in different geographical areas.

Some of the requirements stated above are considered to be mandatory for some
applications while optional for others; for example, the real-time data capture and ser-
vices are highly required in the case of medical applications, but it is optional for other
applications that do not use timeliness information. However, the security, privacy,
and interoperability functionalities are strictly required by all types of applications.

4. Overview of existing IoT middleware solutions

Many middleware solutions, using a single design approach (e.g., service-
based, agent-based, database-based) or a hybrid one (combining different design
approaches), and providing different functionalities in many application domains
have been proposed and implemented in the IoT. These initiatives aim to offer a
standard platform used to abstract the lower-level details of the connected physical
devices and offer multiple services to the users and/or applications. In this chapter,
the existing IoT middlewares are surveyed based on their used design approach and
are grouped into six categories: service-oriented middleware, agent-based middle-
ware, event-based middleware, virtual machine-based middleware, database-
oriented middleware, and application-oriented middleware. A comparison of these
design approaches is given in Table 1.

4.1 Service-oriented middleware solutions

The service-oriented middleware (SOM), based on the service-oriented design
pattern, provides services to the applications, such as service discovery and man-
agement, data management, and quality of service (QoS) management. There exist
many service-oriented IoT middleware solutions. Some of the commonly used
service-oriented IoT middleware solutions are described as follows:

Hydra is a SOM for ubiquitous computing providing many management compo-
nents for resources, security, and services [19]. Hydra is a lightweight middleware
supporting dynamic self-reconfiguration and optimizing energy consumption in
battery-constrained devices. The security and privacy requirements are ensured by
Hydra through the use of Web Services enriched by semantic resolution [20].

The SenseWrap [21] middleware solution uses virtual sensors with the Zeroconf
protocols to abstract the sensors’ low-level details from the applications, and allow
them to discover sensor-hosted services. This middleware solution applies virtual-
ization only to sensors, which makes it unsuitable for IoT environments including
heterogeneous devices and application domains.

9 M
id

d
lew

are S
olu

tion
s for th

e In
tern

et of T
hin

gs: A
 Survey

D
O

I: h
ttp

://d
x.d

oi.org/10.5772/in
tech

op
en

.100348

IoT middleware requirements/features

Middleware

approach

Middleware

solutions

Target

environment

Interoperability Scalability Adaptability Real

timeliness

Security

and

privacy

Reliability Context

awareness

Ease of

use and

deployment

Data

management

Event

management

Service-oriented Hydra WSNs Yes Yes No Yes Yes No Yes Yes Yes Yes

SenseWrap Virtual sensors Yes Yes No No No No No Yes No Yes

MUSIC Ubiquitous Yes Yes Yes Yes No Yes Yes Yes No Yes

SENSEI Sensors/
actuators

No Yes Yes Yes Yes No Yes Yes Yes Yes

TinySOA WSNs No Yes Yes Yes No No No Yes No No

SensorsMW WSNs No Yes Yes Yes No No No Yes Yes No

Servilla WSNs No Yes Yes Yes Yes Yes No Yes No No

SOCRADES Heterogeneous
devices

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Middleware

based on REST

API

Heterogeneous
devices

Yes Yes Yes Yes No No No Yes No Yes

3SOA IoT Yes Yes Yes Yes Yes No Yes Yes Yes Yes

Cloud-based
Serivce-oriented

Google Fit IoT, cloud Yes Yes Yes Yes Yes No Yes Yes Yes No

Xively IoT, cloud Yes Yes Yes Yes No No Yes Yes Yes Yes

CarrIoTs IoT, cloud Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Echelon IoT, cloud Yes Yes Yes Yes Yes No No Yes Yes No

M
id

d
lew

are A
rchitecture

10

IoT middleware requirements/features

Middleware

approach

Middleware

solutions

Target

environment

Interoperability Scalability Adaptability Real

timeliness

Security

and

privacy

Reliability Context

awareness

Ease of

use and

deployment

Data

management

Event

management

Microservices-
based

Arrowhead

Framework [14]
IoT Yes Yes Yes Yes Yes No No Yes Data

exchange
Yes

General
microservice
architecture [15]

IoT Yes Yes Yes Yes Yes No Yes Yes Yes Yes

Smart City [16] IoT Yes Yes Yes Yes Yes No Yes Yes Yes Yes

Ocean [17] IoT Yes Yes Yes yes No No Yes Yes Yes No

Web of Objects

Architecture [18]
IoT Yes Yes Yes Yes No No Yes yes Yes No

Agent-based Impala WSNs No No No Yes No No No Yes No Yes

ActorNet WSNs No No No Yes No Yes Yes Yes Yes Yes

Agilla WSNs Yes No Yes Yes No Yes Yes Yes Yes Yes

Ubiware IoT, ambient Yes Yes Yes Yes No No Yes Yes Yes Yes

Smart messages WSNs,
Embedded
Systems

No No No Yes Yes No Yes Yes No No

ACOSO-based
middleware

IoT Yes Yes Yes Yes No Yes Yes Yes Yes Yes

11 M
id

d
lew

are S
olu

tion
s for th

e In
tern

et of T
hin

gs: A
 Survey

D
O

I: h
ttp

://d
x.d

oi.org/10.5772/in
tech

op
en

.100348

IoT middleware requirements/features

Middleware

approach

Middleware

solutions

Target

environment

Interoperability Scalability Adaptability Real

timeliness

Security

and

privacy

Reliability Context

awareness

Ease of

use and

deployment

Data

management

Event

management

Event-based EMMA IoT, Cloud Yes Yes Yes Yes No Limited No Yes No Yes

Hermes Large-scale
distributed
and ubiquitous
systems

Yes Yes Yes Yes Yes Yes No Yes No Yes

Event-based

Middleware

for Syntactical

Interoperability

in IoT

IoT Yes Yes Yes Yes No Yes No Yes No Yes

Virtual-
machine-Based

Maté WSNs No Yes Yes Yes No No Yes Yes No No

VM* WSns No Yes No Yes No No No Yes No Yes

Melete WSNs No Yes Yes Yes No Yes No Yes No Yes

Database-
oriented

SINA WSNs No Yes No Yes No No No Yes Limited Yes

IrisNet WSNs No Yes No Yes No No No Yes Yes No

Sensation WSNs No Yes No Limited No No No No Yes No

TinyDB WSNs No No No Limited No No No No Yes No

HyCache WSNs No No No Limited No No No No Yes No

M
id

d
lew

are A
rchitecture

12

IoT middleware requirements/features

Middleware

approach

Middleware

solutions

Target

environment

Interoperability Scalability Adaptability Real

timeliness

Security

and

privacy

Reliability Context

awareness

Ease of

use and

deployment

Data

management

Event

management

Application-
oriented

AutoSec Distributed Yes Yes Yes Yes No No Yes Yes Yes Yes

Adaptive

middleware

WSNs/
Healthcare

No Yes Yes Yes No Yes Yes Yes No Yes

MlLAN WSNs/
Healthcare

No Yes Yes Yes No No Yes Yes No Yes

MidFusion WSNs/
Information
Fusion

No Yes Yes Yes No No No Yes Yes Yes

TinyCubus Driver
Assistance
Systems

Yes Yes Yes Yes No No No Yes Yes No

Table 1.
Comparison of existing IoT middleware solutions.

13

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

The MUSIC middleware [22] supports building systems in ubiquitous environ-
ments where service providers and consumers may change dynamically based on
context. Its architecture is composed of different managers providing different
functionalities, including the context manager, service discovery manager, QoS
manager, SLA monitoring, and adaptation manager. The use of context data by
the MUSIC middleware may increase the risk of privacy leakage in an IoT environ-
ment. SENSEI [23] is another middleware solution including context services and a
context model for the real world Internet including IoT. Its resources use ontologies
for their semantic modeling, which makes it unsuitable for large-scale IoT networks
since there are no standard established ontologies yet.

TinySOA [24] is a service-oriented middleware used for WSN applications
development. It provides a management of WSN devices and communica-
tions, and allows applications to get processed data from the connected sensors.
TinySOA allows only a few functionalities, such as abstraction and resource dis-
covery related to WSNs, and does not support other devices; therefore, it could not
be used fully within an IoT network [24]. Another SOM providing the manage-
ment of quality of service in WSNs is called SensorsMW [25]. Servilla middleware
also facilitates application development using heterogeneous WSNs; however, it
is not widely used due to the privacy and security threats caused by the individual
sensor-level access [26].

SOCRADES middleware [27] contains a layer for devices and services monitor-
ing responsible for devices/things management and service discovery, and another
one for application services such as event storage. The middleware provides a
security solution by using authentication to control access to the different devices.
However, the privacy of sensitive information is not ensured, since a direct access to
the connected devices and their offered services is allowed by the middleware.

There exist many other cloud-based service-oriented IoT middleware solutions,
such as Google Fit, Xively, CarrIoTs, Echelon; however, there are still many concerns
about the cloud platform security and privacy, especially for mission-critical IoT
applications [28].

Recent studies have been conducted concerning the design and implementation
of service-oriented IoT middleware solutions including the one in [29] that suggests
a middleware based on REST API to collect data from different devices, intending to
deal with the heterogeneity issues. The authors in [30] presented a 3SOA (Sensing-
as-a-Service run-time Service-Oriented Architecture) middleware solution that
allows interoperability among IoT platforms, and highly abstracts the applications
from the low-level details of IoT hardware platforms and communication languages.

In conclusion, most old SOMs manage only WSNs and do not scale to the
use of multiple heterogeneous devices as in the context of IoT. Recent suggested
service-based middleware platforms provide solutions for the interoperability and
heterogeneity problems; however, they still offer a limited security through the use
of authentication, do not use unified service standards, and require automation
for service configuration and optimization due to the recurring demands of new
services by the interesting applications.

Another type of microservices-based architecture has been recently proposed
to develop IoT platforms that meet the heterogeneous and distributed nature of
IoT devices, and provide dynamic, scalable, maintainable, and interoperable IoT
environments. Delsing et al. [14] propose an Arrowhead Framework architecture
enabling scalability, security, and real-time performance in a multi-cloud setting.
This architecture supports multiple IoT devices based on SOA architecture in local
clouds to exchange inter- and intra-cloud information, and allows organizations to
move toward a multi-stakeholder cooperation catering to market requirements and
supporting efficiency, flexibility, and sustainability [14].

Middleware Architecture

14

A general microservice architecture for IoT applications development is proposed
by Sun et al. [15], providing flexibility, scalability, maintainability, light-weightness,
and loose coupling to deal with the different challenges of the continuous IoT
development. The authors focus on the system design based on microservices and
device communication protocols used between the service layer and physical device
layer. This framework allows, therefore, more interoperability, automation, and intel-
ligence and provides big data and geo-localization services [15].

Another recent architecture based on microservices is proposed by Lai et al. [16]
to provide IoT services for multi-mobility in a smart city. The architecture provides
flexibility and scalability to efficiently manage the different heterogeneous IoT
devices using independent microservices, which could be separately deployed in a
distributed system [16]. The authors used real-case scenarios to test the architecture
using multi-mobility services for citizens in a smart city.

A recent study [17] also shows how the use of a framework based on microser-
vices allows to mitigate the critical challenges of IoT devices and applications, and
increases their scalability when deployed in the ocean where there is a continuous
increasing growth of big data.

Many other microservices-based IoT platforms have been proposed in various
application domains such as smart farms [31], smart logistics/factories [32], smart
cars [33], and smart commerce [34]. Jarwar et al. [18] also proposed a cross-
domain/general-purpose Web of Objects Architecture for IoT service provisioning
in which a virtual object is used as an abstraction of a physical object.

4.2 Agent-based middleware solutions

Agent-based middleware solutions use mobile agents to facilitate distribution
throughout the network and allow a partial failure tolerance. The use of mobile
agents in the IoT network provides many advantages including interoperability with
the heterogeneous devices, reliability and availability, resource and code manage-
ment taking into consideration the resource-constrained devices, and application
management. Some of the most commonly used agent-based middleware solutions
are highlighted below.

Impala [35] is an agent-based middleware solution enabling code management,
application modularity, resource management, mobility, and openness in WSNs. Its
architecture also allows an improvement of the efficiency of resource-constrained
nodes. However, Impala middleware does not provide the raw data cleaning func-
tionality, which is necessary for an IoT setting.

Other examples of agent-based WSN middleware solutions include ActorNet
[36] that provides context management and allows application development taking
into consideration the limited resources in a WSN environment. However, ActorNet
uses a service discovery mechanism leading to a slow network. Agilla [37] is another
example of agent-based platforms, which deploys independent event-related
mobile agents in every sensor node; however, this is limited due to the constrained
resources of nodes, which may cause message loss and interference with program-
mability and code management tasks.

Ubiware [38] is considered a dedicated agent-based middleware solution for
IoT, which supports resource discovery, invocation, monitoring, and the develop-
ment of multiple extensible applications. Ubiware is a Java-based solution with a
three-layer architecture where resources are interpreted as Java components; it uses
ontologies and policies to satisfy the security and interoperability requirements;
however, these policies do not include all the available WSN standards. There exist
many other Java-based middleware solutions dedicated to WSN applications, such
as AFME, MAPS, MASPOT, and TinyMAPS to name a few [39].

15

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Smart messages [40] middleware is a highly flexible solution for dynamic net-
work configurations; it overcomes the limitations of volatile, heterogeneous, and
resource-constrained embedded systems using agent migration. However, it is
limited in terms of the number of connected applications and its support to mul-
tiple devices in the case of an IoT context.

The authors in [41] present a new approach for increasing the smart objects’ self-
adaptation and allowing them to make autonomous decisions and be smarter based
on a multi-agent system (MAS). The authors in [42] also presented a new multi-
agent-based approach called ACOSO (Agent-based Cooperating Smart Objects) and
its related middleware catering for the heterogeneous IoT platforms. The flexibility
and effectiveness of this middleware were proved through the implementation of a
“Smart University system.”

The autonomous behavior of agents used in middleware solutions may lead
to the IoT network’s self-organization and fault tolerance. However, the dynamic
behavior of agents may lead to message loss; therefore, most of the above-discussed
middleware solutions could not be used within the large-scale IoT networks requir-
ing a heterogeneous infrastructure, including resource-constrained devices.

4.3 Event-based middleware solutions

All the components of an event-based middleware solution use a publish/
subscribe model; the event sending component is called the producer or publisher,
and the receiving component is called the consumer or subscriber. The consumers
are registered for a particular event published by the producers for which they are
frequently receiving notifications. The event-based approach provides timeliness,
security, scalability, availability, reliability, and fault tolerance.

EMMA [43] is an available Java Message Service middleware, which is a type of
event-based approach designed for video communication systems to provide many
types of messaging. However, it is not energy efficient and provides only a limited
reliability.

Hermes middleware [44] also provides scalability, interoperability, and reliabil-
ity, and it is also fault tolerant. However, it provides only a limited adaptation and
does not allow a composite and persistent storage of events.

The authors in [45] proposed an event-based middleware solution implemented
using the publish-subscribe pattern to solve the problem of interoperability in IoT.
The interoperability assessment methodology was used to test the middleware
performance, and it was shown that it is qualified compared to previous systems.

There exist many other event-based middleware solutions including GREEN
[46], RUNES [47], Steam [48], PSWare [49], PRISMA [50], and TinyDDS [51],
which are appropriate for systems involving a high mobility and failure occurrence.
However, they do not adequately address the context awareness, adaptability,
interoperability, security, privacy, and timeliness requirements of the IoT. Also, the
concurrency of the event in this type of middleware solutions may lead to reduced
system reliability.

4.4 Virtual machine-based middleware solutions

The virtual machine (VM) middleware approach considers virtualizing the
network infrastructure, where the different network nodes are holding a VM and
applications are designed as separate modules distributed throughout the network.
This ensures self-management, and a high level of abstraction and adaptability.
Maté [52] is a middleware solution based on VM, which addresses the different
challenges in WSNs and is designed for nodes with limited energy and bandwidth

Middleware Architecture

16

resources. Mate is based on a VM approach and provides byte code interpretation
and tackles the different challenges in WSNs; however, it does not provide event
management and does not allow a single sensor node to support multiple applica-
tions. Some other middleware solutions based on the VM approach were built on
top of Mate to extend its capabilities, including VM* [53] and Melete [54]. These
provide resource management, code dissemination, and an easy concurrent applica-
tion deployment; however, they do not handle a dynamic network topology.

There exist some middleware solutions based on Java virtual machine (JVM),
such as MagnetOS, Squawk, and Sensorware which allows them to support multiple
portable applications; however, they are unsuitable for the IoT resource-constrained
devices since they use heavy mechanisms for interlayer communication and compu-
tation consuming memory and processing power [55]. These constraints make the
VM-based approach suitable only for resource-rich devices.

The application-specific virtual machine (ASVM) approach has been developed
to target specific application domains. Middleware solutions based on this approach
include but are not limited to TinyVM [56], SwissQM [57], and TinyReef [58].
However, the ASVM approach is still heavyweight, which makes it unsuitable for
the limited-resource devices in an IoT network deployment.

4.5 Database-oriented middleware solutions

The whole network in this type of middleware solution is viewed as a relational
database, managed using a query language like SQL. For example, the Sensor
Information Networking Architecture (SINA) middleware [59] enables applications to
send queries, collect results, and monitor network changes in a WSN setting. It also
supports resource management and monitoring, event monitoring, data prepro-
cessing, while clustering sensor nodes to ensure scalability and energy-efficient
operations. However, SINA is not context aware, and it does not support security,
privacy, and interoperability. IrisNet [60] is another distributed and lightweight
database-oriented middleware solution providing simultaneous heterogeneous
WSN services using queries over the collected data from the sensor nodes. However,
it does not resolve the issues related to energy efficiency, interoperability, adaptive-
ness, and context awareness. Other examples of database-oriented middleware
solutions include Sensation [61], TinyDB [62], and HyCache [63]. In these solutions,
database queries are used to get approximate data of interest from the sensor nodes;
they do not support the real-time requirement of the IoT infrastructure. They are
also energy inefficient and use a centralized model, which does not scale to the
ultra-large dynamic IoT networks [59]. Also, they do not provide the data aggrega-
tion and knowledge discovery functionalities.

4.6 Application-oriented middleware solutions

Application-oriented middleware solutions are dedicated to specific domain
requirements and infrastructure. For example, the Automatic Service Composition
(AutoSec) middleware supports one application at a time using resource provi-
sioning and information collection policies set by the different applications [64].
Adaptive middleware is designed for smart home applications providing context
awareness, and it also supports adaptation for other applications and ensures the
quality of information collection and transmission between the network nodes
[65]. Other examples include MlLAN middleware [59] that targets the healthcare
applications and adapts to their QoS requirements at runtime, MidFusion [66]
designed for information fusion applications such as intrusion detection systems,

17

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

and TinyCubus [59] designed for driver assistance systems that satisfies the applica-
tion requirements by customizing its generic components.

The application-specific approach leads to the design of special-purpose
middleware systems dedicated to a specific application domain, using a centralized
mechanism for resource discovery. This makes them unsuitable for the distributed
and fault-tolerant nature of IoT environments.

4.7 Hybrid approach middleware solutions

There exist some middleware platforms using a hybrid approach, combining two
or more design approaches stated above. For example, both SOCRADES [27] and
Servilla [26] service-oriented middleware solutions use also the virtual machine
(VM)-based approach. The VM in Servilla, for example, serves to execute applica-
tion tasks, while the service provisioning framework (SPF) (the service-oriented
part) is used to discover and execute services on individual sensor nodes in a WSN.
A middleware solution designed for the manufacturing domain using the hybrid
approach is also proposed in [67], taking the advantages of both the database-
oriented and semantic modeling approaches for ensuring an accurate and efficient
data management and communication among the different devices and applications.

Table 1 shows the IoT requirements/features available in each middleware
design approach and provides a comparison of the different IoT middleware
solutions described in Section 4. The choice of the comparison criteria is based
on the works cited above, from which the most common, essential, critical, and
important characteristics that are shared between the different IoT platforms have
been extracted. The description of each criterion is given above in Section 3 (IoT
Middleware Design Considerations and Requirements). There exist many addi-
tional/non-functional criteria and features, which could be available in some IoT
platforms such as recoverability, fault-tolerance, maintainability, configurability,
mobility, reusability. But these are not subject of this review since it targets only the
most essential design features/functionalities of IoT middleware solutions.

5. Open issues in IoT middleware design

According to the previous comparison, most of the works concentrate their
efforts on providing basic functionalities such as ease of deployment, data manage-
ment, event management, and real-timeliness. A considerable effort must be made
in interoperability and adaptability, which allows devices/things using heterogeneous
protocols to connect. Context awareness is also a feature that is not considered by
most of the described middleware solutions and still encounters many shortcomings.
In addition, security and privacy features need particular attention from researchers,
because they are missed in almost all the reviewed middleware solutions above.

In summary, the most challenging issues that still persist in IoT-middleware
design, implementation, and deployment are listed below:

• Standardization: The use of heterogeneous devices within a variety of applica-
tion domains in the IoT makes the use of a single standard for a middleware
solution impossible. However, many research works tend to implement a
standardized middleware solution for a specific domain, such as semantic
web applications domain, sensor networking environments, and smart offices
[59, 65]. This will allow application developers to select a middleware solution
following the desired standard within a certain domain.

Middleware Architecture

18

• Storage capacity: The storage capacity of the heterogeneous connected things
within the IoT should be considered when implementing a middleware
solution. For example, if the middleware solution offers many services and
data management functions, it will be difficult to use it with low-level storage
devices. This issue could be addressed by defining storage requirements by the
different types of backend applications, taking into consideration the applica-
tion domain, before choosing an adequate middleware solution.

• Security and privacy: IoT middleware solutions can rely on a single layer for
providing security and privacy to the backend applications, or distribute the
security and privacy support among all the middleware layers. Either way, secu-
rity and privacy support will add more processing overhead to the middleware
platform, and it should also take into consideration the security and privacy
requirements and rules for each specific application with minimum overhead.

• Applications abstraction: The IoT middleware should include an application
abstraction layer to allow multiple backend applications to be registered with
the middleware, and to specify the set of services and data processing func-
tions needed. The applications can also specify policies/rules concerning some
functionalities, such as context awareness, security, privacy, data processing,
and event processing and inferences.

6. Conclusion and future work

Middleware is becoming a necessity for managing heterogeneous devices in
the IoT network and developing applications in different domains. There exist a
variety of middleware platforms designed for IoT. This chapter provides a detailed
overview of existing IoT middleware solutions, and discusses the technical chal-
lenges and open issues involved in designing these platforms including device and
application abstraction, scalability, context awareness, event management, unfixed
infrastructure, security, and privacy. In future work, the open issues in IoT could
be further investigated to suggest possible new approaches to solve them. Also, a
new middleware design approach may be proposed to include a new perspective
for managing the IoT devices/things and applications, including a solution for the
unexplored open issues in a specific application domain, such as security, privacy,
and interoperability. A test of this new approach could be performed using my
previous proposed middleware solution for RFID described in [5].

19

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Author details

Mehdia Ajana El Khaddar
Alakhawayn University, Ifrane, Morocco

*Address all correspondence to: mehdia.ajana@gmail.com

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

20

Middleware Architecture

[1] Mahmoud Elkhodr M, Shahrestani S,
Cheung HS. Internet of Things
applications: Current and future
development. In: Hassan QF, editor.
Innovative Research and Applications in
Next-Generation High Performance
Computing. 1st ed. Hershey,
Pennsylvania: IGI Global; 2016. pp.
397-427. DOI: 10.4018/978-1-5225-
0287-6.ch016

[2] GLOBE NEWSWIRE. Internet of
Things (IoT) Market—Growth, Trends,
Forecasts (2020-2025) [Internet]. 2020.
Available from: https://www.
globenewswire.com/news-release/
2020/05/13/2033070/0/en/The-global-
IoT-market-is-expected-to-reach-a-
value-of-USD-1256-1-billion-by-2025-
from-USD-690-billion-in-2019-at-a-
CAGR-of-10-53-during-the-period-2020-
2025.html [Accessed: 01 March 2021]

[3] GSMA. IoT Connections Forecast:
The Rise of Enterprise [Internet]. 2019.
Available from: https://www.gsma.com/
iot/resources/iot-connections-forecast-
the-rise-of-enterprise/ [Accessed:
21 February 2021]

[4] Jason IH, James AL. Four Technological
Challenges in Ubiquitous Computing and
their Influence on Interaction Design
[Internet]. Available from: https://
citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.419.5005&rep=rep1&type=pdf
[Accessed: 21 February 2021]

[5] Ajana ME, Boulmalf M, Harroud H,
Elkoutbi M. RFID middleware design and
architecture. In: Turcu C, editor.
Designing and Deploying RFID
Applications. Rijeka: InTechOpen; 2011.
DOI: 10.5772/16917. ISBN: 978-953-307-
265-4. Available from: http://www.
intechopen.com/books/designing-and-
deploying-rfid-applications/
rfid-middleware-design-and-architecture

[6] Ajana ME, Boulmalf M. Smartphone:
The ultimate IoT and IoE device. In:

Mohamudally N, editor. Smartphones
from an Applied Research Perspective.
Rijeka: IntechOpen; 2017. DOI: 10.5772/
intechopen.69734. Available from:
https://www.intechopen.com/books/
smartphones-from-an-applied-
research-perspective/smartphone-the-
ultimate-iot-and-ioe-device

[7] Gopalsamy BN. Communication
trends in Internet of Things. In:
Sugumaran V, editor. Developments and
Trends in Intelligent Technologies and
Smart Systems. 1st ed. Hershey,
Pennsylvania: IGI Global; 2018. pp.
248-305. DOI: 10.4018/978-1-5225-
3686-4.ch014

[8] Yacchirema Vargas DC, Palau
Salvador CE. Smart IoT gateway for
heterogeneous devices interoperability.
IEEE Latin America Transactions.
2016;14(8):3900-3906. DOI: 10.1109/
TLA.2016.7786378

[9] Ntalasha D, Renfa L, Wang Y.
Internet of thing context awareness
model. EAI Endorsed Transactions on
Context-aware Systems and
Applications. 2016;3(7):151084. DOI:
10.4108/eai.12-2-2016.151084

[10] Cristea V, Dobre C, Pop F. Context-
aware environments for the Internet of
Things. In: Bessis N, Xhafa F,
Varvarigou D, Hill R, Li M, editors.
Internet of Things and Inter-cooperative
Computational Technologies for
Collective Intelligence. USA: Springer;
2013. pp. 25-49. DOI: 10.1007/978-
3-642-34952-2_2

[11] Krishnamurthi R, Kumar A,
Gopinathan D, Nayyar A, Qureshi B. An
overview of IoT sensor data processing,
fusion, and analysis techniques. Sensors.
2020;20(21):6076. DOI: 10.3390/
s20216076

[12] Oorschot P C Van, Smith S W. The
Internet of Things: Security challenges.

References

21

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

IEEE Security & Privacy. 2019;17(5):7-9.
DOI: 10.1109/MSEC.2019.2925918

[13] Ajana ME, Chraibi M, Harroud H,
Boulmalf M, Elkoutbi M, Maach A.
FlexRFID: A security and service
control policy-based middleware for
context-aware pervasive computing.
International Journal of Advanced
Research in Artificial Intelligence
(IJARAI). 2014;3(10):26-34. DOI:
10.14569/IJARAI.2014.031004

[14] Delsing J et al. The arrowhead
framework architecture: Arrowhead
framework. In: Delsing J, editor. IoT
Automation. United States: CRC Press
Publisher; 2017. DOI: 10.1201/97813
15367897-4. ISBN: 9781498756754

[15] Sun L, Li Y, Memon RA. An open
IoT framework based on microservices
architecture. China Communications.
2017;14(2):154-162. DOI: 10.1109/
CC.2017.7868163

[16] Lai C, Boi F, Buschettu A, Caboni R.
IoT and microservice architecture for
multimobility in a smart city. In:
Proceedings of the IEEE 7th
International Conference on Future
Internet of Things and Cloud (FiCloud);
26-28 August 2019; Istanbul, Turkey.
New York: IEEE; 2019. pp. 238-242. DOI:
10.1109/FiCloud.2019.00040

[17] Razzaq A. Microservices architecture
for IoT applications in the Ocean:
Microservices architecture based
framework for reducing the complexity
and increasing the scalability of IoT
applications in the Ocean. In: Proceedings
of the 20th International Conference on
Computational Science and Its
Applications (ICCSA); 1-4 July 2020;
Cagliari, Italy. New York: IEEE; 2020.
pp. 87-90. DOI: 10.1109/ICCSA50381.
2020.00025

[18] Jarwar MA, Kibria MG, Ali S,
Chong I. Microservices in web objects
enabled IoT environment for enhancing

reusability. Sensors. 2018;18(2):352.
DOI: 10.3390/s18020352

[19] Eisenhauer M, Rosengren P,
Antolin P. HYDRA: A development
platform for integrating wireless devices
and sensors into ambient intelligence
systems. In: Giusto D, Iera A, Morabito G,
Atzori L, editors. The Internet of Things.
New York: Springer; 2010. pp. 367-373.
DOI: 10.1007/978-1-4419-1674-7_36

[20] Reiners R, Zimmermann A,
Jentsch M, Zhang Y. Automizing home
environments and supervising patients
at home with the hydra middleware:
Application scenarios using the hydra
middleware for embedded systems. In:
Proceedings of the First International
Workshop on Context-aware Software
Technology and Applications; 24 August
2009; Amsterdam, The Netherlands.
New York: ACM; 2009. pp. 9-12. DOI:
10.1145/1595768.1595772

[21] Zgheib R, Conchon E, Bastide R.
Semantic middleware architectures for
IoT healthcare applications. In:
Ganchev I, Garcia N, Dobre C,
Mavromoustakis C, Goleva R, editors.
Enhanced Living Environments. Cham:
Springer; 2019. pp. 263-294. DOI:
10.1007/978-3-030-10752-9_11

[22] Rouvoy R, et al. MUSIC: Middleware
support for self-adaptation in ubiquitous
and service-oriented environments. In:
Cheng BHC, de Lemos R, Giese H,
Inverardi P, Magee J, editors. Software
Engineering for Self-Adaptive Systems.
Berlin: Springer; 2009. pp. 164-182. DOI:
10.1007/978-3-642-02161-9_9

[23] Tsiatsis V et al. The SENSEI real
world internet architecture. In:
Georgios T, et al., editors. Towards the
Future Internet—Emerging Trends from
European Research. Amsterdam, The
Netherlands: IOS Press; 2010. pp. 247-
256. DOI: 10.3233/978-1-60750-539-6-247

[24] Avilés-López E, García-Macías JA.
TinySOA: A service-oriented

Middleware Architecture

22

architecture for wireless sensor
networks. Service Oriented Computing
and Applications. 2009;3:99-108. DOI:
10.1007/s11761-009-0043-x

[25] Anastasi G F, Bini E, Lipari G.
Extracting data from WSNs: A service-
oriented approach. In: Anastasi G,
Bellini E, Di Nitto E, Ghezzi C, Tanca L,
Zimeo E, editors. Methodologies and
Technologies for Networked
Enterprises. Berlin: Springer; 2012. p.
329-356. DOI: 10.1007/978-3-
642-31739-2_17

[26] Chien-Liang F, Gruia-Catalin R,
Chenyang L. Servilla: A flexible service
provisioning middleware for
heterogeneous sensor networks. Science
of Computer Programming.
2012;77(6):663-684. DOI: 10.1016/j.
scico.2010.11.006

[27] de Souza LMS, Spiess P, Guinard D,
Köhler M, Karnouskos S, Savio D.
SOCRADES: A web service based shop
floor integration infrastructure. In:
Floerkemeier C, Langheinrich M,
Fleisch E, Mattern F, Sarma SE, editors.
The Internet of Things. Berlin: Springer;
2008. pp. 50-67. DOI: 10.1007/
978-3-540-78731-0_4

[28] Ngu AH, Gutierrez M, Metsis V,
Nepal S, Sheng QZ. IoT middleware: A
survey on issues and enabling
technologies. IEEE Internet of Things
Journal. 2017;4(1):1-20. DOI: 10.1109/
JIOT.2016.2615180

[29] Mesmoudi Y et al. A Middleware
based on service oriented architecture
for heterogeneity issues within the
Internet of Things (MSOAH-IoT).
Journal of King Saud University—
Computer and Information Sciences.
2020;32(10):1108-1116. DOI: 10.1016/j.
jksuci.2018.11.011

[30] Hammoudeh M et al. A service
oriented approach for sensing in the
Internet of Things: Intelligent

transportation systems and privacy use
cases. IEEE Sensors Journal. 2020;
21(14):15753-15761. DOI: 10.1109/
JSEN.2020.2981558

[31] Taneja M et al. SmartHerd
management: A microservices-based
fog computing-assisted IoT platform
towards data-driven smart dairy
farming. Software Practice and
Experience. 2019;49:1055-1078. DOI:
10.1002/spe.2704

[32] Herrera-Quintero LF et al. Smart ITS
sensor for the transportation planning
using the IoT and Bigdata approaches to
produce ITS cloud services. In:
Proceedings of the IEEE 8th Euro
American Conference on Telematics and
Information Systems (EATIS); 28-29
April 2016; Cartagena, Colombia. New
York: IEEE; 2016. pp. 1-7. DOI: 10.1109/
EATIS.2016.7520096

[33] Kanti Datta S et al. IoT and
microservices based testbed for
connected car services. In: Proceedings
of the IEEE 19th International
Symposium on “A World of Wireless,
Mobile and Multimedia Networks”
(WoWMoM); 12-15 June 2018; Chania,
Greece, Piscataway, NJ: IEEE; 2018. pp.
14-19. DOI: 10.1109/
WoWMoM.2018.8449768

[34] Banerjee A, Jiang B. A Blockchain-
based IoT platform integrated with
cloud services. In: Proceedings of the
International Conference on Parallel
and Distributed Processing Techniques
& Applications; July 29th - August 1st
2019; Las Vegas, Nevada. C. S. R. E.
A., 2020.

[35] Liu T, Martonosi M. Impala: A
middleware system for managing
autonomic, parallel sensor systems. ACM
SIGPLAN Notices. 2003;38(10):107-118.
DOI: 10.1145/966049.781516

[36] Kwon Y, Sundresh S, Mechitov K,
Agha G. ActorNet: An actor platform for
wireless sensor networks. In:

23

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Proceedings of the 5th International Joint
Conference on Autonomous Agents and
Multiagent Systems; 8-12 May 2006;
Hakodate, Japan. New York: ACM, 2006.
DOI: 10.1145/1160633.1160871

[37] Fok CL, Gruia-Catalin Roman GC,
Lu C. Agilla: A mobile agent middleware
for self-adaptive wireless sensor networks.
ACM Transactions on Autonomous and
Adaptive Systems. 2009;4(3):1-26. DOI:
10.1145/1552297.1552299

[38] Vasile-Marian Scuturici VM, Surdu S,
Yann G, Petit JM. UbiWare: Web-based
dynamic data & service management
platform for AmI. In: Proceedings of the
Posters and Demo Track Conference; 3
December, 2012; Montreal Quebec
Canada. New York: ACM; 2012. DOI:
10.1145/2405153.2405164

[39] Aiello F, Fortino G, Galzarano S,
Vittorioso A. TinyMAPS: A lightweight
java-based mobile agent system for
wireless sensor networks. In:
Proceedings of the 5th International
Symposium on Intelligent Distributed
Computing (IDC 2011); October 2011;
Delft, the Netherlands: Springer-Verlag
Berlin Heidelberg; 2012. DOI: 10.1007/
978-3-642-24013-3_16

[40] Kang P et al. Smart messages: A
distributed computing platform for
networks of embedded systems. The
Computer Journal. 2004;47(4). DOI:
10.1093/comjnl/47.4.475

[41] Chekati A, Riahi M, Moussa F.
Agent-based modelling approach for
decision making in an IoT framework.
In: Barolli L, Woungang I, Enokido T,
editors. Advanced Information
Networking and Applications. AINA;
2021. Lecture Notes in Networks and
Systems, vol 226. Springer, Cham. DOI:
10.1007/978-3-030-75075-6_21

[42] Fortino G et al. An Agent-Based
Middleware for Cooperating Smart
Objects. In: Proceedings of the 11th
International Conference on Practical

Applications of Agents and Multi-Agent
Systems; 22-24; May, 2013; Salamanca,
Spain: Springer-Verlag Berlin
Heidelberg; 2013. pp. 387-398. DOI:
10.1007/978-3-642-38061-7_36

[43] Rausch T, Nastic S, Dustdar S.
EMMA: Distributed QoS-aware MQTT
middleware for edge computing
applications. In: Proceedings of the
IEEE International Conference on Cloud
Engineering (IC2E); 17-20 April, 2018;
Orlando, FL, USA: IEEE; 2018. pp.
191-197. DOI: 10.1109/IC2E.2018.00043

[44] Pietzuch PR. Hermes: A scalable
event-based middleware. University of
Cambrige Computer Laboratory
Technical Report N° 590; 2004. ISSN
1476-2986. Available from: https://www.
cl.cam.ac.uk/techreports/UCAM-
CL-TR-590.pdf

[45] Pramukantoro ES, Anwari H. An
event-based middleware for syntactical
interoperability in Internet of Things.
International Journal of Electrical and
Computer Engineering. 2018;8(5):3784.
DOI: 10.11591/ijece.v8i5.pp3784-3792

[46] Sivaharan T, Blair G, Coulson G.
Green: A configurable and
reconfigurable publish-subscribe
middleware for pervasive computing.
In: Meersman R, Tari Z, editors. On the
Move to Meaningful Internet Systems.
Berlin: Springer; 2005. pp. 732-749. DOI:
10.1007/978-3-540-78731-0_4

[47] Costa P, et al. The runes middleware
for networked embedded systems and its
application in a disaster management
scenario. In: Proceedings of the IEEE 5th
Annual International Conference on
Pervasive Computing and
Communication (PerCom’07); 19-23
March 2007; White Plains, NY, USA:
Computer Society; 2007; pp. 69-78. DOI:
10.1109/PERCOM.2007.36

[48] Meier R, Cahill V. Steam: Event-
based middleware for wireless ad hoc
networks. In: Proceedings of the IEEE

Middleware Architecture

24

22nd International Conference on
Distributed Computing Systems
Workshops; 2-5 July 2002; Vienna,
Austria: IEEE; 2002. pp. 639-644. DOI:
10.1109/ICDCSW.2002.1030841

[49] Lai S, Cao J, Zheng Y. Psware: A
publish/subscribe middleware
supporting composite event in wireless
sensor network. In: Proceedings of the
IEEE International Conference on
Pervasive Computing and
Communication (PerCom’09); 9-13
March 2009; Galveston, TX, USA: IEEE
Computer Society; 2009. pp. 1-6. DOI:
10.1109/PERCOM.2009.4912862

[50] Silva JR, et al. PRISMA: A publish-
subscribe and resource-oriented
middleware for wireless sensor networks.
In: Proceedings of the 10th Advanced
IEEE International Conference on
Telecommunications; 20-24 July 2014;
Paris, France. International Academy,
Research, and Industry Association
(IARIA); 2014. pp. 87-97

[51] Boonma P, Suzuki J. TinyDDS: An
interoperable and configurable publish/
subscribe middleware for wireless
sensor networks. In: Hinze A,
Buchmann A, editors. Principles and
Applications of Distributed Event-Based
Systems. Hershey, Pennsylvania: IGI
Global; 2010. p. 206. DOI: 10.4018/978-
1-60566-697-6.ch009

[52] Levis P, Culler DE. Maté: A tiny virtual
machine for sensor networks. In:
Proceedings of the Tenth ACM
International Conference on Architectural
Support for Programming Languages and
Operating Systems; 5-9 October 2002; San
Jose, California, United States: ACM;
2002. DOI: 10.1145/605406.605407

[53] Koshy J, Pandey R. Vm: Synthesizing
scalable runtime environments for
sensor networks. In: Proceedings of the
3rd International Conference on
Embedded Networked Sensor Systems
(SenSys ‘05); 2-4 November 2005; San

Diego, California, USA: ACM; 2005. pp.
243-254. DOI: 10.1145/1098918.1098945

[54] Khalid Z, Fisal N, Rozaini M. A
survey of middleware for sensor and
network virtualization. Sensors.
2014;14(12):24046-24097. DOI: 10.3390/
s141224046

[55] Costa N, Pereira A, Serodio C.
Virtual machines applied to WSN’s: The
state-of-the-art and classification. In:
Proceedings of the Second International
Conference on Systems and Networks
Communications (ICSNC 2007); 25-31
August 2007; Cap Eterel, France, IEEE
Computer Society; 2007. pp. 50-50.
DOI: 10.1109/ICSNC.2007.83

[56] Hong K et al. Tinyvm: An energy-
efficient execution infrastructure for
sensor networks. Software: Practice and
Experience. 2012;42(10):1193-1209.
DOI: 10.1002/spe.1123

[57] Mueller R, Alonso G, Kossmann D.
SwissQM: Next generation data
processing in sensor networks. In:
Proceedings of the Third Biennial
Conference on Innovative Data Systems
Research (CIDR); 7-10 January 2007;
Asilomar, CA, USA. Online Proceedings.
Available from: www.cidrdb.org 2007.
pp. 1-9. DOI: 10.3929/ethz-b-000004843

[58] Marques IL, Ronan J, Rosa NS.
TinyReef: A register-based virtual
machine for Wireless Sensor Networks.
In: Proceedings of the IEEE International
Conference on SENSORS; 25-28 October
2009; Christchurch, New Zealand: IEEE;
2009. pp. 1423-1426. DOI: 10.1109/
ICSENS.2009.5398437

[59] de Freitas EP. A Survey on Adaptable
Middleware for Wireless Sensor
Networks. Halmstad University Technical
Report IDE0851; 2008. Available from:
http://www.diva-portal.org/smash/get/
diva2:239429/FULLTEXT01.pdf

[60] Deshpande A, Suman N,
Gibbons PB, Seshan S. IrisNet:

25

Middleware Solutions for the Internet of Things: A Survey
DOI: http://dx.doi.org/10.5772/intechopen.100348

Internetscale Resource-Intensive Sensor
Services. In: Proceedings of the ACM
SIGMOD International Conference on
Management of Data; 9-12 June 2003;
San Diego, California, USA: ACM; 2003.
p. 667. DOI: 10.1145/872757.872856

[61] Hasiotis T et al. Sensation: A
middleware integration platform for
pervasive applications in wireless sensor
networks. In: Proceedings of the IEEE
Second European Workshop on Wireless
Sensor Networks; 31 January - 2 February
2005; Istanbul, Turkey: IEEE; 2005.
pp. 366-377. DOI: 10.1109/EWSN.2005.
1462028

[62] Madden S, Franklin MJ,
Hellerstein JM, Hong W. TinyDB: An
acquisitional query processing system
for sensor networks. ACM Transactions
on Database Systems. 2005;30(1):122-
173. DOI: 10.1145/1061318.1061322

[63] Zhao D, Raicu I. HyCache: A
user-level caching middleware for
distributed file systems. In: Proceedings
of the IEEE International Symposium
on Parallel & Distributed Processing,
Workshops and PhD Forum(IPDPSW);
20-24 May 2013; Cambridge, MA, USA:
IEEE; 2013. pp. 1997-2006. DOI:
10.1109/IPDPSW.2013.83

[64] Han Q, Venkatasubramanian N.
Autosec: An integrated middleware
framework for dynamic service
brokering. IEEE Distributed Systems
Online. 2001;2(7):22-31

[65] Huebscher MC, McCann JA.
Adaptive middleware for context aware
applications in smart-homes. In:
Proceedings of the 2nd Workshop on
Middleware for Pervasive and Ad-hoc
Computing; 18-22 October 2004;
Toronto, Ontario, Canada, United
States: ACM; 2004. pp. 111-116. DOI:
10.1145/1028509.1028511

[66] Alex H, Kumar M, Shirazi B.
MidFusion: An adaptive middleware for
information fusion in sensor network

applications. Information Fusion.
2008;9(3):332-343. DOI: 10.1016/j.
inffus.2005.05.007

[67] Grevenitis K et al. A hybrid
framework for industrial data storage
and exploitation. Procedia CIRP.
2019;81:892-897. DOI: 10.1016/j.procir.
2019.03.221

