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Chapter

Introductory Chapter:  
The Important Physiological 
Characteristics and Industrial 
Applications of Acidophiles
Linxu Chen, Jianqun Lin and Jianqiang Lin

1. The definition of acidophiles

Acidophiles are an important category of extremophiles that are defined by 
the environmental conditions in which they grow optimally. Acidophile is a broad 
definition that organisms can grow preferentially in environments with a pH at below 
6. In 2007, Johnson proposed a generally accepted classification standard according 
to the optimal pH. The organisms with optimal pH at 3 or below are classified as 
extreme acidophiles, and those with an optimal pH of 3–5 are moderate acidophiles 
[1]. Although some organisms can grow at a pH lower than 5, they are recognized 
as acid-tolerant species because of their pH optima above 5. The research history of 
acidophiles started in the discovery of a sulfur-oxidizing bacteria isolated from a 
compost sample mixed with sulfur, rock phosphate, and soil by Waksman and Joffe 
in 1922 [2]. This bacterium has an optimal growth pH at 2.0–2.8 and is a strict auto-
troph that obtains energy by oxidizing inorganic sulfur substances (elemental sulfur, 
thiosulfate, and hydrogen sulfide). This bacterium was named as Thiobacillus thiooxi-
dans by Waksman and Joffe, and later was reclassified as Acidithiobacillus thiooxidans 
by Kelly and Wood in 2000 [3]. With the development of microbiology and gene 
sequencing technology, more and more acidophiles have been discovered, identified, 
and sequenced. Until now, the most acidophilic organisms are from an archaeal genus 
of Picrophilus, firstly isolated from acidic hot springs and dry hot soil in Hokkaido 
in Japan [4]. Members in Picrophilus have optimal pH at 0.7 and the ability to grow 
at a pH of 0. Moreover, acidophiles are involved not in the domains of Bacteria and 
Archaea, but also in the Eukarya domains, such as some acidophilic fungi, algae, and 
yeast distributed in the acid mine environments.

2. The typical acidophilic bacteria and the applications of acidophiles

Acidithiobacillus is a kind of extensive research and wide application of 
gram-negative acidophiles. Members in this genus are broadly existed in the 
sulfur-containing acidic environments on land or in the sea, such as acid mine 
drainage (AMD), iron–sulfur mineral mines, hot springs, and sediments [5–10]. 
Acidithiobacillus spp., as the important sulfur and iron-oxidizers, participate in 
the element cycles of sulfur and iron, and promote the acid environment genera-
tion and acid microecosystem formation. All Acidithiobacillus strains have the 
capability of oxidizing various reduced inorganic sulfur compounds (RISCs) 
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Trait A. ferrooxidans Acidithiobacillus 

ferrivorans

A. ferriphilus A. ferridurans Acidithiobacillus 

thiooxidans

Acidithiobacillus 

caldus

A. albertensis

Gram stain — — — — — — —

Cell size (μm) 1.0 × 0.5 2.4 × 0.5 1–2 1–2 1.0–2.0 × 0.5 1.2–1.9 × 0.7 1–2 × 0.4–0.6

Motility +/− + + + + + +

Growth pH 

(optimum)

1.3–4.5 (2.0–2.5) 1.9–3.4 (2.5) 1.5– (2.0) 1.4–3.0 (2.1) 0.5–5.5 (2.0–3.0) 1.0–3.5 (2.0–2.5) 0.5–6.0 (3.5–4.0)

Growth T/°C 

(optimum)

10–37 (30–35) 4–37 (28–33) 5–33 (30) 10–37 (29) 10–37 (28–30) 32–52 (40–45) 10–40 (25–30)

Oxidation of S0, 

S4O6
2−, S2O3

2−

+ + + + + + +

Oxidation of Fe2+ + + + + — — —

Growth on sulfide 

minerals

+ + + + — — —

Growth on hydrogen + (+) — + — + NR

Anaerobic growth 

with Fe3+

+ + + + — — —

N2 fixation + + NR NR — — —

Mol% G + C 58–59 55–56 57.4 58.4 52 63–64 61.5

Thiosulfate-

metabolic pathways

TSD enzyme; S4I 

pathway.

Sox system; TSD 

enzyme; S4I pathway.

NR TSD enzyme; S4I 

pathway.

Sox system; S4I 

pathway.

Sox system; S4I 

pathway.

Sox system; S4I 

pathway.

+, positive; −, negative; +/−, the positive or negative result from different reports; (+), some strains have the ability to oxidize hydrogen; NR, not reported; Tm, temperature.

Table 1. 
Taxonomic traits of species in the genus of Acidithiobacillus.
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and elemental sulfur, and some of them also have ferrous iron oxidation ability 
[11]. By the oxidation of sulfur and ferrous, Acidithiobacillus spp. obtains elec-
trons to generate the bioenergy (ATP) and reducing power (NADH/NADPH) 
to fix carbon dioxide for autotrophic growth. More and more species have been 
identified based on their physiological characters and 16S rRNA gene sequences 
(Table 1) [2, 12–16]. Species in Acidithiobacillus can be divided into two groups 
according to their energy-substrates: the sulfur-oxidizing only species, includ-
ing A. thiooxidans, Acidithiobacillus caldus and A. albertensis, and the sulfur and 
ferrous-oxidizing species, including A. ferrooxidans, Acidithiobacillus ferrivorans, 
A. ferriphilus, and A. ferridurans (Table 1).

Acidithiobacillus spp. and other chemoautotrophic acidophilic bacteria have an 
important application in bioleaching. The bioleaching technology is originated 
from the biohydrometallurgy industry, and has become a great potential and 
broad-prospects in non-ferrous metal extraction (golden, silver, copper et al.) 
from various sulfide ores. Acidithiobacillus spp. have the remarkable capabilities of 
metabolizing the sulfur and iron in ores and adapting to extremely acidic environ-
ments, thus they have become the most active and preponderant bacteria used 
in biomining [17, 18]. A. ferrooxidans, A. thiooxidans, and A. caldus are the wide 
used ore leaching species in biomining for mineral extraction from ores [19, 20]. 
In recent years, based on their abilities to produce acid and heavy leaching metals, 
Acidithiobacillus spp. have been used from biohydrometallurgy to the treatment of 
wastes containing heavy metals, such as sewage sludge, spent household batteries, 
mine tailings, and printed circuit boards [21–25]. Moreover, these bacteria have 
been widely studied in microbial desulfurization of coal and gas [26–28]. In a word, 
the great application values of Acidithiobacillus spp. have been exploited from the 
biohydrometallurgy industry to the environmental pollution treatments.

3. The physiological feature of chemoautotrophic acidophiles

Sulfur oxidation is a characteristic physiological feature for many acidophilic 
microorganisms and is an important biochemical process that promotes the generation 
of the acid environment and the formation of acidophilic microbial communities. 
Acidithiobacillus spp., as the first-discovered and the most widespread used acidophile, 
has been attracted extensive attention and has been used as model sulfur-oxidizing 
bacteria to research microbial sulfur metabolism [11, 29–40]. The oxidation states of 
element sulfur are range from −2 to +6, resulting in different kinds of RISCs (tetrathi-
onate (S4O6

2−), thiosulfate (S2O3
2−), sulfite (SO3

2−), sulfide (S2−) et al.), and elemental 
sulfur (S0). Thus, many microbes, particularly autotrophic sulfur-oxidizing microbes, 
have evolved a variety of enzymes and proteins participating in the oxidation of RISCs 
and S0. Research shows Acidithiobacillus spp. have a high-efficient and sophisticated 
sulfur-metabolizing network that could oxidize RISCs and S0 to sulfate. Based on 
metabolic substrates, the sulfur-metabolic enzymes in Acidithiobacillus spp. could be 
categorized as elemental sulfur oxidation enzymes, enzymes in thiosulfate oxidation 
pathways, sulfide oxidation enzymes, and sulfite oxidation enzymes. These enzymes 
work cooperatively in different cellular compartments to oxidize the RISCs and S0 to 
the final product sulfate (Figures 1 and 2) [11]. As shown in Figure 1, the extracellular 
elemental sulfur (S8) oxidation in A. caldus starts from the activation and transporta-
tion of S8 by special outer-membrane proteins (OMP), generating the persulfide 
sulfane sulfur in the periplasm; then the persulfide sulfane sulfur is oxidized to sulfite 
that can directly enter the sulfur oxidizing enzyme (Sox) system or form S2O3

2− via a 
nonenzymatic reaction; the generated thiosulfate is then metabolized by the truncated 
Sox pathway or catalyzed by thiosulfate:quinol oxidoreductase (TQO or DoxDA) to 
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generate S4O6
2−; S4O6

2− is further hydrolyzed by tetrathionate hydrolase (TetH); the 
H2S produced during the activation of S8 can be oxidized by sulfide:quinone oxidore-
ductase (SQR) located in the inner membrane; the periplasmic elemental sulfur (Sn) 
produced from Sox pathway, tetrathionate hydrolysis and sulfide oxidation, could 
be re-activated at the outer membrane region, or be mobilized into the cytoplasm 

Figure 1. 
The model of sulfur oxidation in Acidithiobacillus caldus. OMP, outer-membrane proteins; TQO, thiosulfate 
quinone oxidoreductase; TetH, tetrathionate hydrolase; SQR, sulfide:Quinone oxidoreductase; PDO, persulfide 
dioxygenase; SOR, sulfur oxygenase reductase; TST, rhodanese; HDR, Hdr-like complex; SAT, ATP sulfurylase; 
bd, bo3, terminal oxidases; QH2, quinol pool; NADH, NADH dehydrogenase complex I.

Figure 2. 
The model of sulfur oxidation in A. ferrooxidans. OMP, outer-membrane proteins; TQO, thiosulfate quinone 
oxidoreductase; TSD, thiosulfate dehydrogenase; TetH, tetrathionate hydrolase; SQR, sulfide:Quinone 
oxidoreductase; PDO, persulfide dioxygenase; HDR, Hdr-like complex; SAT, ATP sulfurylase; bd, bo3, 
terminal oxidases; QH2, quinol pool; NADH, NADH dehydrogenase complex I.
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where Sn could be used by cytoplasmic elemental sulfur oxidation enzyme persulfide 
dioxygenase (PDO) and Sulfur oxygenase reductase (SOR); the metabolites from the 
reaction of PDO and SOR could be utilized by cytoplasmic sulfur-metabolic enzymes, 
including the S2O3

2− metabolism via by rhodanese (TST) and the Hdr-like complex 
(HDR), the degradation of SO3

2− via the APS pathway and the oxidation of S2− by 
SQR. During the sulfur metabolic process, the periplasmic sulfur-oxidizing pathways 
(Sox and TetH) are responsible for electron acquisition, thus they are important for 
the sulfur metabolism in A. caldus. Different from ‘A. caldus’ like sulfur metabolism 
network, some sulfur-oxidizers, such as A. ferrooxidans, did not have the Sox pathway, 
but rather a thiosulfate dehydrogenase (TSD) (Figure 2). Interestingly, A. ferrivorans 
possesses both Sox system and TSD enzyme (Table 1). The proposal of sulfur metabo-
lism models provides new knowledge and insights in understanding the metabolism 
and adaptation mechanisms of acidophilic sulfur-oxidizing microorganisms in 
extreme environments.

4. The significance of studying and understanding acidophiles

Acidophiles, as important extremophiles, have presented important scientific 
significance and industrial application values. Researches on acidophiles do not only 
help us understand the diversity and adaptation of life on earth, but also be condu-
cive in developing various new biotechnologies to resolve the problems of resource 
exploitation, pollution treatment, and human health. This book provides some new 
breakthroughs and insights on the researches of acidophiles: the two-component 
system (TCS) in the regulation of sulfur metabolic process; the adaptation mecha-
nisms of acidophiles to low pH; the regulation mechanism and the application 
strategy of quorum sensing in bioleaching bacteria; Lactobacillus acidophilus and its 
application in the human health.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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