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Chapter

Perspective Chapter: NMDA 
Treatments for CNS Disorders
Chih-Hung Lin, Po-Chang Shih and Guochuan Emil Tsai

Abstract

The N-methyl-D-aspartate receptor (NMDAR), a glutamate-gated ion channel, 
mediates various physiological functions, such as synaptic plasticity, learning, and 
memory. Any homeostatic dysregulation of NMDAR may cause central nervous  
system (CNS) disorders, such as Alzheimer’s disease, depression, and schizo-
phrenia. The involvement of NMDA dysfunction promotes advanced research on 
developing NMDAR pharmaceutics for treating CNS disorders. NMDAR enhancers, 
by direct or indirect potentiating NMDAR functions, have been used to recover 
NMDAR functions for treating schizophrenia. Interestingly, NMDAR blockers, by 
direct or indirect inhibiting NMDAR functions, have also been utilized for CNS 
disorders, such as Alzheimer’s disease and depression. In this chapter, the current 
strategy of NMDAR modulation for CNS disorders are elaborated on to discern 
underlying neurophysiological mechanisms of how homeostatic regulation of 
NMDAR plays a vital role in the normal and pathological states, respectively.

Keywords: NMDAR, CNS pathology, agonism, antagonism, homeostasis

1. Introduction

Glutamatergic signaling plays a critical role in the CNS function under physi-
ological and pathophysiological states via two major types of receptor: ionotropic 
glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs) [1]. 
mGluRs consist of three subgroups (Group I-III), while iGluRs comprise four sub-
groups (AMPARs, KARs, Gluδs, and NMDARs). Among all GluRs, NMDARs play 
a crucial role in brain development, mediating the physiological functions, such as 
synaptic plasticity, learning, and memory. NMDARs are voltage-dependent gluta-
mate- or aspartate-gated cation channels with two prerequisites for channel open-
ing: 1) depolarization-induced unblockage of magnesium ions; 2). concomitant 
binding of glutamate (or aspartate) and glycine (or D-serine). When the NMDARs 
are either aberrantly enhanced or encumbered opening, various CNS symptoms/
disorders may develop, such as depression, psychosis, and cognitive impairment.

CNS disorders still loom over many people’s health with limited effective treat-
ment. The role of NMDARs playing in CNS disorders has been gaining attention 
owing to the finding of ketamine as an antidepressant [2]. This new therapeutic 
mechanism promotes NMDARs as an emerging therapeutic target. Ketamine, a 
NMDAR antagonist, exerts rapid and robust antidepressant effects in depressed 
patients [3]. On the contrary, a NMDAR agonist, D-serine, could alleviate 
schizophrenic and depressive symptoms in the clinical trial [4]. These contrary 
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modulations on NMDAR further support the importance of NMDAR homeostasis 
leveraged by NMDAR modulators [5].

NMDAR modulators, with positive or negative modulation, have been designed 
to alleviate various symptoms of CNS through distinct mechanisms. Positive 
NMDAR modulators elevate NMDARs via direct and indirect approaches. Direct 
NMDAR enhancers fit into the glutamate site or glycine site of NMDARs, or they 
bind the allosteric pockets of the glutamate/glycine sites. In contrast to direct 
enhancement, several NMDAR enhancers improve NMDAR functions by modulat-
ing indirect pathways, for example, by inhibiting glycine transporter or D-amino 
acid oxidase (DAAO). Negative NMDAR modulators, on the contrary, work as 
competitive antagonists to directly occupy the glycine site, or bind an allosteric site 
(known as non-competitive antagonists), or block NMDAR channel pore (known 
as uncompetitive antagonists) [6]. All above modulators have shown potential for 
clinical use in CNS disorders but without one-size-fits-all approach.

2. CNS disorders alleviated by NMDAR modulators

2.1 Neurological disorders

The excitatory neurotransmission of mammalian CNS is largely dictated 
through glutamate and its receptors, particularly NMDAR. Because its critical roles 
in mediating synaptic plasticity related to learning and memory formation, the 
dysfunction of the NMDAR-based signaling is implicated in the neurological disor-
ders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s 
disease (HD), as described below.

2.1.1 Alzheimer’s disease

AD is the most common cause of dementia to induce not only cognitive impair-
ments in memory and thought, but also behavioral and psychiatric symptoms [7]. 
Current understanding to AD relies on two main histopathological abnormalities: 
(1) amyloid plaques composed of amyloid ß (Aß) peptides cleaved from amyloid 
precursor proteins in the brain tissue, and (2) the formation of intraneuronal neu-
rofibrillary tangles due to phosphorylated and aggregated tau proteins. Although 
Aß and tau serve as the most discussed mechanisms through which cause AD, no 
effective treatment was developed successfully. Coincidently, the neurotransmitter 
systems, including cholinergic, adrenergic and glutamatergic pathways are consid-
ered critical in AD progression and development [8]. In this chapter, we focus on 
the discussion of how NMDAR involves in AD.

NMDAR is the major regulator associated with long-term synaptic plasticity. 
Studies have reported that AD brains contain neurotoxins consisted of soluble Aß 
oligomers. The binding of Aß 42 oligomers to forebrain synaptosomes is associated 
with post-synaptic density complexes containing NMDAR subunits NR1 and NR2B 
[9]. Consistently, Aß oligomers were found to ablate long-term potentiation in 
hippocampal brain slices and the cortices of AD brains via overactivating extrasyn-
aptic NMDAR containing NR2B [10]. The over-activation of extrasynaptic NMDAR 
linked to neurodegeneration in AD has also been supported by the pharmacothera-
peutic use of NMDAR inhibitor memantine [11].

Indirect modulation of NMDAR via glutamate release or glycine transporter-1 
(GlyT1) are considered feasible for AD. An escalated stimulation via glutamatergic 
signaling causes glutamate excitotoxicity that results in damaged nerve cells, and 
such neuronal toxicity is coined “excitotoxicity”. In AD, glutamate uptake and 
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recycling systems are severely impaired [12], which therefore increases glutamate 
availability, resulting in excessive NMDAR stimulation. Additionally, Aß peptides 
may increase glutamate availability by weakening glutamate uptake and recycling 
systems [13] that may contribute to AD pathology. On the other hand, at gluta-
matergic synapses, glycine is transported by GlyT1, a Na+/Cl−-dependent carrier 
protein playing a major role in maintaining glycine concentration below saturation 
at postsynaptic NMDAR, sculpturing GlyT1 as an intriguing target for NMDAR 
modulation.

Overall, direct and indirect NMDAR inhibition strategies through the discussed 
mechanisms to attenuate the overactivation of NMDA function have shown ratio-
nale for developing medicine for late-stage AD to attenuate the neuronal death.

2.1.2 Parkinson’s disease

PD, the second most common neurodegenerative disease, is a progressive dis-
order with symptoms of onset gradually, motor disturbances and cognitive impair-
ment. Due to the rapidly aging population worldwide, PD also receives increasing 
attention from communities [14]. The pathophysiology of PD is due to the degen-
eration of pigmented dopaminergic neurons, resulting in functional changes to the 
circuitry of basal ganglia nuclei. Accordingly, levo-dopa, a precursor of dopamine, 
and dopamine receptor agonists have been serving as the standard treatments for 
PD. However, long-term use of these standard therapies contribute to the loss of 
efficacy and development of disfiguring motor complications [15]. Novel PD treat-
ments based on different mechanism is long awaited.

Regulating glutamatergic receptors, particularly NMDAR, has been found to be 
altered in the basal ganglia of PD where NMDAR is widely expressed. Specifically, 
NR2B-containing NMDARs may significantly influence the PD pathology while 
NR2B was found to be substantially distributed in the striatum and other basal gan-
glia areas. An increasing body of literature has reported that not only experimental 
PD models but also PD patients present substantially elevated NMDA-sensitive 
glutamate binding in the striatum [16]. In levo-dopa-treated rodent and primate, 
GluN2A and the ratio of GluN2A/GluN2B are increased. The findings are also 
reported in PD patients [17], suggesting that attenuated NMDAR activity may help 
halt the progression of PD.

Alternately, reshaping synaptic connections for PD patients via brief activa-
tion of NMDAR can increase axonal growth rate and axonal branching. The brief 
NMDAR activation can be achieved through inhibiting GlyT1 to increase levels of 
extracellular glycine [18]. In addition, activating NMDAR via weak NMDAR glycine 
binding agonists can also achieve similar effects. This hypothesis remains to be 
investigated.

2.1.3 Huntington’s disease

HD is a progressive CNS disorder due to a single defective gene on chromosome 
4 that encodes the protein huntingtin. The defect is hereditary and will eventually 
develop symptoms in lifetime. At the beginning of symptom onset, patients often 
have subtle abnormalities in mood, usually followed by a lack of coordination and 
unsteady gaits [19].

Since the altered function of huntingtin induces neuronal cell death, research 
focuses on mechanisms towards regulation of such cell death. It has been revealed 
that the formation of the nuclear protein aggregates, oxidative stress, and mito-
chondrial dysfunction are associated with neuronal cell death in HD [20]. NMDARs 
have also been found to regulate neuronal cell death of HD, and by modulating 
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NMDAR activity, psychotic symptoms of HD due to low NMDA function can 
be alleviated simultaneously. In this chapter, we focus on the discussion of 
NMDAR in HD.

Animal studies have shown that neuroexcitatory agonists kainic or quinolinic 
acids can induce lesions similar to those in HD, indicating that excitotoxicity from 
NMDAR over-activation could contribute to the progression of the disease [21]. 
Post-synaptic density protein 95 (PSD-95), a scaffolding protein, can bind hun-
tingtin and the NR2 subunit of NMDAR. At the molecular level in HD, the presence 
of abnormal huntingtin protein causes the interruption of PSD-95 binding onto 
NMDAR. The unbinding of PSD-95 results in excitotoxicity and neuronal cell death 
consistent with HD [20]. Therefore, among the known mechanisms inducing HD 
progression, NMDAR remains a primary target to develop therapeutic intervention.

2.2 Psychiatric disorders

Existing high concentration of post-synaptic NMDAR in limbic structures [22] 
highlights the homeostasis of NMDAR activity as be of uttermost significance in 
behavioral regulation of the brain. The dysfunction of NMDAR can cause a variety 
of psychiatric disorders such as depression, schizophrenia, bipolar disorder (BD), 
and anxiety disorder [23].

2.2.1 Depression

Depression is a chronic mental disorder characterized by persistent low mood, 
loss of interest/pleasure, lack of appetite, sleep disturbance, low energy, and poor 
concentration. Depression can affect people irrespective of age, ethnicity, and 
gender. Major depressive disorder (MDD) is the most studied type of depression 
characterized by one or more major depressive events, that is, the presence of 
low mood and/or loss of interest for at least 14 days in company with depression 
symptoms. MDD leads to suicide that takes 2160 self-harm deaths per day in US 
[24]. Decades of research on depression have yielded several mechanisms that may 
explain its pathophysiology, including biogenic amine (e.g., monoamine) hypoth-
esis, abnormal endocrine factors, genetic and environmental factors, neurogenesis, 
and the dysregulation of second messenger systems, which have been extensively 
reviewed elsewhere [25]. Among them, monoamine-based mechanisms were the 
most studied with successful development of antidepressants.

Although monoamine treatments are available for MDD, they have not been 
optimal. Currently, standard monoamine antidepressants require one month or 
more to exert antidepressant effects [26]. Such time lag has put MDD patients 
at risk of suicide and other self-harm acts. In recent decades, the NMDAR has 
emerged as a central player in MDD research, resulting in a paradigm shift from 
the monoamine-based to the NMDAR-based hypothesis. The NMDAR-based 
hypothesis of depression originated from early findings in the 1990’s that NMDAR 
antagonists exerted quick antidepressant-like action [27]. Subsequently, many 
studies have reported abnormal glutamate levels in frontal and occipital cortices 
in MDD; however, these findings infer the complex role of NMDAR in the brain of 
MDD patients. The regionally decreased glutamate level in the brain demonstrates 
an association with the pathophysiology of MDD [28]; on the contrary, the elevated 
glutamate levels occurs in medication-free MDD patients during an active depres-
sive episode, in remission, and in young people [29]. Since glutamate is a major 
excitatory neurotransmitter dictating the neural plasticity and process of learning 
and memory, the alteration to NMDAR causes region-specific maladaptive neuro-
circuitry in depression and decreases in cognitive controls over negative emotion.
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At the molecular level, postmortem brain analyses from MDD patients show 
alterations in the NMDAR subunit profile, such as reduced GluN2A and GluN2B 
subunits in locus coeruleus, and decreased GluN1 and GluN2A expression levels 
but no changes to those of GluN2B, GluN2C and GluN2D subunits in dorsolateral 
prefrontal cortex of MDD subjects [30]. Further studies have found that biologi-
cally, the activation of NMDAR requires both the binding of glycine and glutamate 
onto their binding sites, and therefore, modulating the release of the two amino 
acids into synapses are considered feasible. At glutamatergic synapses, glycine is 
transported by GlyT1, maintaining glycine concentration below saturation at post-
synaptic NMDAR. Accordingly, GlyT1 has become an intriguing target for NMDAR 
activity modulation [31]. Alternatively, inhibiting glutamate levels at synapses 
renders reduced glutamate binding to NMDAR [32]. In summary, the above find-
ings provide a solid basis for developing chemotherapeutics for treating MDD via 
modulating NMDA.

2.2.2 Schizophrenia

Schizophrenia is a psychotic illness presenting symptoms with processing 
thoughts and contents, and develops positive, negative and/or cognitive symptoms. 
Concurrently, depression and suicidal thoughts and attempts happen often in peo-
ple suffering from schizophrenia. Because schizophrenia patients require lifelong 
treatment, early intervention may improve the long-term outlook. Conventional 
therapies for schizophrenia are developed based on a dopamine hypothesis which 
has been prevailing to explain symptoms associated with the positive symptoms. 
However, these treatments have not been optimal and often induce substantial 
adverse side effects [33].

Glutamate hypofunction hypothesis of schizophrenia has been supported by 
several lines of studies. Low level of glutamate in cerebrospinal fluid was reported 
in patients with schizophrenia [34]. The worsening of schizophrenic symptoms 
was observed in patients treated with NMDAR inhibitors such as ketamine. Healthy 
people administered with similar inhibitors were reported to develop symptoms of 
schizophrenia [35]. Building on these data, upregulating NMDA function serves as 
a promising target for treating schizophrenia [36].

Although NMDAR is a focus for antipsychotic drug development for schizophre-
nia, direct activation of the NMDAR via targeting the glutamate site is reported to 
cause excitotoxicity. The finding suggests the demand for targeting the glycine site 
as an alternative, but direct approach. To reduce glycine site vacancy, a number of 
studies have synthesized amino-acid derivatives to occupy it [37]. Alternatively, 
enhancing the glycine levels through GlyT1 inhibition has also shown promise, 
which is used as an adjunct to conventional therapies [38].

2.2.3 Bipolar disorder

BD, as its name suggested, causes extremes of mood fluctuations that a person 
will be either in emotional highs (mania or hypomania) or lows (depression). BD is 
a lifelong disease that episodes of mood swings may occur infrequently or several 
times in a year. Typically, BD patients spend more time in depressive mood than 
mania or hypomania. Currently, treatments for BD are limited to symptom reduc-
tion and prevention of the occurrence of mood episodes [39].

Neuroimaging [40] and genetic findings [41] have revealed that glutamatergic 
abnormality is associated with the pathophysiology of BD, indicating NMDAR may 
play a role in the disease. The use of NMDAR inhibitor further evidences the role 
of NMDAR in the regulation of BD. Ketamine has shown to improve depressive 
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symptom. One of possible mechanisms of ketamine in regulating BD symptoms is 
to increase presynaptic levels of glutamate which in turn binds to AMPAR instead of 
NMDAR. The increased ratio of AMPAR-to-NMDAR neurotransmission is impli-
cated to induce the antidepressant effects of ketamine [42].

At the molecular level, postmortem findings suggest that BD is associated with 
a reduced expression of NR1 subunit in the prefrontal cortex [30]. The genetic 
polymorphisms in the 3’UTR region of GRIN2B gene that encodes for the NR2B 
subunit has been found to play a role in BD etiology, although its expression level 
is not significantly different from the control [43]. Together, these studies suggest 
NMDAR is associated with BD.

2.2.4 Anxiety disorder

Having occasional anxiety is a normal part of life. However, intense, excessive, 
and persistent worries and fear about specific situation would be in the category of 
anxiety disorder that needs intervention. Types of anxiety disorders include panic 
attack, generalized anxiety disorder, and separation anxiety disorder. An anxiety 
patient may experience one or more of them and can experience anxiety at very 
young age [44].

Benzodiazepine and selective serotonin reuptake inhibitors (SSRIs) or selective 
serotonin-norepinephrine reuptake inhibitors (SNRIs) are recommended as first 
line drug treatment, because of their more favorable profile than tricyclic antide-
pressants and monoamine oxidase inhibitors. Nevertheless, some SNRIs are also 
antagonists of metabolic enzyme cytochrome P450, therefore causing drug–drug 
interactions [45]. In addition, discontinuation of SSRIs or SNRIs may experience 
withdrawal reactions [46]. These unwanted outcomes suggest an essential for 
developing next generation anxiolytic treatments based on novel mechanisms.

Fear often occurs together and share similar stress responses with anxiety, and 
therefore, both are often put into the same context when discussing the underlying 
mechanisms. Currently, studies have found that the neuronal modulatory systems 
in brain areas contributing to fear and anxiety share a high degree of overlap [47]. 
In particular, regulating extinction learning of fear through NMDAR within amyg-
dala, medial prefrontal cortex, and hippocampus is considered critical among the 
neuronal modulatory systems [48]. Hippocampus and amygdala of the medial tem-
poral lobe situate at the interface between cognition and emotion, which is believed 
to be potential sites where NMDAR inhibitors exert anxiolytic effects [49]. NMDAR 
regulates emotionality and cognition, and its antagonists have shown promising 
effects on them. In contrast to NMDAR antagonism, partial activation of NMDAR 
facilitates fear extinction in rodents. In clinical setting, partial agonists used as an 
adjuvant increase psychotherapeutic effects in patients suffering fear-related disor-
ders [50]. These finding suggest that a balanced modulation of NMDAR activity can 
bring benefits for the patients with anxiety disorder.

3. NMDAR modulators for CNS disorders

3.1 Positive NMDAR modulators

In this section, positive NMDAR modulators for CNS disorders will be discussed 
(Figures 1 and 2, Table 1). To enhance NMDAR function, two approaches could 
achieve: direct or indirect modulation. For direct modulation, three types of 
enhancers are categorized according to their binding sites: glutamate site, glycine 
site, and allosteric site of NMDAR.
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3.1.1 Direct NMDAR enhancers

3.1.1.1 NMDAR glutamate site agonists

Cognitive deficits occur often in elderly MDD patients, hardly to be relieved 
with the existing treatment. NMDA enhancement via the glutamate site has been 
proved to enhance cognitive functions in previous studies [81]. NMDA enhancer 
(NMDAE), binding the NMDAR glutamate site as an agonist, has been offered for 
the elderly (>55 years) and adults (18–55 years) with MDD. To testify the efficacy, 
safety, and the cognitive improvement of NMDAE in those patients, the NMDAE 

Figure 1. 
Scheme of direct agonism/antagonism via various binding sites of NMDAR. NAM, negative allosteric 
modulators; PAM, positive allosteric modulators.

Figure 2. 
Indirect NMDAR agonism/antagonism through activation or inhibition on diverse channels or transporters or 
enzymes. ASCT-1, alanine/serine/cysteine transporter-1; DAAO, D-amino acid oxidase; EAAT2, excitatory 
amino acid transporter-2; GlyT1, glycine transporter-1; NMDAR, N-methyl-D-aspartate receptor; SNAT2, 
sodium-coupled neutral amino-acid transporter-2; VGSC, voltage-gated sodium channel.
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Drug Mechanism Disease Study

Positive NMDAR modulators

NMDAE glutamate site 

agonist

MDD NCT03414931

NCT04637620

Glycine glycine site agonist Schizophrenia [53]

D-alanine glycine site agonist Schizophrenia [54]

D-serine glycine site agonist MDD

Schizophrenia

NCT04721249

NCT00322023

D-cycloserine glycine site partial 

agonist

AD

MDD

Schizophrenia

BD

Anxiety

[55]

NCT00408031

[56]

NCT01833897

NCT00515879

Rapastinel

(GLYX-13/BV-102)

PAM MDD NCT01684163

Apimostinel (NRX-1074) PAM MDD NCT02067793

Clozapine Indirect enhancer

(SNAT2 inhibitor)

PD

MDD

Schizophrenia

BD

NCT00004826

[57]

[58]

[59]

BI 425809 Indirect enhancer

(GlyT1 inhibitor)

AD

Schizophrenia

NCT02788513

NCT02832037

Bitopertin

(RO-4917838)

Indirect enhancer

(GlyT1 inhibitor)

Schizophrenia NCT01235585

Sarcosine Indirect enhancer

(GlyT1 inhibitor)

PD

MDD

Schizophrenia

NCT01785628

NCT00977353

[60]

D-Amino acid oxidase inhibitor Indirect enhancer

(D-serine 

retention)

AD

MDD

Schizophrenia

[61]

[62]

NCT01908192

Negative NMDAR modulators

AV-101

(L-4-chlorokynurenine)

glycine site 

antagonist

PD

MDD

NCT04147949

NCT02484456

Dimebon

(Latrepirdine)

NAM AD

HD

NCT00377715

NCT00497159

Dextromethadone

(D-methadone/

REL-1017)

NAM MDD NCT04688164

Rislenemdaz

(CERC-301/MK-0657)

NAM MDD NCT01941043

Amantadine Uncompetitive 

antagonist

PD

HD

NCT00632762

[63]

Memantine Uncompetitive 

antagonist

AD

PD

MDD

Schizophrenia

BD

Anxiety

[64]

[65]

[66]

[67]

[68]

[69]

Dextromethorphan Uncompetitive 

antagonist

MDD

BD

NCT04226352

[70]
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treatment results were compared with sertraline (SSRI) and placebo. The results 
of those clinical studies are not disclosed as of August 2021 (NCT03414931 and 
NCT04637620). The potential risk of this approach is the excitotoxicity caused by 
overactivation through the glutamate-binding site.

3.1.1.2 NMDAR glycine site agonists

Another ligand binding site on NMDAR is the glycine site, which can also be tar-
geted to modulate the NMDAR activation for the treatments of psychiatric disorders 
[82]. Glycine, acting as an agonist via binding the glycine site, can ameliorate nega-
tive symptoms in schizophrenia patients [53]. This preliminary finding encourages 
the development of other endogenous co-agonists, such as D-alanine. D-alanine, 
working as an add-on antipsychotic medication, improved schizophrenic symptoms 
without significant side effects, which further supports that the pathophysiology 

Drug Mechanism Disease Study

Nuedexta

(Dextromethorphan+

Quinidine)

Uncompetitive 

antagonist

MDD

BD

NCT01882829

[71]

AVP-786

(Dextromethorphan+

Quinidine + Deuterium)

Uncompetitive 

antagonist

AD

MDD

Schizophrenia

NCT03393520

NCT02153502

NCT03896945

AXS-05

(Axsome,

Dextromethorphan+

Bupropion)

Uncompetitive 

antagonist

AD

MDD

NCT04797715

NCT02741791

(R,S)-Ketamine Uncompetitive 

antagonist

MDD

BD

Anxiety

[72]

[73]

[74]

(S)-Ketamine (Esketamine) Uncompetitive 

antagonist

MDD

BD

[75]

NCT03965871

(R)-Ketamine (Arketamine) Uncompetitive 

antagonist

MDD NCT04108234

Neramexane Uncompetitive 

antagonist

AD [76]

Nitrous oxide (N2O) Uncompetitive 

antagonist

MDD

Anxiety

[77]

NCT02243826

Lamotrigine Indirect blocker 

(glutamate release 

inhibitor)

MDD

Schizophrenia

BD

[78]

[67]

[78]

Riluzole

(BHV-0223)

Indirect blocker 

(glutamate release 

inhibitor)

AD

MDD

BD

Anxiety

[79]

[52]

[52]

[80]

Troriluzole

(BHV-4157)

Indirect blocker 

(glutamate uptake 

activator)

AD

Anxiety

NCT03605667

NCT03829241

AD, Alzheimer’s disease; BD, bipolar disorder; GlyT1, Glycine transporter-1; HD, Huntington’s disease; MDD, 
major depressive disorder; NAM, negative allosteric modulators; PAM, positive allosteric modulators; PD, 
Parkinson’s disease; SNAT2, sodium-coupled neutral amino-acid transporter-2.

Table 1. 
NMDAR modulators for CNS disorders [6, 51, 52].



Ketamine Revisited - New Insights into NMDA Inhibitors

10

of schizophrenia is due to the hypofunction of NMDA neurotransmission [54]. 
D-serine, an NMDAR co-agonist without psychotomimetic effects, emerges as 
a novel glutamatergic antidepressant as an adjuvant therapy in MDD patients 
(NCT04721249). On the other hand, the therapeutic effects of D-serine at low 
dose (30 mg/kg/d) in schizophrenic patients are inconsistent. Some clinical studies 
showed significant improvement in positive, negative, and cognitive symptoms 
[83], whereas others presented no significant improvement [84]. Interestingly, high 
doses of D-serine (≥60 mg/kg/d) could possess consistent significant improvement 
in negative symptoms, strongly suggesting a therapeutic dose–response of D-serine 
for the treatment of schizophrenia (NCT00322023).

D-cycloserine (DCS), a partial agonist of NMDAR with agonism at low doses 
but antagonism at high doses depending on the intrinsic tone of NMDA function 
[85], exhibits controversial therapeutic effects on CNS disorders. In some AD stud-
ies, a dose as high as 100 mg/d could improve the cognitive symptoms, while a low 
dose of 15 mg/d could improve memory deficits [55, 86]. However, other studies 
presented no cognitive improvement from low (10 mg/d) to high dose (500 mg/d) 
in AD patients [87].

When the high dose of DCS (≥ 500 mg/d) was employed in MDD patients, 
depressive symptoms could be improved (NCT00408031) [88]. These observations 
implied that NMDAR antagonism might be a potential target for the development 
of novel antidepressant. The clinical studies of DCS at a dose of 50 mg/d is argu-
mentative, some claimed to possess significant clinical improvement [89], while 
the others found no clinical improvement [90]. In the dose finding phase, the dose 
of 100 mg/d of DCS seemed to be more effective than 50 or 250 mg/d in improving 
schizophrenic symptoms [56]. In combination with ketamine, DCS could amelio-
rate depression symptoms in BD (NCT01833897). Cognitive behavioral therapy 
with DCS also reduced social anxiety (NCT00515879) and PTSD [91]. Overall, the 
dose selection of DCS determines its agonistic vs. antagonistic effects on NMDAR, 
hence modulating its therapeutic efficacy for a variety of CNS disorders.

3.1.1.3 NMDAR allosteric site enhancers (positive allosteric modulators (PAM))

Rapastinel (GLYX-13/BV-102), an amidated tetrapeptide acting as a NMDA 
allosteric glycine site partial agonist, is administered intravenously to treat MDD 
in clinical trial (NCT01684163). Rapastinel infusion achieved antidepressant 
effects without psychotomimetic properties and serious adverse events, therefore 
acquiring FDA Fast-Track and Breakthrough Therapy designations for adjunctive 
treatment of MDD. However, rapastinel failed to meet primary and key secondary 
endpoints in three acute studies (RAP-MD-01, −02, −03 by Allergan).

Apimostinel (NRX-1074), a chemical structure like rapastinel with an additional 
benzyl group, is administered intravenously and orally under the studies of efficacy 
and safety evaluation for MDD patients and healthy individuals (NCT02067793 
and NCT02366364). Benefiting from its molecular weight and orally stability, api-
mostinel is 100-fold more potent than rapastinel and is also well tolerated without 
psychotomimetic symptoms [92]. The findings of the studies are not available yet.

3.1.2 Indirect NMDAR enhancers

To enhance NMDAR function, “consolidating” amino acids (e.g., glycine or 
D-serine, glutamate, and aspartate) in the synaptic cleft could achieve that goal. With 
the use of inhibitors of amino acid transporters or degrading enzymes, the concentra-
tion of those specific amino acids could sustain in the synaptic cleft to boost NMDAR 
function [58]. Clozapine, a modest inhibitor of sodium-coupled neutral amino acid 
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transporter-2 (SNAT2), indirectly activates NMDAR via augmenting synaptic glycine 
levels. Clozapine could also improve symptoms of psychosis, tremor, and dyskinesias in 
PD patients (NCT00004826) [58]. In addition to reducing the risk of hospital re-admis-
sion for MDD patients, clozapine administration also demonstrated higher efficacy than 
quetiapine by ameliorating depressive symptoms [57]. As approved by Food and Drug 
Administration (FDA) of the USA, clozapine is utilized to treat treatment-resistant 
schizophrenia and symptoms of self-harm in patients with schizophrenia. Clozapine is 
also more effective than other antipsychotics in improving treatment-resistant bipolar 
disorder [59]. However, clozapine can cause potentially lethal agranulocytosis.

Other than SNAT2 inhibitor, GlyT1 inhibitor could also increase synaptic 
glycine level by blocking the GlyT1 to enhance NMDAR function. BI 425809, a 
selective GlyT1 inhibitor, emerges as a potential treatment of cognitive impair-
ment of AD and schizophrenia. Although BI 425809 failed to improve cognition in 
AD study (NCT02788513), it improved cognition in patients with schizophrenia 
(NCT02832037). Bitopertin (RO-4917838), a selective and potent GlyT1 inhibi-
tor, modulates both glutamatergic and dopaminergic neurotransmission in animal 
models of schizophrenia [93]. In six active treatment arms across three clinical 
studies, only one of them proved improvement in symptoms of schizophrenia 
(NCT01235585) [94]. However, the magnitude of improvement was small. Because 
of its strong antagonism, bitopertin induces NMDAR internalization, counter-
productive to improve the NMDA function.

Sarcosine, a potent endogenous non-selective GlyT1 inhibitor, was applied in 
cognitive- and mood-related clinical studies. In PD patients, sarcosine improved 
depression and neuropsychiatric symptoms, especially in patients with mild–mod-
erate severity (NCT01785628). Both in animal models and in depressed patients, 
sarcosine improved depression-like behaviors, further strengthening GlyT1 
inhibitor as a novel class of promising antidepressant (NCT00977353) [31]. In 
most clinical studies of sarcosine in patents with schizophrenia, improvement in 
schizophrenic symptoms were reported [60]. However, when being adjunctive with 
clozapine, sarcosine could not produce improvement in schizophrenic patients [95]. 
This phenomenon may be explained by the “ceiling effect”: additional NMDAR 
activation may not be induced due to maximal NMDAR enhancement achieved by 
clozapine administration alone. In contrast, the combination therapy of sarcosine 
and sodium benzoate (a D-amino acid oxidase (DAAO) inhibitor) enhances the 
cognitive function of patients with schizophrenia [96].

DAAO, a flavoenzyme for D-amino acids (e.g., D-serine and D-alanine) degra-
dation, could be strategically inhibited to increase endogenous D-serine levels at 
the synaptic cleft, resulting in strengthening NMDAR functions. In post-mortem 
studies, patients with schizophrenia possessed higher expression and activity of 
DAAO in the cortex and cerebellum [97]. Thus, DAAO inhibition provides a good 
rationale to be a novel therapeutic target for schizophrenia treatment. Sodium 
benzoate, a prototype competitive DAAO inhibitor, generated antipsychotic effects 
in the phencyclidine-induced model of schizophrenia [98]. In some clinical studies, 
sodium benzoate adjunctive therapy improved symptomatology of patients with 
schizophrenia [99], and a larger scale clinical trial is undergoing (NCT01908192). 
In patients with early-phase AD, sodium benzoate predominantly enhanced cogni-
tive and universal functions [61]. Sodium benzoate may enlarge gray matter via 
synaptogenesis and neurogenesis in MDD treatment [62].

3.2 Negative NMDAR modulators

NMDAR antagonism has been a therapeutic strategy for a variety of CNS disor-
ders [100]. To achieve NMDAR antagonism, several negative NMDAR modulators 
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have been offered to treat patients with CNS disorders through distinct underlying 
mechanisms: direct blocking in competitive, non-competitive, and uncompetitive 
ways, and indirect blocking. All negative NMDAR modulators are introduced in this 
section (Figures 1 and 2, Table 1).

3.2.1 Direct NMDAR blockers

3.2.1.1 Competitive NMDAR glycine site antagonists

AV-101 (L-4-chlorokynurenine), a pro-drug of 7-Chlorokynurenic acid 
(7-CKA), is able to cross the blood–brain barrier and transform to 7-CKA in astro-
cytes [101]. 7-CKA is a potent and selective NMDAR glycine site antagonist [102]. 
In preclinical studies, AV-101 demonstrated dose-dependent antidepressant-like 
effects in animal models [103]. However, AV-101 monotherapy failed to produce the 
anti-depressant effects in the clinical study (NCT02484456) [104]. On the other 
hand, AV-101 treatment for patients with PD will be conducted (NCT04147949).

3.2.1.2  Non-competitive NMDAR antagonists (negative allosteric modulators 
(NAM))

Dimebon (Latrepirdine), an NAM at the polyamine-binding site of NMDARs, 
was originally used as an antihistamine [51]. Assessed in clinical trials, dimebon 
significantly improved the neuropsychiatric symptoms of patients with mild-
to-moderate AD (NCT00377715) [105]. In patients with HD, short-term admin-
istration of dimebon is beneficial for cognitive improvement (NCT00497159) 
[106]. Dextromethadone (D-methadone/REL-1017), a non-competitive NMDAR 
antagonist, provided antidepressant activity via mTORC1-mediated synaptic 
plasticity in the mPFC in animal models [107]. As dextromethadone performs as a 
rapid-acting treatment for depression in clinical studies (NCT03051256), it gained 
FDA Fast-Track designation as an adjunctive treatment for MDD. A phase III clini-
cal trial of dextromethadone is currently ongoing (NCT04688164). Rislenemdaz 
(CERC-301/MK-0657), a NMDAR NR2B-selective antagonist, induced antidepres-
sant properties in patients with treatment-resistant MDD [108]. Nevertheless, in 
a phase II study, no obvious antidepressant effects were produced by rislenemdaz 
(NCT01941043).

3.2.1.3 Uncompetitive NMDAR antagonists (NMDAR channel blockers)

Amantadine, a low-affinity uncompetitive NMDAR antagonist with rapid 
blocking channel kinetics, could ameliorate several clinical symptoms in PD, and 
the long-term efficacy of chronic treatment with amantadine might improve apathy 
and fatigue in PD patients (NCT00632762) [109]. For Huntington chorea, aman-
tadine treatment delivered no beneficial effects but brought subjectively better 
feelings to patients [63]. Memantine, an adamantane derivative like amantadine, is 
an uncompetitive, moderate affinity, open-channel NMDAR blocker with strong 
voltage dependency and rapid blocking and unblocking kinetics [110]. Despite 
being approved by the US FDA for treating moderate-to-severe AD with safe and 
well tolerated profile, the efficacy of memantine is inconsistent at best. Some 
studies proved the clinical improvement of memantine in patients with moderate 
to severe AD [64], while other studies showed little clinical benefits of memantine 
towards AD treatment [111]. Several clinical results of memantine treatment in PD 
were also contradictive [65]. In MDD and BD clinical studies, memantine failed 
to show antidepressant effects in patients [66, 68]. As treatment for schizophrenic 
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symptoms, adjunct memantine uncovered a beneficial effect in ten studies, but no 
effects in two studies [67]. One study of memantine revealed minimal improvement 
in seven patients with anxiety [69].

Dextromethorphan, an uncompetitive NMDA receptor antagonist, is used 
as a cough suppressant with sedative and dissociative effects. In recent research, 
dextromethorphan and dextromethorphan-based compounds are considered as 
potential rapid-acting antidepressants, and therefore its therapeutic effect in MDD 
is evaluated in the clinical study (NCT04226352). In a BD study, dextromethorphan 
had no significant antidepressant effects compared with placebo group. This might 
be due to DRD2/ANKK1 TaqIA polymorphism [70]. Nuedexta, an FDA approved 
treatment for the pseudobulbar affect, was also utilized to treat MDD and BD. 
The purpose of adding dextromethorphan with quinidine in this combination is 
to inhibit the cytochrome P450 2D6 (CYP2D6) isoform, a dominant metabolic 
pathway of dextromethorphan, hence augmenting the bioavailability of dextro-
methorphan in CNS [112]. A proof-of-concept clinical trial demonstrated that after 
Nuedexta treatment, the response and remission rates in the patients with treat-
ment resistant depression were 45% and 35%, respectively (NCT01882829). In a 
retrospective chart review, Nuedexta induced significant improvement in Clinical 
Global Impression (CGI) in depressed patients with treatment resistant bipolar 
disorder, implying its possible effectiveness in the BD treatment [71].

AVP-786, another dextromethorphan-based compound, is in conjunction with 
quinidine and deuterium to decrease the metabolism of dextromethorphan in the 
liver and hence increase its blood exposure. Following FDA Fast-Track designation 
for agitation in AD [113], four AD-related clinical studies of AVP-786 are underway 
(NCT02442765, NCT02442778, NCT02446132, and NCT03393520). In patients 
with MDD and schizophrenia, the efficacy, safety, and tolerability of AVP-786 
were evaluated in the clinical studies (NCT02153502 and NCT03896945). AXS-05 
(Axsome) is in combination with dextromethorphan and bupropion, which acts as 
an inhibitor of CYP2D6 to enhance the bioavailability of dextromethorphan [114]. 
In the AXS-05 treatment of agitation in patients with AD, the efficacy and safety 
of AXS-05 will be compared to placebo (NCT04797715). Three phase III clinical 
studies on the safety and efficacy of AXS-05 in patients with MDD were conducted 
without results posted to date (NCT02741791, NCT04019704, and NCT04039022).

(R,S)-Ketamine, an anesthetic and analgesic via intravenous administration, 
and its derivates (S)-ketamine (esketamine) and (R)-ketamine (arketamine) open 
a new era for glutamatergic rapid-acting antidepressant. At high doses (1-2 mg/kg), 
ketamine inhibits NMDAR as an uncompetitive antagonist to produce anesthesia, 
while at low doses, ketamine induces analgesia against both acute and chronic pain 
(0.25–0.5 mg/kg). Importantly, rapid-acting antidepressant effects of ketamine at 
moderate doses (0.5 mg/kg) have been proved in preclinical and clinical studies [3]. 
In most clinical studies of MDD, (R,S)-ketamine administration decreased depres-
sion severity with robust and rapid antidepressant effects [72], in accordance with 
studies of BD [73] and anxiolytic effects in anxiety disorders [74]. The (S+) enan-
tiomer of ketamine was approved by FDA for adults with MDD with acute suicidal 
ideation or behavior. Esketamine improved depressive symptoms and delayed 
relapse in many studies [75], but did not demonstrate significant improvement as 
an adjunctive therapy with oral antidepressants in elderly patients with treatment-
resistant depression [115]. In the study of treatment-resistant bipolar depression, 
the efficacy, safety, and pharmacokinetics of inhaled esketamine are still being 
evaluated (NCT03965871). Another enantiomer of ketamine, arketamine, is a less 
potent NMDAR uncompetitive antagonist, but displays greater and longer antide-
pressant effects than esketamine without psychotomimetic side effects [116]. In an 
open-label pilot study, intravenous arketamine generated fast-onset and sustained 
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antidepressant effects in depressed patients [117], and the larger study is underway 
(NCT04108234).

Neramexane, a moderate-affinity NMDAR open-channel blocker, possesses 
similar kinetics and voltage-dependency to memantine. Although it was well 
tolerated at all administered doses in clinical studies, phase II/III clinical trials 
for moderate-to-severe AD yielded contradictory results [76]. Nitrous oxide, an 
uncompetitive NMDAR antagonist, is an inhaled anesthetic often used in obstetrics 
or dentistry [118]. One recently published research demonstrated that compared 
with 50% nitrous oxide, 25% nitrous oxide provides comparable antidepressant 
effects with a markedly lower rate of adverse effects [77]. Other studies are under-
way to evaluate the efficacy and safety of nitrous oxide in MDD (NCT03869736 
and NCT03932825). Nitrous oxide acted as a pharmacologic treatment for lumbar 
puncture/other procedure-related anxiety (NCT02243826).

3.2.2 Indirect NMDAR blockers

Lamotrigine, inhibiting voltage-dependent Na+, Ca2+, and K+ channels, acts as 
a presynaptic glutamate release inhibitor [119]. FDA approved lamotrigine for the 
maintenance treatment of BD. Lamotrigine failed to achieve clinical improvement 
in five clinical studies of MDD, while it induced higher response rate than placebo 
in BD studies [52]. In a comprehensive meta-analysis, lamotrigine performed better 
than placebo in improving unipolar and bipolar depressive symptoms [78]. Five of 
nine clinical trials of lamotrigine in schizophrenia revealed clinical improvement in 
a range of outcome measures [67].

Riluzole (BHV-0223), a glutamate release inhibitor, was approved by the US 
FDA for the treatment of amyotrophic lateral sclerosis. The mechanisms that reduce 
extracellular glutamate by riluzole includes reduced glutamate release through 
presynaptic inhibition of voltage-gated sodium channels (VGSCs), increased gluta-
mate uptake by astroglial cells, and enhanced AMPA trafficking [120]. In a current 
clinical study of AD, riluzole decreased the reduction in cerebral glucose metabo-
lism, a positive correlation with cognitive measures [79]. Additionally, riluzole only 
ameliorated depressive symptoms in one of four placebo-controlled MDD studies, 
and failed to reach clinical improvement in a BD study [52]. In one trial of anxiety 
disorders, eighty percent subjects responded positively to riluzole [80], and the 
following functional neuroimaging studies proved the alterations in hippocampal 
N-acetylaspartate (NAA) concentrations and volumes were in correlation with 
riluzole-induced improvement on anxiety scales [121]. Troriluzole (BHV-4157), 
a tripeptide prodrug conjugate of riluzole, has been developed to improve the 
bioavailability, safety, and dosing of riluzole. As a glutamate modulator, troriluzole 
decreases the level of synaptic glutamate via strengthening glutamate uptake, 
mainly through excitatory amino acid transporters (i.e., EAAT2) located on glial 
cells. Both in clinical studies of AD and anxiety, the clinical efficacy of troriluzole is 
under assessment (NCT03605667 and NCT03829241).

4. Conclusions

Not only does the discovery of ketamine to act as a novel rapid-acting antide-
pressant trigger a strong interest in developing novel NMDAR-modulating agents 
by a variety of proof-of-concept studies for CNS disorders, but also, after exploring 
the potential pathological mechanisms for the major CNS disorders as described 
above, the aberrant NMDAR activity shows to play a pivotal role in regulating clini-
cal symptoms, hence facilitating the development of positive and negative NMDAR 
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modulators against those pathological aberrances in NMDAR activity. Interestingly, 
but not surprisingly, monotherapy of single NMDAR modulators often failed in 
clinical studies, boosting the prosperity of combination treatment with multiple 
modulators, or even with the standard treatments, further implying the intricate 
mechanisms underlying the CNS pathology.

To date, numerous clinical studies of NMDAR modulators are still underway. 
With more successful clinical improvement by NMDAR modulators in clinical 
studies, the mysterious puzzles of CNS disorders could be dissolved gradually, 
further refining the utilization of NMDAR modulators as optimal treatment with 
less undesirable side effects for the sophisticated CNS disorders that involve vulner-
ability in NMDA homeostasis.
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