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Chapter

Soliton Like-Breather Induced by
Modulational Instability in a
Generalized Nonlinear
Schrödinger Equation
Saïdou Abdoulkary and Alidou Mohamadou

Abstract

We consider the nonlinear Schrödinger equation modified by a rational
nonlinear term. The model appears in various studies often in the context of the
Ginzburg-Landau equation. We investigate modulational instability by means of a
linear stability analysis and show how the nonlinear terms affect the growth rate.
This analytical result is confirmed by a numerical simulation. The latter analysis
shows that breather-like solitons are generated from the instability, and the effects
of the nonlinear terms are again clearly seen. Moreover, by employing an auxiliary-
equation method we obtain kink and anti-kink soliton as analytical solutions. Our
theoretical solution is in good agreement with our numerical investigation.

Keywords: generalized nonlinear schrödinger, modulational instability, breather
like-soliton

1. Introduction

The nonlinear Schrödinger equation (NLSE) is the main equation which governs
the propagation of pulses in various fields such as nonlinear optical systems,
plasmas, fluid dynamics, Bose-Einstein condensation, and condensed matter phys-
ics. It has been shown to govern the evolution of a wave packets in weakly nonlinear
and dispersive media and has thus arisen in such diverse fields. One other applica-
tion of this equation is in pattern formation, where it has been used to model some
nonequilibrium pattern forming systems. Most notable is the role it plays in under-
standing the propagation of electromagnetic waves in glass fibers and other optical
waveguides [1].

In this paper we consider a NLS equation with inverse nonlinear terms. Inverse
nonlinear term has been introduced for the first time by Malomed and al. [2] which
has been later studied by [3, 4] in the case of the Ginzburg-Landau equation.

iuz þ puxx þ γ1

∂u
∂x

�

�

�

�

2

uj j2
uþ γ2

1

uj j2
uþ γ3 uj j2u ¼ 0, (1)

where u is a complex amplitude that depends on z and x, γi (i ¼ 1, 2, 3) is a real
constant and represents the nonlinear coefficient, p is a real constant and supposes
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to be the group-velocity dispersion (GVD) coefficient. Notice that Eq. (1) especially
with γ1 ¼ γ2 ¼ 0 appears in many contemporary work in physics and has been
shown to be completely integrable [5] and to admit optical solitons by balancing the
GVD and Kerr nonlinearity γ3 (the self-focusing interaction and defocusing inter-
action corresponding to bright and dark solitons, respectively). However, in many
applications it contains also some small additional terms which destroy these prop-
erties. It describes either the propagation of a continuous wave (CW) beam in a
planar waveguide or propagation of an optical pulse inside optical fiber, and show
that this equation admits analytical solitary solution and exhibits a modulation
instability (MI). This instability leads to spatial or temporal modulation of a
constant-intensity plane wave.

Modulational instability is one of the nonlinear wave equations associated to
NLSE and appears in many physical systems. It indicates that due to the competi-
tion between nonlinearity and the dispersive effects, a small perturbation of the
initial plane wave may induce an exponential growth of the wave amplitude,
resulting in the carrier-wave breakup into a train of localized waves [6].

The NLSE is also one of the original nonlinear partial differential equations, the
study of which has lead to fundamental advances in theoretical physics. The study
of NLS was motivated by a large number of theoretical problems ranging from
optical pulse propagation in nonlinear fibers to hydrodynamics, condensed matter
physics and biophysics. It is now known that NLS is one of the few examples of
completely integrable nonlinear partial differential equations [7, 8].

The main objective of this paper is to study MI in a generalized NLSE that
includes rational nonlinear terms given by Eq. (1). By means of the linear stability
analysis we explicitly investigate the stability condition of a launched plane wave.
The results show that the MI gain is strongly dependent on the nonlinear parame-
ters as well as the GVD. Our numerical simulations show that those parameters
contribute to the formation and the propagation of the soliton like-breather in the
systems. Those parameters can generate either stable or unstable solitons. We also
investigate analytical soliton solutions. By employing auxiliary equation method we
obtain kink and antikink solutions of Eq. (1).

The rest of the paper is organized as follows. The model is introduced in Section 2,
which is followed by the analysis of the MI of the CW solutions in Section 3, direct
simulations shown the formation of modulated wave as well as breather like-solitons
and their stability in Section 4. Exact analytical kink and antikink soliton solutions are
reported in Section 5, and the paper is concluded by Section 6.

2. Modulational instability

The nonlinear Schrodinger Equation Eq. (1) has the simplest solution in the form
of a continuous wave as u ¼ u0 exp i kx� ωzð Þ, where u0 is a constant and k and ω

are respectively the the wave-number and the angular frequency and satisfy the

dispersion relation ω� k2pþ γ1k
2 þ γ2

u0j j2 þ γ3 u0j j2 ¼ 0. Now we focus our attention

on the modulational instability in the system. Therefore, we look at solutions of
Eq. (1) in the form of

u ¼ u0 1þ bð Þ exp i kx� ωzð Þ, (2)

where b represents a small perturbation.
Substituting Eq. (2) into the NLS equation Eq. (1) and linearizing the resulting

equations, we obtain a linear equation of b.
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ibz þ pbxx þ 2ikpbx þ iγ1k b ∗
x � bx

� �

� γ2

u0j j2
b ∗ þ bð Þ þ γ3 u0j j2 b ∗ þ bð Þ ¼ 0, (3)

Looking for solutions to this function in the form of plane waves
b ¼ b1 exp i Kx�Ωzð Þ þ b ∗

2 exp � i Kx�Ωzð Þ, we obtain the dispersion relation

Ω ¼ 2p� γ1ð ÞkK � K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ21k
2 þ p2K2 þ 2

γ2

u0j j2
p� 2γ3p u0j j2

r

, (4)

where the wave number K and the frequency Ω characterize linear properties of
the modulation wave. The dispersion relation given by Eq. (4) determine the con-
dition for the stability of a plane wave with a wave number k in the system. This is
the case as long as Ω is real. This stability condition is explicitly depends on the
nonlinear parameters γ1, γ2, and γ3. It shows that the CW plane-wave is absolutely

stable only in the case γ21k
2 þ p2K2 þ 2 γ2

u0j j2 p� 2γ3p u0j j2 <0. That is

γ21k
2 þ p2K2

� �

�
ffiffiffiffi

Δ

p
< u0j j2 < γ21k

2 þ p2K2
� �

þ
ffiffiffiffi

Δ

p
, (5)

with Δ ¼ γ21k
2 þ p2K2

� �2 þ 16γ2γ3p
2.

The modulation instability gain is related to the imaginary part of Ω and is
given by

g ¼ Im jKj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ21k
2 þ p2K2 þ 2

γ2

u0j j2
p� 2γ3p u0j j2

r

" #

, (6)

Figure 1 shows the instability gain as a function of the perturbationwave numberK
for u0 ¼ 1 and 1:5. The gain exists for both positive andnegative values ofK in the range

∣K∣<K0 ¼ 1=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2γ21k
2 u0j j2 � 4γ2pþ 4γ3p u0j j4

q

= ju0jpð Þ. The peak gain occurs for

K ¼ K0 and has the value gmax ¼ 1=2ð ÞK0∣

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γ21k
2 þ 4γ2p= u0j j2 � 4γ3p u0j j2

q

∣. Now let

us study the latter gain.We have plotted a qualitative study of its behavior. Figure 1a
shows that the peak gain increased with the amplitude u0 increasing as well as it width.
In Figure 1b one can see the inverse phenomenon. Figure 2 shows the evolution of the
peak gain as a function of nonlinear parameters γ2 and γ3. Here we are seeing the
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Figure 1.
Gain spectrum g Kð Þ of modulation instability as a function of wave number with effect of the background
amplitude u0 ¼ 1 (dashed line) and 1:5 (soline) when the GVD is 0:5 for the left-hand panel (a) with γ1 ¼
0:1, γ2 ¼ 0:4, γ ¼ 0:8 and the GVD is �0:5 for the right hand-panel (b) with γ2 ¼ 0:8, γ3 ¼ 0:01.
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increasing of the peak with the nonlinear terms (see Figure 2a). There is a limit cycle
where the peak remains constant for certain values of both γ2 and γ3. This is clearly seen
through the contour plot in Figure 2b. This aspect is better analyzed in Figure 3where
the peak gain increased by increasing both γ2 and γ3 in the left side of top panel (a)
as well as the gain width. This is confirm by fixing one nonlinear parameter (γ2)

Figure 2.
Maximum gain spectrum gmax of modulation instability for u0 ¼ 1 versus nonlinear parameters γ2 and γ3
(panel (a)), while in panel (b) we show its contour plot.
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Figure 3.
Gain spectrum g Kð Þ of modulation instability as a function of wave number with effect of the nonlnear
parameters γ2, γ3. In the top panel (a) on left we set γ2 ¼ 0:03, γ3 ¼ 0:3 for dashed line, γ2 ¼ 0:3, γ3 ¼ 0:4 for
the solid line, γ2 ¼ 0:5, γ3 ¼ 0:6 for o-line. On right (b) we set γ2 ¼ 0:2, and γ3 ¼ 0:1, 0:3, 0:6 (respectively
for dashed, solid and o-line. In botton we got on left panel (c) γ2 ¼ 0:01, 0:1, 0:2 (respectively for dashed, solid
and o-line) and γ3 ¼ 0:3. For all the previous panels we got u0 ¼ 1 and γ1 ¼ 0:1. On right panel (d) we
consider the same values in (c) when u0 ¼ 2.
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when the last one (γ3) is varying (see panel (b)). One observe the inverse phenomenon
by fixing γ3 when γ2 increasing (see panel (c)). The last panel (d) is very particular
while we are seeing the peak and the width gain are almost constant by varying the
nonlinear parameters (γ2) when the background amplitude u0 ¼ 2.

3. The numerical simulation analysis

Analytical analysis done by linear stability shown the possibility of the
formation of modulated waves in the consider system. This prediction can be
numerically confirmed. In this way let us launch as initial condition a
modulated plane wave: u 0, xð Þ ¼ 1þ ε cos Kxð Þ where fixed boundary conditions are
used and the numerical constants used in the calculation are the following: ε ¼ 0:01,
p ¼ 0:5, k ¼ 0, K ¼ 0:2π, γ1 ¼ 0:1, 0:2, 0:3 in γ2 ¼ 0:01, 0:1, 0:4, 0:6 and γ3 ¼
0:1, 0:3, 0:6, 0:9 normalized units. The question we are going to answer is the influ-
ence of the parameters γi on the formation of modulated wave.

From Figure 4 one can see the formation of bright solitary wave. The left hand top
panel shows the generation of a pulse train toward the boundary regions but the
intensity is smallest at the center. On right hand panel we can see the bright solitary
wave behaves like a breather soliton is forming. This may be a multisoliton quasiperi-
odic solutions. It can be seen that the breather solutions keep their oscillating shapes,
while the wave packets move as periodic solitons along the x-axis for certain values of
z. Those breathers are periodic in the x coordinate and aperiodic in the z coordinate.
There is more generation of breathers in bottom panels (e) and (f). Comparing panel
(b) with panels (e) and (f), one can see that in panels (e) and (f), under the influence
of the increasing values of the parameter γ3, the number of peaks on the same space
interval is increasingwhen ∣x∣ goes up even z. The breathers have compressed inwidth
and peak, and this is clearly seen through the contour plot figures given by panels (c),
(d), (g) and (h). Those phenomenon are certainly caused by increasing of the
nonlinear parameter γ3 when γ2 remains small and constant. We can see the evolution
of the peak amplitude of the wave over the z-axis for each case above in Figure 5. One
can see that in panel (a) the peak amplitude increases gradually and oscillation little
beat over the parameter z. The oscillation of the peak is increasing when the nonlinear
parameter γ3 increases and the curve believes sharp. This is perceptible in the rest
panels (b, c and d). One can clearly confirms The dynamical process of the spatial
pattern formation induced by MI.When γ3 increases, the rate of MI increases too and
the MI occurs earlier. Another interesting phenomenon is the width of the breather
which decreases by increasing the consider nonlinear parameter.

There is more breathers when γ2 is negative. Figure 6 shows the evolution
of the typical intensity profile done by numerical simulations. In panel (a) one can see
that there are more breathers that appears more stable than the previous one. This
analysis is more perceptible in panel (b) wherewe plot the contour plot of the consider
figure. We are seeing both presence of breathers and bright soliton. This means that
the consider parameter is strongly responsible of the formation of those solitons. This
is more view in Figure 7where panels (a) and (b) shown how breathers are broke and
the bright soliton takes place and propagate through the systemwhen the wave vector
is small than the previous one (0:01π).

4. Exact analytical solutions to the consider stationary model

We now discuss about the analytical solution to the stationary NLS of Eq. (1).
Suppose that
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u z, xð Þ ¼ V xð Þ exp iϕ zð Þ½ �, (7)

is the solution of Eq. (1) where V is independent of z and ϕ the phase. Substituting
Eq. (7) into Eq. (1) we obtain two equations for V and ϕ. The phase equation shows
that ϕ should be of the form ϕ zð Þ ¼ βz, where β is a constant and V equation is
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Figure 4.
The evolution of the typical intensity profile done by numerical simulation of Eq. (1) when γ3 is varying (0:1,
for (a), 0:3 for (b), 0:6 for (e) and 0:8 for (f)) by fixing γ1 ¼ 0:1 and γ2 ¼ 0:01, while panels (c), (d), (g)
and (h) show their respective contour plots.
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�βV þ pVxx þ γ1
V2

x

V
þ γ2

1

V
þ γ3V

3 ¼ 0, (8)

For solving this equation we set V ¼ G
1
2 and then the Eq. (8) yields

1

4
γ1 � pð Þ _G2 þ 1

2
pG€Gþ γ2G� βG2 þ γ3G

3 ¼ 0, (9)

This is a nonlinear ordinary differential equation which can be solve by the
auxiliary equation method.
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Figure 5.
Representation of the maximum amplitude versus z corresponding of each panels (a), (b), (e) and (f) of
Figure 4 respectivelly.
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Figure 6.
The influence of negative value of γ2 on the evolution of the typical intensity profile done by numerical
simulation of Eq. (1) with p ¼ 1=2, γ1 ¼ 0:1, γ2 ¼ �0:2, γ3 ¼ 0:4 showed by panel (a), while panel (b)
shows its contour plot.
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4.1 The auxiliary equation method

The auxiliary equation method has been defined by [9, 10] while it allows to find
more and new multiple solutions for nonlinear partial differential equations. The
main steps of using this method is summarized as follows.

For solving equation

P u, ut, ux, uxx, uxxx, …ð Þ ¼ 0, (10)

we set ξ ¼ xþ ωt then the nonlinear partial differential equation in two inde-
pendent variables x, tð Þ becomes a nonlinear ordinary differential equation

Q u, u0, u0
0
, u0

00
, …

� �

¼ 0, (11)

We seek for the solutions of Eq. (11) in the following generalized form

u ξð Þ ¼
X

2M

i¼0

aiF
i ξð Þ, (12)

in which ai (i = 0, 1, 2,… , 2 M) are constants to be determined and M ¼ 2. The
variable F ξð Þ should satisfy the following variable separated ordinary differential
equation

F02 ξð Þ ¼ aF2 ξð Þ þ bF4
ξð Þ þ cF6 ξð Þ, (13)

where a, b, c are parameters to be determined. Substituting Eq. (12) into (11) by
taking in account Eq. (13) and equate the coefficients of all powers of F ξð Þ to zero
yields a set of algebraic equations for unknowns a, b, c, ai (i = 0, 1,… , 2 M) and ω.
We solve the set of algebraic equations by the use of Maple and substitute the
solutions obtained in this step back into (12) so as to obtain the exact traveling wave
solutions for Eq. (10).

The solution of Eq. (9), balancing GG00 with G3 gives M ¼ 2. Therefore we may
choose

G02 ¼ a0 þ a1F ξð Þ þ a2F
2 ξð Þ þ a3F

3 þ a4F
4, (14)

(a) (b)

Figure 7.
Influence of γ2 and wave number K on the evolution of the typical intensity profile done by numerical
simulation of Eq. (1) when γ2 ¼ �0:03 in (a) and γ2 ¼ 0:03 (b), the rest of the parameters are γ1 ¼ 0:1,
γ3 ¼ 0:5 and K ¼ 0:01π.
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where a0, a1 and a2, a3, a4 are constants to be determined. By applying the
defined method we obtained the following exact kink and anti-kink solutions for
the stationary NLSE (9).

G ¼ � ffiffiffiffiffi

a0
p

tanh x
ffiffiffi

a
p� �

, (15)

where a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
γ3

1þ 2p
γ1

� �

r

and a ¼ � γ2
γ1a0

. We must have γ2=γ1 <0 in order to

ensure that the pulse width
ffiffiffi

a
p

is real.
Having obtained exact solutions of the stationary NLSE Eq. (9), we will use

them together to construct soliton solutions of the NLSE Eq. (1). In this case, the
kink-soliton and anti-kink solutions of Eq. (1) can be written in the form

u z, xð Þ ¼ � ffiffiffiffiffi

a0
p

tanh x
ffiffiffi

a
p� �

exp iβz, (16)

where β ¼ 2a γ1 þ pð Þ. Figure 8 shows the representation of the analytical
solution to the stationary NLSE.

5. Conclusion

In the present study a generalized nonlinear Schrödinger equation with particu-
lar nonlinearities has been introduced. The model including rational nonlinearity
that arise from Malomed model and describes the propagation of nonlinear surface
waves on a plasma with a sharp boundary. We explicitly investigated MI gain by
means of linear stability analysis. Results reveal that the nonlinear parameters are
strongly influences the dynamics of the launched plane wave. We further tested
the evolutionary modulate plan wave numerically, which indicates that those
parameters allow the formation of breather-like soliton in the system as well as
bright soliton. We have investigated analytical kink and anti-kink soliton too.

It would be particularly worthwhile to extend this study to the generalized NLS
with time and space modulated nonlinearities and potentials. This could allow more
stability and more formation of the breather-like soliton as well as the Akhmediev
breather [11], Peregrine rogue wave [12], and Kuznetsov-Ma breather [13, 14] and
even high-order rogue waves [15]. MI gain distributions could bring different
nonlinear excitation pattern dynamics.
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Figure 8.
Kink and anti-kink representations of the analytical solutions done by Eq. (16). The following parameter
values are used p ¼ 1=2, γ1 ¼ �1:1, γ2 ¼ 0:3 and γ3 ¼ 0:6.
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