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Chapter

Autism Spectrum Disorder (ASD): 
From Molecular Mechanism to 
Novel Therapeutic Approach
Hagit Friedman

Abstract

Autism spectrum disorder (ASD) is the joint name for neurodevelopmental 
impairments characterized by abnormal social interaction, communication dif-
ficulties, limited range of activities and areas of interest, and typical motor impair-
ments. There is a remarkable increase in the prevalence of ASD over the past 30 
years. Studies indicate that genetic, neurological, and environmental factors are 
involved in the emergence of ASD, and recent works describe the neuromolecular 
mechanism implicated in the basis of ASD. 3LT has now developed into a therapeu-
tic procedure that is used for three main goals: to reduce inflammation, edema, and 
chronic orthopedic disorders; to promote healing of wounds, deeper tissues, and 
nerves; and to treat neurological injuries and pain. 3LT may treat neurological inju-
ries by lowering levels of inflammation proteins and by stimulation of mitochondria 
to increase the production of adenosine triphosphate and neural growth factors. 
This review aims to discuss the current evidence for the effects and mechanisms 
of 3LT at the cellular level and the effects of 3LT-induced changes in brain develop-
ment and function. Early and effective intervention, through the developmental 
time window of high ASD susceptibility, using tools that are directed to the mecha-
nism of pathology, may minimize neurological and functional deficits.

Keywords: brain development, brain injury, ASD, autism, 3LT, low-level laser 
therapy, mitochondria

1. Introduction

Autism spectrum disorder (ASD) displays early in child development, during 
the time of human synapse formation and maturation [1], and usually results in 
long-term difficulties in social, communicational, emotional, adaptive, and cogni-
tive functions [2]. The frequency of ASD occurrence continues to rise—from 1:110 
in 2006 to 1:54 in 2016 [3], with at least one diagnosed coexisting neurodevelop-
mental disorder in most of the children [4]. Early diagnosis and treatment are very 
important as they may minimize neural injury and functional difficulty.

As ASD is still diagnosed only by behavioral criteria, it has been difficult to con-
nect the numerous neurophysiologic findings to the clinical characteristics of ASD 
and to draw the mechanism and etiology of ASD [5]. This would allow an accurate 
treatment, directed to the mechanism of injury, with the best chance to make a 
change in the impaired developmental route.
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The search for ASD brain mechanism may be reviewed from the neural circuit to 
the molecules and organelles involved.

In the late nineties of the twentieth century, a laboratory in Italy first documented 
neural activity from brain cycles, later named “Mirror Neurons” [6]. The innovation 
in its discovery was that it connected fields of neural control that were considered 
separate—motor and vision, that is, the same specific neuron cycles work both when 
a person does something and when he or she watches another person perform the 
same action, making an instant translation from visual to motor control [7]. This 
act of neural translation is considered the basis of the human ability to imitate, to 
anticipate others’ goals, and to empathize others’ pain or misery [8–11].

“Mirror Neurons” brain cycles showed altered activity in children with ASD, 
hinting that they are involved in the mechanism of ASD [12–14].

The scientific findings about mirror neurons and the possibility that their devel-
opment may be related to the time window of temporary subcortical plate neurons 
(connecting thalamic and future cortical cycles) are indeed amazing [15]. But the 
mechanistic discussion in the level of neural cycle leaves many open questions—what 
may cause damaging alterations in these brain cycles? What cellular and molecular 
components are involved, and how can we target the therapeutic process to them?

Loss of synaptic stability and plasticity, or dysregulation of activity-dependent 
signaling networks that control synapse development, function, and plasticity, may 
cause injuries in neuronal circuits and contribute significantly to brain diseases, 
including ASD pathogenesis [16, 17].

Hence, alterations in synapse function, synaptic molecules, receptors, and 
neurotransmitters have been targets to research about the mechanism of ASD 
syndrome for the last 20 years. Studies showed that alterations in Glutamate recep-
tors and enhanced GABA receptor–mediated inhibitory synaptic transmission are 
involved in ASD [18–20]. There may be various causes involved in psychiatric and 
neurologic diseases, including ASD—genetics, drug use, neurodegeneration, viral 
infections, and more. However, dysfunction of neuronal synaptic communication 
is almost always the underlying cellular mechanism. Epigenetic changes in syn-
aptic genes encoding for synaptic adhesion molecules (neurexin, neuroligin, and 
N-cadherin) and for PSD proteins (i.e., Shank1, Shank3, and more) are involved in 
neuropsychiatric disorders including ASD, causing alterations in synaptic transmis-
sion [16, 21–25]. Studies have found that failure of the cellular machinery in path-
ways upstream of the synapse leads to synaptic dysfunction and neuropsychiatric 
characteristics. In addition, small non-coding microRNAs that repress the transla-
tion of target mRNAs seem to be important pathophysiologic mechanisms for 
neurologic and psychiatric diseases, and abnormal regulation of protein turnover, 
chromatin remodeling, and genomic imprinting may lead to synapse pathology. In 
some neuropsychiatric disorders, the basic neurobiological mechanisms underlying 
the symptoms are simple and easily solved, but the model of loss of function of a 
single gene or a limited number of genes is not suitable for most neuropsychiatric 
disorders, which are etiologically heterogeneous and complex and likely deter-
mined by the combination of variants/defects in multiple genes. For example, 
genome-wide association studies identified polymorphic variants in genes encoding 
synaptic proteins as important determinants of the risk of developing ASD [26–28].

2.  Molecular mechanistic common denominator involved in ASD 
etiology

Multiple studies show that a mitochondrial disease or abnormality is involved in 
the etiology of ASD [29, 30] affecting about 80% of the children with ASD.
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Mitochondria are the “cell powerplants,” being responsible for most of cell 
energy production. Sufficient energy is required for everyday vitality and for brain 
survival and function. Brain cells need a lot of energy to function. Apart from 
energy production, mitochondria participate in the cellular metabolic processes of 
iron and the balance of calcium. The mitochondria are associated with normal and 
abnormal cell proliferation and participate in programed cell death. Each cell has 
hundreds to tens of thousands of mitochondria, depending on the role and energy 
consumption of that cell. Mitochondria are inherited only from the mother, through 
the ovum. They can develop mutations as they multiply and lack almost any repair 
mechanisms. Most of the proteins that make up mitochondria are encoded in the 
nucleus. Only 13 proteins are encoded by the circular mitochondrial genome.

As the mitochondria are inherited from the mother, hence, we do not have a 
“backup” from the father’s genome when mutations or damage occurs. But since the 
ovum contains a lot of mitochondria to start with, some may be damaged without 
any clinical manifestations. Mitochondrial damage may be manifested over the 
generations; when the grandmother had a few damaged mitochondria, the mother 
happened to develop from an ovum with a greater concentration of damaged 
mitochondria, and her son already has very few normal mitochondria. A problem 
is revealed in such cases. A damage to mitochondria may be caused not only by 
maternal inheritance, when cells divide to form the fetus, but also by a coding error 
called “de novo mutation” (a new mutation in fetal cells or in mitochondria), due 
to environmental / epigenetic influence. Hence, when a diet contains fewer carbs, 
there is an increase in the number of mitochondria in liver and large muscle cells.

Mitochondrial abnormalities include either decreased [29, 31, 32] or increased 
[33–36] mitochondrial function; depending on the cause and developmental time 
window, they may lead to neurodevelopmental regression [30, 37–42] and the typi-
cal comorbidities of ASD (i.e., gastrointestinal problems, seizures, tiredness, and 
sensory dysregulation) [30, 43, 44]. The first findings, leading to this conclusion go 
back to the eighties of the twentieth century [45], reconfirmed about 20 years later 
[46] and continue with studies that examine the biomarkers of mitochondrial dys-
function [30, 47]. Neurodevelopmental regression, as typically described for many 
children with ASD, may be the hallmark of a mitochondrial disorder and abnormal 
mitochondrial physiology in ASD [38, 39].

As mitochondrial function is highly influenced by environmental factors, 
these findings connect mitochondrial dysfunction in ASD with environmental 
hazards [29, 30].

3. Therapeutic approaches

Since ASD was first defined, numerous treatments have been employed, with 
partial/sporadic mechanistic justification. Most of the treatment approaches target 
behavioral abnormalities of children with ASD and aim to improve the social and 
communicational function of the patient [48–50].

The website of the American Association of Communication Clinicians describes 
30 common treatment programs for children with autism, divided into seven classes; 
however, parents cannot be given definite treatment recommendations, because of 
the heterogenous characteristics of children with ASD and because many therapies 
have not yet been investigated in a controlled and satisfactory manner.

In November 2020, the Australian governmental CRC top organization pub-
lished a 502-page document written by 12 scientists. The paper is a meta-analysis 
based on 58 review articles analyzing more than a thousand research articles 
that examined the effectiveness of 111 different autism therapy programs [51]. 
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The authors sorted the programs into nine categories (cognitive, behavioral, edu-
cational, developmental, animal assisted, sensory-based, naturalistic, technology-
based, others). The review showed that intensive behavioral programs achieved 
good results, but the results were focused on specific goals in which the child has 
been practiced; only some of the developmental plans showed improvement, 
mainly programs that included parental involvement; only one sensory program has 
achieved clear results of reducing stimulation and improving learning habits and 
participation in the community; music therapy helped interpersonal communica-
tion and improved mental well-being in the family; various computer applications 
have improved cognitive ability but not mutual communication; alternative sup-
portive communication programs have resulted in good results in communication, 
motor behavior, game levels, and learning ability. The authors note that in each 
category, only a very small number of studies were made in a controlled and satis-
factory manner, meaning that the results should be treated with caution.

Altogether, children with autism spectrum disorders can be treated in a way that 
will lead to functional and communicational improvement, using various therapeu-
tic approaches. These treatment plans are tailored to the unique behavioral profile 
of each child and each family at each point in time throughout their life journey 
with autism. However, as these treatments focus on external behavioral symptoms, 
and not on the internal mechanism, they aim at functional improvement and not 
actual repair of neurological damage. Hence, according to this approach, autism is 
not a “curable injury” but a developmental disorder whose treatment helps patients 
develop functional skills, improve communication skills, and rely on their strengths 
despite the disorder that will always remain a part of their lives.

Should we be satisfied with the important achievements of symptom-oriented 
therapeutic approach, or perhaps a persistent search into mechanistic questions 
may lead to a mechanism-oriented therapeutic approach?

Few therapeutic approaches for mitochondrial disorders were examined in 
clinical studies in children with ASD. These include cofactor supplementation and 
ketogenic diet. Nutritional supplements aimed to support the mitochondria, redox, 
and folate pathways, and contained L-carnitine, coenzyme Q10, and additional fac-
tors. They improved mitochondrial function and ASD symptoms [52–57], However, 
discontinuation of the supplement treatment caused worsening of the ASD behav-
ior in children [31, 58].

Ketogenic diet has been studied for ASD, resulting in a mild-to-moderate improve-
ment with 58% of the children who tolerated the 3-month diet [59–61]. In one out of 
three studies, worsening outcomes were observed. In the studies that used biomarkers 
to better understand the physiology of the ketogenic diet, an increase in chromium 
and creatine and a decrease in ornithine, acetoacetate, cesium, and N-acetylserotonin 
across the treatment period correlated with better outcomes [60, 61]. In addition, the 
ketogenic diet improved sociability and repetitive behaviors in two environmentally 
induced mice models of ASD [62–64]. With these results, the ketogenic diet needs 
more study for its use in children with ASD. In addition, the important limitation of 
the ketogenic diet is the child’s ability to tolerate the diet, as dietary therapies are diffi-
cult to implement with children. For other dietary treatments, outcomes are related to 
the ability of the family to implement the diet adequately [65], and if it is impossible 
for the family to apply the diet properly, the expected outcome may not be achievable 
and other therapeutic options may be a better choice.

4. Low-level laser therapy (3LT)

Alternative medicine has become vastly used for managing health problems 
and developmental injuries in the modern western world, consisting of various 
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approaches stemming from traditional medicine combined with modern empirical 
techniques [66, 67].

Acupuncture and auricular therapy have been employed all over the world for 
the treatment of chronic and acute medical situations [68–71], for coping with pain 
in elderly [72, 73] and children [74–78]. For example, it was found that acupuncture 
increases the secretion of the natural neuromodulator adenosine, also known as 
anti-inflammatory and pain relief substance [79].

Lasers (light amplification by stimulated emission of radiation) are devices 
that generate electromagnetic radiation, which are uniform in wavelength, phase, 
and polarization. Low-level laser (3 L) is a special type of laser that affects biologic 
systems through nonthermal means [80, 81]. Low-level laser therapy (3LT) is the 
application of red and NIR (near infrared) light over injuries or lesions to improve 
wound and soft-tissue healing, reduce inflammation, and give relief for both acute 
and chronic pain (analgesia) [82–84].

3LT applies a therapeutic laser for the excitation of specific acupuncture points. 
This technique is considered nonintrusive, safe, and painless [85] and became an 
important tool for the treatment of patients at risk, such as premature neonates 
[86–92]. For example, excitation of specific pain acupuncture points using 3LT cre-
ates a local photochemical effect [93] that causes specific changes in neuronal brain 
activity [94, 95], apprehended by the patient as reduction in pain severity. These 
changes can be measured and quantified by imaging [96, 97].

3LT has a photochemical effect, meaning that when the correct parameters are 
employed (intensity and location), red or NIR light reduces tissue oxidative stress and 
increases ATP levels [98–101]. This improves cell metabolism and reduces inflam-
mation. In addition, 3LT was proven to increase nociceptive threshold by altering 
the axonal flow [102] and elevate opioid-receptor binding [103] and endorphin 
 production [104].

In the clinic, 3LT was found to cause an immediate decrease in acute and chronic 
pain and an increase in function [102, 105–107]. 3LT showed promising results 
for myocardial infraction [108], rejuvenating mesenchymal stem cells [109], skin 
injuries [110–113], brain trauma, TBI [114–116], diabetic retinopathy [117], oncol-
ogy [118], and more.

3LT is a technique of noninvasive stimulation of which the irradiation of specific 
infrared wavelengths can penetrate the body [119]. These effects produce various 
biological responses, such as enhancing the formation of adenosine triphosphate 
(ATP), deoxyribonucleic acid (DNA), and ribonucleic acid (RNA); releasing nitric 
oxide (NO) and cytochrome c oxidase (CCO); regulating reactive oxygen species 
(ROS); and altering intracellular organelle membrane activity, mainly in mitochon-
dria, calcium flux, and stress proteins [66, 120–124]. 3LT produces a shift toward 
higher oxidation in the overall cell redox potential [125] and briefly increases the 
level of ROS [111, 126]. This change in the redox state of the mitochondria regulates 
several transcription factors [127]. These include redox factor-1 (Ref-1), cAMP 
response element (CREB), activator protein 1 (AP-1), p53, nuclear factor kappa B 
(NFjB), hypoxia-inducible factor (HIF-1), and HIF-like factor [127]. The activation 
and regulation of redox-sensitive genes and transcription factors are thought to be 
caused by ROS induced from 3LT [126]. In turn, both ATP levels and blood flow 
increase, improving oxygenation found in damaged areas of the brain [127].

5. Therapeutic potential

A wide range of seemingly unrelated disorders, such as schizophrenia, bipolar 
disease, dementia, Alzheimer’s disease, epilepsy, migraine headaches, strokes, 
neuropathic pain, CP, TBI, diabetic retinopathy, Parkinson’s disease, ataxia, 



Learning Disabilities - Neurobiology, Assessment, Clinical Features and Treatments

6

Author details

Hagit Friedman1,2

1 Simaney-Derech Clinic, Zichron-Yaakov, Israel

2 Haifa University, Haifa, Israel

*Address all correspondence to: drhagitfriedman@gmail.com

transient ischemic attack, cardiomyopathy, coronary artery disease, chronic fatigue 
syndrome, fibromyalgia, and SARS-CoV-2, have underlying pathophysiological 
mechanisms in common, namely reactive oxygen species (ROS) production and the 
accumulation of mitochondrial DNA (mtDNA) damage, resulting in mitochondrial 
dysfunction [114, 128–130].

3LT has been long recognized as an efficient therapeutic tool for brain injuries. 
Recent deciphering of the role of mitochondria in ASD etiology and in the 3LT 
therapeutic process gives us a great opportunity to improve mitochondria function 
and brain neural development, using suitable parameters of 3LT energy on specific 
ear and body locations.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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