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Chapter

Theory of Control Stochastic
Systems with Unsolved
Derivatives
Igor N. Sinitsyn

Abstract

Various types of stochastic differential systems with unsolved derivatives (SDS
USD) arise in problems of analytical modeling and estimation (filtering, extrapola-
tion, etc.) for control stochastic systems, when it is possible to neglect higher-order
time derivatives. Methodological and algorithmic support of analytical modeling,
filtering, and extrapolation for SDS USD is developed. The methodology is based on
the reduction of SDS USD to SDS by means of linear and nonlinear regression models.
Two examples that are illustrating stochastic aspects of methodology are presented.
Special attention is paid to SDS USD with multiplicative (parametric) noises.

Keywords: analytical modeling, estimation (filtering, extrapolation), normal
approximation method (NAM), regression (linear, nonlinear), stochastic
differential systems with unsolved derivatives (SDS USD)

1. Introduction

Approximate methods of analytical modeling (MAM) of the wideband stochas-
tic processes (StP) in stochastic differential systems with unsolved derivatives (SDS
USD) based on normal approximate method (NAM), orthogonal expansions
method, and quasi moment methods are developed in [1, 2]. For stochastic
integrodifferential systems with unsolved derivatives reducible to SDS
corresponding equations for MAM are given in [3, 4]. In [3, 4], problems of mean
square (m.s.) synthesis of normal (Gaussian) estimators (filters, extrapolators, etc.)
were firstly stated and solved in [1–4]. Results presented in [1–4] are valid for
smooth (in m.s. sense) functions in SDS USD. For unsmooth functions in SDS USD
theory of normal filtering and extrapolation is developed in [5].

Let us present an overview and generalization of [1–5] for linear and nonlinear
regression models. Section 2 is developed to normal analytical modeling algo-
rithms. Normal linear filtering and extrapolation algorithms are given in Sections 3
and 4. Linear modeling and estimation algorithms for SDS USD with multiplicated
(parametric) noises are presented in Section 5. Normal nonlinear algorithms for
filtering and extrapolation are described in Section 6. Section 7 contains two
illustrative examples. In Section 8, main conclusions and some generalizations
are given.
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2. Normal modeling

Different types of SDS USD arise in problems of analytical modeling and esti-
mator design for stochastic nonlinear dynamical systems when it is possible to
neglect higher-order time derivatives [1–3].

First-order SDS USD is described by the following scalar equation:

φ ¼ φ t,Xt, _Xt,Ut

� �

¼ 0, (1)

where Xt and _Xt are scalar state variable and its time derivative; Ut is noise vector

StP dimUt ¼ nU
� �

; nonlinear function φ admits regression approximation [6–8].
For vector SDS USD, we have the following vector equation:

φ ¼ φ t,Xt,Xt,Ut

� �

¼ 0: (2)

Here Xt being vector of derivatives till l order

Xt ¼ _X
T

t …X
l�1ð ÞT
t

h iT
; (3)

Ut being autocorrelated noise vector defined by linear vector equation:

_Ut ¼ aU0t þ a1tUt þ bUt V t, (4)

where dimXt ¼ nX; dimUt ¼ nU; Vt is white noise, dimVt ¼ nV ; dimaU0t ¼
nU � 1; dimaUt ¼ nU � nU; dimbUt ¼ nU � nV : Further, we consider the Wiener
white noise W0t with matrix intensity v0 ¼ v0 tð Þ and the mixed Wiener-Poisson
white noise [9–13]:

Vt ¼ _W t, W t ¼ W0t þ
ð

R
q
0

c ρð ÞP0 t, dρð Þ, (5)

vt ¼ vW0t þ
ð

R
q
0

c ρð Þ c ρð Þ½ �TvP t, ρð Þdρ: (6)

Here, dim c ρð Þ ¼ dim W0t ¼ nV; stochastic Ito integrals are taken in R
q
0 (R

q
0 with

pricked origin).
As it is known [6–8], a deterministic model for real StP defined by Y ¼ φ Zð Þ at

Z ¼ XTX
T
UT

h iT
in (2) is given by the formula

ŷ zð Þ ¼ E Yjz½ �, ŷ zð Þ∈Ψ (7)

at accuracy criterion

ε zð Þ ¼
X

nY

p¼1

E ŷp � Yp

�

�

�

�

�

�

2
jz

� �

, p ¼ 1, … , nY
� �

: (8)

Class of functions ψ ∈Ψ represents linear functional space satisfying the follow-
ing necessary and sufficient conditions:

trE j ŷ zð Þ � Yj�ψ zð ÞT
h o

¼ 0:
n

(9)
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For linear shifted and unshifted regression models, we have two known models:

ŷ zð Þ ¼ gBz, gB ¼ ΓyzΓ
�1
z (10)

(Booton [6–8]),

ŷ zð Þ ¼ aþ gKz0, gK ¼ KyzK
�1
z , a ¼ EY � gKEz (11)

(Kazakov [6–8]),
where Ez,Γz,Kz being first and second moments for given one-dimensional

distribution.
For Eq. (2), linear regression model takes the Booton form

φ̂ ¼ φ̂0 þ kφ1Xt þ kφ2Xt þ kφ3Ut ¼ 0, (12)

where φ̂0, k
φ
1,2,3 being regressors depending on φ and joint distribution of StP

Xt,Xt,Ut. After Eq. (12) differentiation till the l� 1ð Þ order, we get the following
set of l� 1ð Þ equations:

_̂φt ¼ 0, … , φ̂
l�1ð Þ
t ¼ 0: (13)

At algebraic solvability condition of linear Eqs. (12) and (13), we reduce SDS
USD to SDS of the following form:

_Xt ¼ A0 þ A1Xt þ A2Ut, (14)

where A0,A1,A2 are expressed in terms φ̂0, k
φ
1,2,3 det kφ2

� ��1 6¼ 0
	 


and indirectly

depends on statistical characteristics of Xt, its derivatives and noise Ut. For com-

bined vector XT
t U

T
t

� �

¼ ~Y t we have equation:

_~Y t ¼ B0 þ B1
~Y t þ B2Vt, Y t0 ¼ Y0, (15)

Its one and second probabilistic moments satisfy the following equations [12–14]:

_~Y t ¼ B0 þ B1
~Y t þ B2V t, Y t0 ¼ Y0, (16)

_E
~Y

t ¼ B0 þ B1E
~Y
t , E

~Y
t0 ¼ E

~Y
0 , (17)

_K
~Y

t ¼ B1K
~Y
t þ K

~Y
t B

T
1 þ B2vB

T
2 ,

_K
~Y

t0 ¼ K
~Y
0 , (18)

∂K
~Y t1, t2ð Þ
∂t2

¼ K
~Y t1, t2ð ÞBT

1t2
, K

~Y t1, t1ð Þ ¼ K
~Y
t1

(19)

where E
~Y
t ¼ E ~Y t

� �

, K
~Y
t ¼ E ~Y t � ~E

Y

t

	 


~Y t � ~E
Y

t

	 
T
� �

, t1 > t2ð Þ. So, we get two
proposals.

Proposal 1. Let vector non-Gaussian SDS USD (2) satisfy conditions:

i. vector functions φ in Eq. (2) admit m.s. regression of linear class Ψ;

ii. linear Eqs. (12) and (13) are solvable regards all derivatives till l� 1ð Þ order.

Then SDS USD may be reduced to parametrized SDE. First and second moments of

joint vector ~Y t ¼ XT
t U

T
t

� �T
satisfy Eqs. (16)–(19).
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Proposal 2. For normal joint distribution N ¼ N EY
t ,K

Y
t

� �

of vector variables in

Eqs. (16)–(19) it is necessary in equations of Theorem 1 to put

W t ¼ W0t, E
~Y
t ¼ E

~Y
N
, K

~Y
t ¼ E

~Y
N

~Y t � E
~Y
N

	 


~Y t � E
~Y
N

	 
T
� �

,

K
~Y t1, t2ð Þ ¼ EN ~Y t1 � E

~Y
N t1

	 


~Y t2 � E
~Y
N t2

	 
T
� �

:

(20)

For Eq. (2) using Kazakov form

φ ¼ φ0 þ φ0 ¼ 0 (21)

where

φ0 ¼ kφ1X
0
t þ kφ2X

0
t þ kφ3U

0
t , (22)

we have two sets of equations for mathematical expectations and centered
variables:

_φ0 ¼ 0, … ,φ l�1ð Þ
0 ¼ 0 (23)

_φ0 ¼ 0, … ,φ
0 l�1ð Þ
0 ¼ 0: (24)

So, we reduce SDS USD to two sets of equations for EX
t and X0

t ¼ Xt � EX
t

_E
X

t ¼ A0 þ A1E
X
t þ A2E

U
t , (25)

_X
0

t ¼ A1X
0
t þ A2U

0
t : (26)

For the composed vector Y
0
t ¼ X0T

t U0T
t

� �T
its probabilistic one and second

moments satisfy the following equations:

EY
t ¼ B0 þ B1E

Y
t , Y t0 ¼ Y0, (27)

_K
Y ¼ B1K

Y
t þ KYB

T
1 þ B2vB

T
2 , KY

t0 ¼ KY
0 , (28)

∂KY t1, t2ð Þ
∂ t2

¼ KY t1, t2ð ÞBT
1t2
, KY t1, t1ð Þ ¼ KY

t1
, t2 > t1: (29)

Here v ¼ v0 being defined by Eq. (6).
So for Kazakov regression, Eqs. (21)–(24) are the basis of Proposal 3.
The regression Ey zð Þ and its m.s. estimator ŷ zð Þ represent deterministic regres-

sion model. So to obtain a stochastic regression model, it is sufficient to represent Y
in the form Y ¼ E y zð Þ þ Y 0 or Y ¼ ŷ zð Þ þ Y 00, where Y 0,Y 00 being some random
variables. For finding a deterministic linear regression model, it is sufficient to
know the mathematical expectations E z,E y and covariance matrices Kz,Kyz. In the
case of a stochastic linear regression model, it is necessary to know the distribution
of Y for any z or at list its regression ŷ zð Þ and covariance matrix Ky zð Þ (coinciding
with the covariance matrices KY0 zð Þ or KY 00

zð Þ). A more general problem of the best
m.s. approximation of the regression by a finite linear combination of given func-
tions χ1 zð Þ, … , χN zð Þ is reduced to the problem of the best approximation to the
regression, as any linear combination of the functions χ1 zð Þ, … , χN zð Þ represents a
linear function of variables z1 ¼ χ1 zð Þ, … , zN zð Þ ¼ χN zð Þ. Corresponding models
based on m.s. optimal regression are given in [7].

4
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In the general case, we have the following vector equation:

_Zt ¼ az Zt, tð Þ þ bz Zt, tð ÞV t, (30)

where Vt being defined by Eqs. (5) and (6). Functions az ¼ az Zt, tð Þ and bz ¼
bz Zt, tð Þ are composed on the basis of Eq. (2) after nonlinear regression approxima-
tion φ̂t ¼

P

j c j χ Ztð Þ and Eq. (13).

According to normal approximation method (NAM), we have for Eq. (30) the
following equations for normal modeling [9–12]:

_E
z

t ¼ F1 Ez
t ,K

z
t , t

� �

, (31)

_K
z

t ¼ F2 Ez
t ,K

z
t , t

� �

, (32)

∂Kz
t t1, t2ð Þ
∂t2

¼ F3 Ez
t ,K

z t2ð Þ,Kz t1, t2ð Þ, t1, t2
� �

: (33)

Here

F1 Ez
t ,K

z
t , t

� �

¼ ENa
z Zt, tð Þ, (34)

F2 Ez
t ,K

z
t , t

� �

¼ F21 Ez
t ,K

z
t , t

� �

þ F21 Ez
t ,K

z
t , t

� �T þ F22 Ez
t ,K

z
t , t

� �

, (35)

F21 Ez
t ,K

z
t , t

� �

¼ ENa
z Zt, tð Þ Zt � Ez

t

� �

, (36)

F22 Ez
t ,K

z
t , t

� �

¼ ENb
z Zt, tð Þvbz Zt, tð ÞT, (37)

F3 Ez
t2
,Kz

t2
,Kz t1, t2ð Þ, t

	 


¼ Kz t1, t2ð Þ Kz
t2

	 
�1
F21 Ez

t2
,Kz

t2
, t2

	 
T
,

Ez
t0
¼ EZ t0ð Þ, Kz

t0
¼ KZ t0ð Þ, Kz t1, t2ð Þ ¼ Kz

t1

(38)

where EN being symbol of normal mathematical expectation.

3. Normal linear filtering

In filtering SDS USD problems, we use two types of equations: reduced SDE
USD for vector state variables Xt and equation for vector observation variables Y t

and _Y t � Zt.
Consider SDS USD Eq. (2) reducible to SDE Eq. (3.9) at conditions of Theorem

1. We introduce new variables putting Xt � ~Y t,

_Xt ¼ A0t þ A1tXt þ A2tV1t: (39)

Let the observation vector variable Y t satisfy the following linear equations:

Zt ¼ _Y t ¼ B0t þ B1tXt þ B2tV2t: (40)

where V1t and V2t are normal white noises with matrix v1t ¼ v01 and v2t ¼ v02
intensities.

Equations of Kalman-Bucy filter in case of Eqs. (39) and (40) for the Gaussian
white noises are as follows [12–14]:

_̂Xt ¼ A0 þ A1X̂t þ βt Zt � B0 þ B1X̂t

� �� �

: (41)
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βt ¼ RtB
T
1tv

�1
2t , detv2t 6¼ 0: (42)

_Rt ¼ A1tRt þ RtA
T
1t þ v1t � βtv2tβ

T
t (43)

at corresponding initial conditions. Rt being m.s. covariance matrix error, βt
being gain coefficient. So, we have the following result.

Proposal 4. Let:

i. USD are reducible to SDS according to Proposal 2 or Proposal 3;

ii. observations are performed according to Eq. (40).

Then equations for m.s. normal filtering have the generalized Kalman-Bucy filter of
the form (41)–(43).

4. Normal linear extrapolation

Using equations of linear m.s. extrapolation for time interval Δ [12–14] we get
the following equations for the generalized Kalman–Bucy extrapolator:

_̂XtþΔt∣t ¼ A1X̂tþΔt∣t Δ>0ð Þ (44)

with initial condition

X̂tþΔt∣t

� �

Δ¼0
¼ X̂t: (45)

For the initial time moment t and for the final time moment tþ Δ according to
Eq. (44), we get

XtþΔt∣t ¼ u tþ Δ, tð ÞXt þ
ð

tþΔ

t

u tþ Δ, τð Þa0 τð Þdτ þ
ð

tþΔ

t

u tþ Δ, τð Þψ τð ÞdW τð Þ: (46)

where u t, τð Þ being the fundamental solution of equation _ut ¼ A1tut at condition
u t, tð Þ ¼ I. For conditional mathematical expectation relatively Y t

t0
in Eq. (46), we

get m.s. estimate future state XtþΔ

X̂tþΔt∣t ¼ E XtþΔ∣tjY t
t0

h i

¼ u tþ Δ, tð ÞX̂t∣t þ
ð

tþΔ

t

u tþ Δ, τð Þa0 τð Þdτ: (47)

In this case, error covariance matrix RtþΔt∣t satisfies the following equation:

_RtþΔt∣t ¼ a1RtþΔ∣t þ RtþΔ∣ta
T
1 þ ψv0ψ

T: (48)

At initial condition

RtþΔ∣t

� �

Δ¼0
¼ Rt: (49)

Hence, the error matrix Rt is known from Proposal 4. So, we have the following
proposition.

Proposal 5. At conditions of Proposal 4 m.s. normal extrapolation X̂tþΔt∣t is defined
by Eqs. (47)–(49).

6
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This extrapolator presents a sequel connection m.s. filter with gain u tþ Δ, tð Þ,
summator u tþ Δ, tð ÞX̂t∣t and integral term

Ð tþΔ

t u tþ Δ, τð ÞA0τdτ. The accuracy of

extrapolation is estimated according to Eqs. (48) and (49).

5. Linear modeling and estimation in SDS USD with multiplicated noises

Let us consider vector Eqs. (2)–(6) for the multiplicative Gaussian noises:

φ ¼ φ _Xt,Xt,Vt

� �

¼ φ1
_Xt, t
� �

þ φ20 tð Þ
X

nX

h¼1

φ2h tð ÞXh

" #

Vt ¼ 0: (50)

Here, dimXt ¼ dim _Xt ¼ nX, dimφ ¼ nX, φ1 being nonlinear vector function of

vector argument _Xt admitting linear regression

φ1
_Xt, t
� �

≈φ11
_Xt, φ11 ¼ φ11 E

_X
t ,K

_X
t , t

	 


: (51)

Here, φ11 being matrix of regressors; V1t being vector Gaussian white noise,
dimVt ¼ nV with matrix intensity v ¼ v0 tð Þ. In this case, Eqs. (50) and (51) at

condition detφ11 6¼ 0 may be resolved relatively _Xt

_Xt ¼ B0 þ B1Xt þ B2 þ
X

nX

r¼1

B3rXrt

 !

Vt, (52)

where B0,B1,B2,B3r depend upon regressors φ11. Using [9–12], we get equations

for mathematical expectations. EX
t , covariance matrix KX

t , and matrix of covariance

functions KX t1, t2ð Þ:

_E
X

t ¼ B0 þ B1E
X
t , EX

t0 ¼ EX
0 , (53)

_K
X

t ¼ B1K
X
t þ KX

t B
T
1 þ B2v0B

T
2 þ

X

nX

r¼1

B3rv0B
T
2 þ B2v0B

T
3r

� �

EX
rt

XX

nX

r, s¼1

B3rv0B
T
3 s EX

rtE
X
st þ KX

rst

� �

, KX
t0 ¼ KX

0 ,

(54)

∂KX t1, t2ð Þ
∂ t2

¼ KX t1, t2ð ÞBT
1t2
, KX t1, t1ð Þ ¼ KX

t1
, t2 > t1: (55)

Here KX
t ¼ KX

rst

� �

; KX t1, t2ð Þ ¼ KX
rs t1, t2ð Þ

� �

. So for MAM in nonstationary

regimes, we have Eqs. (54) and (55) Proposal 6. In stationary case Eqs. (54) and (55)
we get the following finite set of equations for E ∗ and K ∗ (Proposal 7):

B ∗
0 þ B ∗

1 E
X
∗ ¼ 0, (56)

B ∗
1 K

X
∗ þ KX

∗B
∗
1 þ B ∗

2 v
∗
0 B

∗T
2 þ

X

nX

r¼1

B ∗
3 rv

∗
0 B

∗T
2 þ B ∗

2 v
∗
0 B

∗T
3 r

� �

EX
∗

þ
XX

nX

r, s¼1

B ∗
3rv

∗
0 B

∗T
3s EX

r ∗E
X
s ∗ þ KX

rs ∗

� �

¼ 0

(57)
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and ordinary differential equation for kX τð Þ, τ ¼ t2 � t1ð Þ:

dkX τð Þ
dτ

¼ B ∗
1 k

X
τð Þ, kX 0ð Þ ¼ K ∗ : (58)

Applying linear theory Pugachev (conditionally m.s. optimal) filtering [9–12] to
equations

_Xt ¼ A0 þ A1Xt þ A2 þ
X

nX

r¼1

A3rXrt

 !

V t, (59)

Zt ¼ _Y t ¼ B0 þ B1Xt þ B2V t, (60)

We get the following normal filtering equations:

_̂Xt ¼ A0 þ A1X̂t þ βt Zt � B0t þ B1X̂t

� �� �

, (61)

βt ¼ RtB1 þ A2 þ
X

nXþnY

r¼1

A3rE
X
r

 !

v0B2

" #

κ�1
11 , (62)

_Rt ¼ A1Rt þ RtA
T
1 � RtB

T
1 þ A2 þ

X

nXþnY

r¼1

A3rE
X
r

 !

v0B2

" #

κ�1
11 �

� B1 þ B2v0 AT
2 þ

X

nXþnY

r¼1

AT
3rE

X
r

 !" #

þ A2 þ
X

nXþnY

r¼1

A3rE
X
r

 !

v0 AT
2 þ

X

nXþnY

r¼1

AT
3rE

X
r

 !

þ
XXnXþnY

r, s¼1
A3rv0A

T
3sKrs:

(63)

Here

κ11 ¼ B2v0B
T
0 , κ22 ¼ B2v0B

T
2 : (64)

For calculating (62) we need to find mathematical expectation EQ
t , covariance

matrix KQ
t of combined vector Q t ¼ X1, … ,XnX , Y1, … ,YnY½ �T and error ~Xt, ~Xt ¼

~Xt � Xt covariance matrix Rt using equations

_E
Q

t ¼ aQEQ
t þ aQ0 , (65)

_K
Q

t ¼ aQKQ
t þ KQ

t aQ0

	 
T
þ cQv0 cQ

� �T þ
X

nXþnY

r¼1

cQv0 cQr
� �T þ cQr v0 cQ0

	 
T
� �

EQ
r þ

þ
X X

nXþnY

r, s¼1

cQr v0 cQs
� �T

EQ
r E

Q
s þ KQ

rs

� �

,

(66)

where

aQ ¼ 0 B1

0 A1

� �

, aQ0 ¼ B0

A0

� �

, с
Q
r ¼ B2

A1r

� �

r ¼ 0, 1, … , nX þ nY
� �

: (67)

So, Eqs. (61)–(67) define linear Pugachev filter for SDS USD with multiplicative
noises reduced to SDS (59) and (60) (Proposal 8).
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At last following [9–12] let us consider linear Pugachev extrapolator for reduced
SDS USD. Taking into account equations

_Xt ¼ A0 þ A1Xt þ A2 þ
X

nX

r¼1

A3,nYþrXrt

 !

V1, (68)

Zt ¼ _Y t ¼ B0 þ B1Xt þ B2V2 (69)

(V1,2 being independent normal white noises with v1,2 intensities) and the
corresponding result (Section 5) we come to the following equation:

_̂Xt ¼ A0 tþ Δð Þ þ A1 tþ Δð ÞX̂t þ βt Zt � B0 þ B1ε
�1
t X̂t � B1ε

�1
t ht

� �� �

: (70)

Here εt ¼ u tþ Δ, tð Þ, u s, tð Þ being fundamental solution of equation du=ds ¼ A1 sð Þ,

ht ¼ h tð Þ ¼
ð

tþΔ

t

u tþ Δ, τð ÞA0 τð Þdτ: (71)

Accuracy of linear Pugachev extrapolator (70) is performed by integration of the
following equation:

_Rt ¼ A1 tþ Δð ÞRt þ RtA1 tþ Δð ÞT � βt B2v1B
T
2

� �

βTt þ
�

A2 tþ Δð Þþ

þ
X

nXþnY

r¼nYþ1

A3r tþ Δð ÞEr tþ Δð Þ
�

v2 tþ Δð Þ
�

A2 tþ Δð ÞT þ
X

nXþnY

r¼nYþ1

A3r tþ Δð ÞTEr tþ Δð Þ
�

þ

þ
X X

nXþnY

r, s¼nYþ1

A3r tþ Δð Þv2 tþ Δð ÞAT
3r tþ Δð ÞTKrs:

(72)

Equations (70)–(72) define normal linear Pugachev extrapolator for SDS USD
reduced to SDS (Proposal 9).

6. Normal nonlinear filtering and extrapolation

Let us consider SDS (2) reducible to SDS and fully observable measuring system
described by the following equations:

_Xt ¼ a Xt,Y t, α, tð Þ þ b Xt,Y t, α, tð ÞV0, (73)

Zt ¼ _Y t ¼ a1 Xt,Y t, tð Þ þ b1 Xt,Y t, tð ÞV0: (74)

Here, a, a1, b, b1 being known functions of mentioned variable; α being
vector of parameters in Eq. (73); V0 being normal white noise with intensity matrix
v0 ¼ v0 tð Þ.

Using the theory of normal nonlinear suboptimal filtering [10–12], we get the

following equations for X̂t and Rt:

_̂Xt ¼ f X̂t,Y t,Rt, t
� �

dtþ h X̂t,Y t,Rt, t
� �

dt dY t � f 1ð Þ X̂t,Y t,Rt, t
� �

dt
h i

, (75)
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_Rt ¼ f 2ð Þ X̂t,Y t,Rt, t
� �

� h X̂t,Y t,Rt, t
� �

b1ν0b
T
1 Y t, tð Þh X̂t,Y t,Rt, t

� �T
n o

dtþ

þ
X

ny

r¼1

ρr X̂t,Y t,Rt, t
� �

dYr � f 1ð Þ
r X̂t,Y t,Rt, t
� �

dt
h i

:
(76)

Here

f X̂t,Y t,Rt, t
� �

¼ 2πð Þn jRtj½ ��1=2
ð

∞

�∞

a Y t, x, tð Þ exp � xT � X̂
T

t

	 


R�1
t x� X̂t

� �

=2
n o

dx,

(77)

f 1ð Þ X̂t,Y t,Rt, t
� �

¼ f 1ð Þ
r X̂t,Y t,Rt, t
� �

n o

¼ 2πð Þnx ∣Rt∣g�1=2

ð

∞

�∞

a1 Y t, x, tð Þ exp � xT � X̂
T

t

	 


R�1
t x� X̂t

� �

=2
n o

dx,

2

4

(78)

h X̂t,Y t,Rt, t
� �

¼
(

2πð Þnx jRtj½ ��1=2
ð

∞

�∞

xa1 Y t, x, tð ÞT þ bν0b
T
1 Y t, x, tð Þ

h i

�

� exp � xT � X̂
T

t

	 


R�1
t x� X̂t

� �

=2
n o

dx� X̂t f
1ð Þ X̂t,Y t,Rt, t
� �T

)

b1ν0b
T
1

� ��1
Y t, tð Þ,

(79)

f 2ð Þ X̂t,Y t,Rt, t
� �

¼ ½ð2pÞnx ∣Rt∣g�1=2
ð

∞

�∞

ðx� X̂tÞa Y t, x, tð ÞT

þa Y t, x, tð Þ xT � X̂
T

t

	 


þ bν0b
T
1 Y t, x, tð Þ�

� exp �ðxT � X̂
T

t ÞR�1
t ðx� X̂tÞ=2

n o

dx,

(80)

ρr X̂t,Y t,Rt, t
� �

¼ ½ð2pÞnx
ð

∞

�∞

(

x� X̂t

� �

xT � X̂
T

t

	 


ar Y t, x, tð Þþ

þ x� X̂t

� �

br Y t, x, tð ÞT xT � X̂
T

t

	 


þ br Y t, x, tð Þ xT � X̂
T

t

	 


)

� exp � xT � X̂
T

t

	 


R�1
t x� X̂t

� �

=2
n o

dx r ¼ 1, ny
� �

, (81)

X̂0 ¼ EN X0∣Y0½ �, R0 ¼ EN X0 � X̂0

� �

XT
0 � X̂

T

0

	 


∣Y0

h i

, (82)

where ar being r th element of line-matrix aT1 � âT1
� �

b1ν0b
T
1

� ��1
; bkr being

element of k th line and r th column of the matrix b1ν0b
T
1 ; br being the rth column of

the matrix b1ν0b
T
1 b1ν0b

T
1

� ��1
, br ¼ b1r … bpr

� �

r ¼ 1, n1
� �

.

Proposal 10. If vector SDS USD (2) is reducible to Eqs. (73) and (74) then
Eqs. (75)–(81) at conditions (82) define normal filtering algorithm. The number of
equations is equal to

QNAM ¼ nx þ
nx nx þ 1ð Þ

2
¼ nx nx þ 3ð Þ

2
: (83)
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Hence, if the function a1 is linear in Xt and function b does not depend on Xt all

matrices ρr ¼ 0 and Eq. (76) does not contain _Y t (Section 3).
Analogously Section 6 we get from [12] corresponding equations of normal

conditionally optimal (Pugachev) extrapolator for reduced equations

_Xt ¼ a Xt,Y t, tð Þ þ b Xt, tð ÞV1, (84)

Zt ¼ _Y t ¼ a1 Xt,Y t, tð Þ þ b1 Xt,Y t, tð ÞV2, (85)

where V1 and V2 are normal independent white noises.

7. Examples

Let us consider scalar system

φ _Xt,Xt

� �

� φ1
_Xt

� �

þ φ2 Xtð Þ þU1t ¼ 0 (86)

_U1t ¼ α10 þ α11U1t þ β1V1t: (87)

Here, Xt, _Xt being state variable and its time derivative; U1t being scalar sto-
chastic disturbance; V1t being scalar normal white noise with intensity v1t; φ1 and φ2

being nonlinear functions; α10, α11, β1 being constant parameters. After regression
linearization of nonlinear functions, we have

φ1≈φ10 þ k
φ1
_X
_X
0

t ,φ2≈φ20 þ k
φ2
X X0

t : (88)

At condition kφ
_X
6¼ 0 we get from (86) and (88) equations for mathematical

expectation mX
t ¼ EXt and centered X0

t ¼ Xt �mX
t :

φ10 þ φ20 þmU
1t ¼ 0, (89)

_X
0

t ¼ atX
0
t þ btU

0
1t, (90)

where

φ10 ¼ φ10 m
_X
t ,D

_X
t

	 


, φ20 ¼ φ20 mX
t ,D

X
t

� �

, (91)

at ¼ at mX
t ,m

_X
t ,D

X
t ,D

_X
t ,D

U1
t ,DXU1

t

	 


¼ �kφ2
X kφ1

_X

	 
�1
, bt ¼ � kφ1

_X

	 
�1
: (92)

Equations (87) and (90), for U0
1t ¼ U1t ¼ mU1

t mU1
t ¼ EU1t

� �

and Xt ¼ Xt U1t½ �T
may be presented in vector form

_mX
t ¼ A0t þ Atm

X
t , (93)

_X
0

t ¼ AtX
0
t þ BtV1t, (94)

At ¼
at bt

0 α1

� �

, Bt ¼
0

β1

� �

: (95)

Covariance matrix

KX
t ¼

DX
t KXU1

K
_XU1
t DU1

t

" #

(96)
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and matrix of covariance functions

KX t1, t2ð Þ ¼ KX
11 t1, t2ð Þ KX

12 t1, t2ð Þ
KX

21 t1, t2ð Þ KX
22 t1, t2ð Þ

" #

(97)

satisfy to linear equations for correlation theory (Section 3)

_K
X

t ¼ AtK
X
t þ KX

t A
T
t þ Btν1tB

T
t , KX

t0
¼ KX

0 , (98)

∂KX t1, t2ð Þ
∂t2

¼ KX t1, t2ð ÞAT
t2
, KX t1, t1ð Þ ¼ KX

t1
: (99)

Vector Eq. (98) is equal to the following scalar equations:

_D
X

t ¼ 2 atD
X
t þ btK

XU1
t

� �

, _D
U1

t ¼ 2 α1D
U1
t þ β21ν1t,

_K
XU1

t

¼ atK
XU1
t þ btD

U1
t þ α1K

XU1
t : (100)

From Eq. (90) we calculate variance

D
_X
t ¼ a2tD

X
t þ b2tD

U1
t þ 2atbtK

XU1
t : (101)

Thus, for MAM algorithm we use Eqs. (89), (91), (98)–(101).
Let system (86) and (87) is observable so that

Zt ¼ _Y t ¼ Xt þ V2t: (102)

Then for Kalman-Bucy filter equations (Proposal 4), we have

_̂Xt ¼ AtX̂t þ βt Zt � X̂t

� �

, βt ¼ Rtν
�1
2t det ν2t 6¼ 0ð Þ, _Rt ¼ 2AtRt þ ν1 � ν2β

2
t :

(103)

For Kalman-Bucy extrapolator equations are defined by Proposal 5 at u t, τð Þ ¼
e�a t�τð Þ.

In Table 1, the coefficients of statistical linearization of for typical nonlinear
function are given.

Let us consider normal scalar system

F � Φ _Xt

� �

þ atXt þ ut ¼ 0: (104)

Нere random function admits Pugachev normalization

Φ _Xt

� �

≈Φ0 þ kΦ _X
0

t þ ΔΦ
0
t , (105)

where ΔΦ0
t being normal StP satisfying equation of forming filter

_ΔΦ
0
t ¼ aΔΦt ΔΦ

0
t þ bΔΦt V t: (106)

Note that functions Φ0
t and kΦ depend on E

_Φ

t and D
_Φ

t . Equations (104) and (105)

are decomposing on two equations. First equation at condition kΦ 6¼ 0 is as follows:

Φ0 þ atE
X
t þ ut ¼ 0, Φ0 ¼ kΦ0E

_X
t : (107)
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Second equation at condition kΦ 6¼ 0 is as follows: kΦ _X
0

t þ ΔΦ
0
t þ atX

0
t ¼ 0 may

be presented as
_X
0

t ¼ at kΦ
� ��1

X0
t � kΦ

� ��1
ΔΦ

0
t : (108)

Equations (106) and (108) for Z0
t ¼ X0

t ΔΦ
0
t

� �T
leads to the following vector

equation for covariance matrix

_K
Z

t ¼ AKZ
t þ KZ

t A
T þ BνVBT, (109)

where A ¼ �at kΦ
� ��1 � kΦ

� ��1

0 aΔΦ

" #

, B ¼
0

bΔΦ

� �

. Eqs. (107) and (109) give

the following final relations:

E
_X
t ¼ atE

X
t þ ut

� �

kΦ0
� ��1

, (110)

φ φ0

_Y
3 m m2 þ 3Dð Þ

sinω _Y exp � ω2D
2

	 


sinωm

cosω _Y exp � ω2D
2

	 


cosωm

_Y exp α _Y
� �

mþ αDð Þ exp αmþ α2D
2

	 


_Y sinω _Y m sinωm� ωD cosωmð Þ exp � ω2D
2

	 


_Y cosω _Y m cosωm� ωD sinωmð Þ exp � ω2D
2

	 


sgn _Y 2Φ m
ffiffiffi

D
p
	 


_Y
2
sgn _Y 2D m2

D þ 1
	 


Φ
m
ffiffiffi

D
p
	 


þ 1
ffiffiffiffiffiffi

2πD
p exp �m2

2D

	 
n o

m ¼ m _Y , D ¼ D _Y

� �

l

D
_Y,

l,

�l

∣ _Y∣ ≤ d;

_Y < d;

_Y < � d

8

>

>

<

>

>

:

l 1þm1ð ÞΦ 1þm1

σ1

� 


� 1�m1ð ÞΦ 1�m1

σ1

� 
�

þ

þ σ1
ffiffiffiffiffi

2π
p exp � 1

2

1þm1

σ1

� 
2
( )

� exp � 1

2

1�m1

σ1

� 
2
( )" #)

γ _Y þ d
� �

,

0,

γ _Y � d
� �

∣ _Y∣< � d;

∣ _Y∣ ≤ d;

_Y > d

8

>

>

<

>

>

:

γ 1� 1

m1
1þm1ð ÞΦ 1þm1

σ1

� 


� 1�m1ð ÞΦ 1�m1

σ1

� 
� ��

þ

þ σ1

m1

ffiffiffiffiffi

2π
p exp � 1

2

1�m1

σ1

� 
2
( )

� exp � 1

2

1þm1

σ1

� 
2
( )" #)

�l,

0,

l

_Y < � d;

∣ _Y∣ ≤ d;

_Y > d

8

>

>

<

>

>

:

l Φ
1þm1

σ1

	 


�Φ
1�m1

σ1

	 
h i

_Y1
_Y2 m1m2 þ K12

_Y
2

1
_Y2

m2
1 þ K11

� �

m2 þ 2m1K12

sin ω1
_Y1 þ ω2

_Y2

� �

exp
ω2
1K11 þ 2ω1ω2K12 þ ω2

2K22

2

� �

sin ω1m1 þ ω2m2ð Þ

sgn _Y1 þ _Y2

� �

2Φ ζ1,2
� �

, ζ1,2 ¼
m1 þm2

ffiffiffiffi

D
p , D ¼ K11 þ 2K12 þ K22

Table 1.

Coefficients of statistical linearization for typical nonlinear functions [12–14].
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D
_X
t ¼ a2t kΦ

� ��2
DX

t þ kΦ
� ��2

DΔΦ

t � 2at kΦ
� ��2

KXΔΦ
t ,

_D
X

t ¼ �2 atD
X
t þ KXΔΦ

t

� �

,

_D
ΔΦ

t ¼ 2aΔΦt DΔΦ

t þ bΔΦt
� �2

νV ,

_K
XΔΦ

t ¼ aΔΦt KΔΦ

t � atK
XΔΦ
t þDΔΦ

t

� �

kΦ
� ��1

:

(111)

8. Conclusion

Models of various types of SDS USD arise in problems of analytical modeling
and estimation (filtering, extrapolation, etc.) for control stochastic systems, when it
is possible to neglect higher-order time derivatives. Linear and nonlinear methodo-
logical and algorithmic support of analytical modeling, filtering, and extrapolation
for SDS USD is developed. The methodology is based on the reduction of SDS USD
to SDS by means of linear and nonlinear regression models. Special attention is paid
to SDS USD with multiplicative (parametric) noises. Examples illustrating method-
ology are presented. The described results may be generalized for systems with
stochastically unsolved derivatives and stochastic integrodifferential systems
reducible to the differential.
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