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Abstract

Phenolics compounds in grapes contribute to berry and must color, organoleptic 
properties, nutritional value, antioxidant properties and provide protection against 
environmental challenges. Climate change has place mammoth challenges for the 
viticulture industry in different viticulture regions. Environmental variables determine 
to the greater extent, suitable grapes varieties for fresh as well as premium quality wine 
production. Grape berry composition is particularly affected by heat, drought, and 
intensity of solar irradiation. It is expected that climatic extremes will have an adverse 
effect on berry quality traits such as phenolic compounds in different grape cultivars. 
Polyphenols particularly anthocyanins decrease at elevated temperature, similarly flava-
nols levels increase with better exposure to solar radiation. Water availability is crucial for 
better vine growth and good production, however modest water stress particularly near 
veraison, upregulates the activity of key enzymes of the phenylpropanoid and flavonoid 
pathways. Therefore, it is important to know that how and when phenolic substance 
accumulate in berries and how various cultivars respond. This review elaborates the 
effect of weather conditions on biosynthesis of different phenolic compounds in grapes. 
Berry phenolic substances e.g., total phenolic compounds (TPC), total anthocyanins 
(TAC) and total flavonoid contents (TFC) synthesis is strongly regulated under the influ-
ence of environmental conditions during growing season. In this chapter we, shall focus 
on accumulation of phenolic compounds in grapevine in relation to climatic variations.

Keywords: Grapevine, berry phenolics, anthocyanins, temperature, CO2, radiations, 
water

1. Introduction

1.1 Global climate change

Climate changes are the mammoth challenges that human race will face in coming 
decades as described by Intergovernmental Panel on Climate Change. The increase 
in release of greenhouse gases, particularly CO2 is considered as the main cause of 
global warming. The concentration of CO2 has increased from 280 ppm to 400 ppm 
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subsequently of 0.5–1°C rise in an average temperature. It is expected that mean 
global temperature will rise by 0.2–0.3°C per decade hence rise of 1.2 to 5.8°C by the 
end of the twenty-first century. The increase in mean temperature in key viticulture 
regions was 1.6–1.8°C in Europe and 1.2–1.4°C across the globe during the growing 
seasons from 1950 to 2000 [1–4]. Similarly, a decrease in precipitation has been 
recorded in over southern Europe [5]. In addition to rising temperature, correspond-
ing heat waves are becoming more common and frequent. Climate change is no doubt 
an inevitable challenge that must be dealt with serious policies in the upcoming 
decades. It is a major challenge that viticulture industry has to face in coming decades.

1.2 Climate a key determinant for viticulture

Climate is a limiting factor determining phenology, vegetative growth, physiologi-
cal development, fruit production and consequently wine quality [6–8]. Geographical 
distribution of vineyards is determined by climatic factors. Weather parameters: 
temperatures, solar radiation, precipitation, and the inter-annual seasonal vari-
ability leads to annual changes in vine productivity [9–11]. Extreme weather events: 
hailstorms, excessive rainfall, late frost spells have been recognized as factors having 
detrimental impacts on grapevine productivity and quality [12].

1.3 Climate change impacts on viticulture

It is evident that climate change will have a negative impact on viticulture industry. 
Higher temperature during the active growing season will strongly affect grapevines 
because it is a major driver of development stages of grapevine [13]. Extreme heat 
stress during ripening period will abruptly reduce grapevine metabolism. It may result 
in higher sugar levels and lower acidity with potential increase in chances of wine 
spoilage [14] thereby lower production and quality. Furthermore, extreme heat and 
water stress, under future climates, may threaten final yields and productivity [15].

2. Grapevine phenolic compounds

Phenolic Compounds in grapes account for only a trivial proportion of the berry 
weight but contribute significantly to fresh fruit. All phenolic compounds have some 
common features as; an “aromatic ring” comprising of six carbon atoms having one or 
more hydroxyl (OH) groups or their derivatives as indicated in Table 1. They play an 
important role in color development, astringency, flavor and aroma to grapes. These 
compounds are the main substrates for grape juice and wine oxidation [16–18]. Their 
susceptibility to oxidation due to unsaturated double bonds and hydroxyl groups make 
phenolic compounds valuable antioxidants [19, 20]. Flavonoids and non-flavonoids 
phenolics are produced inside grape berries through biochemical pathway (Figure 1). 
Flavonoids accumulate mainly in the skin, seeds, and stem while neoflavanoids mostly 
accumulate in the mesocarp of the berry.

Phenolic profile of grapevines depends on, region, prevailing weather conditions, 
and site-specific viticultural practices [22–28]. Higher the total phenolic content more 
is antioxidant activity and it is a genotypic character [29–32]. Skin color (yellow, pink, 
red, blue-black and full black) is due to presence of anthocyanins. Anthocyanins are 
synthesized to protect the berries from the negative effect of adverse environmental 
conditions particularly ultraviolet radiation. Accumulation and degradation of 
already synthesized anthocyanins was noticed due to elevated temperatures during 
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Polyphenolic Compounds Basic Chemical Structure Examples

Anthocyanin Cyanidin-3-GLUa

R1=OH, R2=H

Delphinidin-3-GLU

R1=OH, R2=OH

Peonidin-3-GLU

R1=OCH3, R2=H

Malvidin-3-GLU 

R1=OCH3,R2=OCH3

Petunidin-3-GLU

R1=OCH3, R2=OH

Flavonols Isorhamnetin-3-GLU

R1=OCH3, R2=H

Kampferol-3-GLU

R1=H, R2=H

Laricitrin-3-GLU

R1=OCH3, R2=OH

Myricetin-3-GLU

R1=OH, R2=OH

Quercetin-3-GLU

R1=OH, R2=H

Syringetin-3-GLU

R1=OCH3, R2=OCH3

Flavan-3-ols Catechin (Left)

Epicatechin (Right)

Tannins Proanthocyanidin 

tetramer having 

(from top to bottom) 

epigallocatechin, 

epicatechin, catechin, 

and epicatechin 

gallate

Hydroxycinnamic acid Caffeic Acid

R1=OH, R2=OH

Cinnamic Acid

R1=H, R2=H

Coumaric Acid

R1=H, R2=OH

Ferulic Acid

R1=OCH3, R2=OH
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the ripening period [33, 34]. Therefore, in hotter regions the anthocyanin in red and 
black grapes skin is affected more, while climatic conditions in colder growing regions 
favor their biosynthesis. Grapevine varieties (var.) have particular anthocyanin 
fingerprints e.g., malvidin-3-Oglycoside is most abundant in var. ‘Hasansky Sladky’ 
while in var. ‘Zilga’ it is delphinidin-3-O-glycoside. Moreover, their biosynthesis var-
ies from year to year due to annual seasonal climatic variability [35].

Figure 1. 
Shikimate pathway for the biosynthesis of anthocyanins, Flavonols and flavonoids. (reproduced from the idea of 
Velasco et al. [21] with few modifications).

Polyphenolic Compounds Basic Chemical Structure Examples

Hydroxybenzoic acid Gallic acid

R1=OH, R2=OH

Protocatechuic Acid

R1=H, R2=OH

Syringic acid

R1=OCH3, R2=OCH3

Stilbenes Piceid

R1=OH, R2=GLU

Pterostilbene

R1=OCH3, R2=OCH3

Resveratrol

R1=OH, R2=OH

Viniferins

resveratrol polymers

Table 1. 
Different classes of polyphenolic compounds and their basic structures along with examples are given.
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2.1 Phenolic compounds biosynthesis in grapevine

Production of phenoloic compounds is regulated by transcription factors which 
regulate the activity of genes involved in phenolic biosynthetic pathways. Moreover, 
location, timing, and extent of the production of phenolic compounds is also dependent 
on these transcription factors [36, 37]. In addition to grape berries, some flavonoids are 
produced in leaves and are imported via the phloem [38, 39]. Shikimate and malonate 
pathways are the two main “assembly lines”. The shikimate pathway (Figure 1) is the 
part of the biosynthesis chain of most plant phenolics, whereas the malonate pathway 
(Figure 2) is less important compared with Shikimate pathway in plants, but the 
malonate pathway is essential in fungi and bacteria.

3. Key climatic variables affecting grapes polyphenolic compounds

Secondary metabolites such polyphenols play significant ecological functions within 
the defense and signaling mechanisms in plants [40]. Different climatic variables such 
as air temperature, radiation, rainfall, relative humidity, wind, altitude, and topographic 
features play vital role in the polyphenol biosynthesis pathway in grapes. In this section, 
we shall review research studies focusing on key environmental variables.

3.1 Temperature

Temperature plays a significant role in vine phenology whereas increase in mean 
temperature prolonged the vegetative and reproductive cycle of grapevine and 
hence berry developmental and maturity stages are shifted in warmer months of the 

Figure 2. 
Acetate Mevalnoate pathway for monoterpenoids biosynthesis. (reproduced from the idea of Velasco et al. [21] 
with few modifications).
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growing plant reproductive cycles [41]. Available historical records of harvest timings 
from different grape growing regions indicate an advance of 1–2 weeks during last 
few decades [42–47]. Although, some management practices may be the one reason 
for the advancement of ripening [48]. The conjugated effects of progressive phenol-
ogy along with rise in temperatures during berry ripening with higher sugar contents, 
lesser organic acids concentration and altered berry composition of metabolites, 
such as phenolic compounds [41]. Research studies have encompassed the effect of 
wide ranging of temperature intensities; from moderate to high heat stress i.e., up to 
35–45°C during day or night period at key berry development stages. The genotype, 
plant material and experimental constraints may affect the response of berry metabo-
lism to temperature variations [49]. Although, difficult to fully relate with field 
conditions, controlled climate chamber experiments are also conducted to understand 
the influence of environmental variations [50–52].

3.1.1 Temperature impact on phenolic compounds

Effects of temperature on polyphenols are not always consistent as recently high-
lighted [49, 53]. However, there are unequivocal scientific evidence which indicate the 
deleterious effects of elevated temperature on the biosynthesis of anthocyanins in the 
grape berry. Studies of the impact of elevated temperature were validated at physi-
ological and molecular studies [54–63]. It was noticed that heat stress repressed chief 
anthocyanin biosynthesis regulators, such as VviMYBA1 and downstream regulating 
genes such as VviCHI, VviUFGT, VviDFR, VviF3H2, and VviLDOX. However, not 
all of these research studies indicated unambiguous suppression or a strong correla-
tion with lower anthocyanin accumulation. Various aspects of viticulture e.g., vines, 
cultivars, berry development stages, treatment intensities and sampling strategy take 
part in accumulation and production of anthocyanin. The effect of temperature on 
anthocyanin biosynthesis varies highly between different genotypes. For instance, 
when maximum temperature exceeds 35°C during berry ripening, it inhibits the color 
formation prominently e.g., in cv. Grenache than in cv. Carignan [64].

Previously, it has also been established that timings of temperature varia-
tions during day-night period have a strong influence on berry metabolites and 
lower temperature near berry ripening time particularly at night was related with 
improved coloration of grapes [55]. It was recently confirmed through experiments 
at molecular level that lower night temperatures increased anthocyanin accumu-
lation and expression of related genes e.g., VviF3H1, VviUFGT, VviCHS3, and 
VviMYBA1 [65]. More pronouncing effects of lower night temperature were noticed 
near veraison stage in Corvina grapes. In a related study on Kyoho grapes, 3°C rise 
in temperature (27 to 30°C) during berry ripening caused less berry coloration and 
induced a significant decrease in transcript levels of anthocyanin regulating genes 
[66]. Similarly, in cv. Merlot, increase in day’s temperature from 20 to 25°C during 
ripening caused decrease in anthocyanin levels by 37% [63]. In addition to repressing 
of anthocyanin regulating genes, high temperature may stimulate anthocyanin deg-
radation due to the augmented activity of peroxidases [33]. It has been established 
that a peroxidase coding gene; VviPrx3 is up regulated, in berries when exposed to 
high temperature [67], and similar effects have been noticed in other plant species, 
such as Brunfelsia, litchi and strawberry [68–70]. A related increase in quantity 
of acylated and tri-hydroxylated anthocyanins has been observed in cvs. Merlot, 
Cabernet Sauvignon, Sangiovese and Malbec under higher temperature conditions 
[52, 61, 63, 71, 72], alongside overexpression of the acyltransferase gene Vvi3AT 
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activity. Similarly for anthocyanins, elevated temperature impeded flavanol buildup 
while significantly augmented methoxylated (isorhamnetin & syringetin) and 3′, 4′, 
5′-substituted (myricetin & syringetin) flavonols in cv. Merlot. More interestingly, 
rise in temperature may cause a disconnection of sugar-anthocyanin accumulation 
and biosynthesis, hence leading to a lower anthocyanin-sugar ratio which might be 
due to delayed anthocyanin biosynthesis or lesser anthocyanin accumulation during 
ripening phases. The extent of this thermal decoupling is highly cultivar dependent 
as indicated for cv. Grenache and cv. Carignan and can vary even among the clones 
of same cultivar as discussed for cv. Tempranillo [63, 64, 72–75].

The effect of temperature on tannins biosynthesis is yet not fully understood. 
However, it may be pointed that elevated temperature can enhance the production of 
tannin monomers, flavan-3- ols as highlighted by [76]. However, some other studies 
report non-significant effects on tannin production as tannins were not much affected 
by heat stress in cv. Sangiovese at veraison stage. More recently, scientists came up with 
similar results indicating no effect on flavan-3-ol or tannin levels. Although, significantly 
higher galloylation of flavan-3-ols levels were noticed in consistent with earlier findings. 
It was further indicated that an overexpression of UDP glucose-gallic acid-glucosyl-
transferase genes under elevated temperature. Moreover, heat stress also reserved the 
expression levels of members of STS biosynthetic pathway. However, lower temperature 
upregulated STS transcripts hence accelerated stilbene biosynthesis [49, 61, 76–79].

3.2 Radiation

Berry exposure to sunlight is generally associated with better berry quality attri-
butes due to more total soluble solids (TSS), anthocyanins, and phenolics. On the 
other hand, it also lowers acidity and pH along with lower disease incidence due to 
favorable improved microclimate [49, 80–82].

3.2.1 Effect of radiations on phenolic compounds

Increased levels of phenolic compounds have been noticed in cvs. Pinot Noir, 
Riesling, Summer Black and Cabernet Sauvignon owing to better exposure to sunlight 
[83–86]. It also augmented the expression level of regulatory and structural phenyl-
propanoid genes as highlighted by recent studies [87–90]. Flavonoids particularly fla-
vonol glucosides are the most light-responsive phenolic compounds ones whose levels 
increased with better exposure to sunlight. This positive effect was in consistent with 
their UV radiation-screening activity and their capability to reduce oxidative dam-
age. Flavonoids were produced upon exposure to UV-B radiation as adaptive traits to 
reduce the radiation damage, as there exists a strong correlation between physiology 
and quercetin-3-O-glucoside & kaempferol-3-O-glucoside levels in UV-B radiation 
stressed vines [91–97]. Recently, a more comprehensive study elucidated that shoot 
removal and leaf thinning in cvs. Cabernet Sauvignon & Petit Verdot improved light 
exposure, hence it significantly augmented the flavonols kaempferol, quercetin and 
myricetin levels. However, little or no change was noticed for other flavonoid com-
pounds. Similarly, higher levels of hydroxycinnamic acids and flavonol were noticed 
due to increased sun light exposure in cv. Cabernet Sauvignon [90, 98].

Several transcriptomic studies indicated that flavonol genes such as VviGT5, 
VviGT6 and VviFLS1 were induced more than other phenylpropanoids genes when 
exposed to UV radiation as observed in cv. Tempranillo berry skin. In return, lower 
expression level of VviFLS4 gene and its transcriptional regulator i.e., MYB12 was 
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noticed under shade [92]. However, it has not yet been established that to what level 
UV light contributed to stimulate the synthesis of phenolic compounds. It can be 
deduced from literature that UV-B radiations are responsible for overexpression of 
key flavonoid genes [40, 99–104]. Recently, VviHY5 and VviHYH; the two bZIP TFs 
elongated hypocotyl 5 protein (HY5) orthologs were identified as the key components 
of UV-B reaction pathway along with mediated flavonol accumulation owing to high 
radiation exposure in grapevines [100, 105].

Anthocyanin accumulation increased significantly when grapes clusters were 
exposed to increased light, whereas shading decreased them. Recently, it was indi-
cated that the UV-B radiation might prompted up-regulation of miR3627/4376 which 
facilitated anthocyanin accumulation [106, 107]. In a related in vitro study in which 
effect of berry exposure to light and temperature was studied it was inferred that 
elevated light increased anthocyanin levels in grapes [59]. The augmented anthocy-
anin levels found associated with the up regulation of correlated genes of anthocy-
anin biosynthesis pathway. Some other studies also endorse the stimulation of key 
anthocyanin genes e.g., TF VviMYBAa and VviUFGT under higher sun light exposure 
[66, 99]. Interestingly, UV-B radiation prompted the expression of VviMYBA1 gene 
while delaying the down regulation of VviMYBA6 and VviMYBA7 genes at later berry 
developmental stages [105]. Less light exposure modulated the quantity of di- to tri-
hydroxylated anthocyanins more toward tri-hydroxylated anthocyanins as demon-
strated through the down regulation of VviF3′ 5 ′Hs, somewhat similar but inconstant 
trends have been reported in cvs. Cabernet Sauvignon and Petite Verdot under warm 
climatic conditions [59, 90, 98, 99, 106]. However, low light conditions may increase 
non-acylated anthocyanins concentration as highlighted by [92, 107]. There is still 
need for further research to develop a better understanding.

3.3 Water

Water is an important constituent of plant structure and performs variety of 
functions in addition to transport of mineral nutrients from soil. It is a key compo-
nent of photosynthetic pathway in plants. Moreover, water balance is necessary for 
quality table and wine grape production. Similarly, primary and secondary metabolite 
production is regulated by balanced water availability.

3.3.1 Impact of vine water status on phenolic compounds

Different primary and secondary metabolites are significantly influenced by 
drought stress in grapevines. Recent research has focused on probing the effects 
of water on berry physiology and quality attributes [40, 108, 109] and it has been 
noticed that drought stress may increase primary metabolites and polyphenols up 
to 85% and 60% respectively under different stress treatments. The impact of water 
deficit varies with intensity and duration of the stress conditions as well as berry 
developmental stage. Water deficit during the initial growth phases has more negative 
impact on final volume and yield at harvest as it reduces cell expansion, however rate 
of cell expansion is not affected much [110] while ripening phase, and it has little 
impact on berry size. Primary metabolites such as citric acid and glyceric acid synthe-
sis was affected by both short and prolonged stress whereas polyphenols biosynthesis 
was accelerated only by the prolonged drought stress treatment.

Selective water deficit applications increased anthocyanin accumulation in grape 
skin along with the activation of genes of corresponding anthocyanin biosynthesis 
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pathway [111]. For instance, in grape cv. Chardonnay, water stress increased the 
content of flavonols and decreases the expression of genes involved in biosynthesis of 
stilbene precursors [40].

It has been observed that modest water deficit i.e., predawn leaf water potential of 
0.3 to −0.5 MPa is useful for better wine quality especially for red cultivars [112, 113] 
These positive effects may partially be attributed to increased solute concentration owing 
reduced berry volume under water deficit conditions. However, a higher buildup of 
secondary metabolites independent of change in berry volume has been reported [114]. 
More elaborative research findings at molecular level highlighted an upregulation of key 
enzymes of the phenylpropanoid and flavonoid pathways in response to water stress [40, 
115–120]. But these beneficial effects were more noticeable when water deficit occurred 
throughout berry ripening phase [49].

In addition to an increase in the accumulation of phenylpropanoids and flavo-
noids due to water stress, an altered composition of anthocyanins has also been 
noticed owing to increased levels of tri-hydroxylated anthocyanins i.e., petunidin, 
delphinidin and malvidin [111, 121–124]. However, these observed changes in 
the anthocyanin profile of grapes due to water stress appear to be highly varietal 
dependent [125, 126] due to varying genotypic response associated to environ-
mental variables. Similarly, an increase in proanthocyanidin concentration and 
proanthocyanidin polymerization along with higher catechin levels in grape berry 
skins have also been indicated by [127–129]. The increase in phenolic levels when 
water deficit occurred before veraison may be due to concentration effects [130, 131] 
however, several other scientists discussed increase in anthocyanin content at 
berry level [111, 114, 123, 132]. More focused research is needed to validate ribose, 
glyceric acid, citric acid, kaempferol-3-O-glucoside and quercetin-3-O-glucoside 
interactions as indicators of drought stress [133].

3.4 Impacts of elevated CO2 concentration

Elevated atmospheric CO2 is usually favorable for plant growth as it causes an 
increased photosynthetic carbon fixation hence more biomass and yield. Free Air Carbon 
enrichment (FACE) experiments on agronomic crops such as wheat, rice and soybean 
have outlined 12–14% increase in harvestable yield owing to elevated carbon dioxide 
(eCO2) [134–136]. Although, there are limited studies on horticultural crops however, it 
has been indicated that eCO2 increased total antioxidant capacity of fruits and vegetables, 
along with higher concentration of glucose, fructose, total soluble sugars, polyphenols 
compounds, flavonoids, ascorbic acid, and calcium [90]. Research studies on grapevine 
related to eCO2 mainly focused on vegetative growth and photosynthetic responses while 
records on berry metabolism at physiological and molecular level are relatively scarce. 
However, most of the available records suggest an increase in photosynthetic activity 
hence better yield and biomass accumulation [94, 137–141]. Recently dependence of 
berry ripening rates on the carbon fixation was investigated however, only few quality 
attributes were found to be affected due to eCO2 and that particularly; sugars, acids, and 
berry size [138, 142, 143]. Recently, it has been inferred in FACE experiment that eCO2 
did not negatively affected juice and wines quality [144]. Similarly, it had already been 
established that anthocyanins and proanthocyanidins were not affected by eCO2 [137, 
138, 142–145]. Moreover, in multi stress experiments on cv. Temperanillo cuttings where 
elevated temperature condition i.e., +4°C and CO2 i.e., 700 ppm were simulated it was 
deduced that high CO2 in combination with elevated temperature hastened berry ripening 
and decreased high temperature tempted anthocyanin–sugar decoupling in berries [146].
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4. Conclusions

Polyphenols are the key secondary metabolite of grapes and have ample amounts 
of antioxidants. The production and biosynthesis of phenols is regulated by varying 
climatic conditions in addition to genotypic traits. Elevated temperature impairs 
phenolic biosynthesis pathways hence lesser accumulation, while lowers temperatures 
favor their production. On the other hand, excessive radiation may cause degradation 
of these compounds. Optimum sun light penetration is necessary for the activation of 
genes of phenolic biosynthesis pathways. Water balance is also important as mod-
est water deficit near verasion can also promote their activity. For elevated carbon 
dioxide levels (eCO2) despite limited studies, no major negative effects have been 
reported. However, there is need to study grapes phenolic compounds in relation to 
global climate change.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
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