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Chapter

Control of Supply Chains
Kannan Nilakantan

Abstract

This chapter aims to apply control principles in the discrete-time control of
Supply Chains. The primary objective of the control is to keep the inventory levels
(state variables) steady at their predetermined values and reduce any deviations to
zero in the shortest possible time. The disturbances are induced by demand devia-
tions from the planned/anticipated levels. The replenishment flows are the control
variables. Thus, the control action is very similar to a “Linear Regulator with zero
set-point”. A novel development in this chapter is the use of direct Operator
methods to solve the system Difference Equations, thereby obviating the need for
Z-Transforms, block diagrams and transfer functions of classical control theory.
This chapter provides a novel application of control theory as well as an easier
method of solution.

Keywords: Supply Chain Dynamic Modeling, Supply Chain Control, Feedback
Control, Linear Regulator Problem, Direct Operator Methods

1. Introduction

In the field of business, one of the most important constituents of a business
system, and one which can give a business a cutting-edge over the others, is the
supply chain (SC) of the business, and its effective operation and management.

A fundamental strategy associated with supply chains is that of a ‘Responsive
Chain’. A responsive chain focuses on its ability to respond quickly to demand
changes and meet them within the shortest possible time. A responsive chain, by its
very definition, has necessarily to be able to respond swiftly to unanticipated
changes in demand, and this is determined largely by the dynamics of the system.
Under normal circumstances, good responsiveness can be achieved through the
maintenance of adequate pipeline inventories throughout the system, and one of the
factors impacting this decision in a major way, is again the dynamics of the system.
Hence, given the impact of the dynamics of the SC system on its design and
operation as mentioned above, it is imperative to include the tenets of dynamic
analysis in its design and operation. Thus system-dynamic methods are of signifi-
cant value and utility in both SC design and SC operation. The design aspects
pertain to the setting of inventory levels and the operational aspects to choosing the
appropriate system controls for good operational performance.

Thus, we are led naturally to the use of system-dynamic methods and concepts
of control theory for effective control of a supply chain. In the following sections we
explore the dynamic modeling and analysis concepts in effectively controlling a
supply chain that would yield good performance characteristics.
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2. Supply chain dynamics and notation

Supply chain dynamics essentially deals with the dynamic behavior and tempo-
ral variation of the inventories and flows in the system over time when subjected to
demand disturbances.

We now look at a simple three stage serial supply chain, a schematic diagram of
which is given below in Figure 1. Each stage represents an inventory storage facility
in the chain. Stage 1 represents the raw material input storage to a manufacturing
plant, and stage 2 the finished goods inventory storage at the manufacturing plant.
Stage 3 represents the finished goods warehouse (W/H) at the downstream end of the
chain which meets the demand for the finished product, and from which material is
shipped out to customers. The inventory levels at each stage are the state variables of
the system, and the material flows between the stages the control variables.

In constructing a dynamic model of a supply chain system, we adopt the stan-
dard schematic diagram (Figure 1), system notation, and model variables and
equations below, as commonly found in control theory literature [1–9].

We use a discrete time representation of the SC system, as this is more in
keeping with the prevailing practices in the SC industry, wherein the inventory
levels (state variables) are recorded at the end of each period or day. In most cases
the state variable records are updated at the end of each day. Hence, we take our
period to be a single day. However, we need to also emphasize that this need not
always be so and would be dependent entirely on the convenience of the SC practi-
tioners. And hence the state variables are recorded at epochs corresponding to the
end of each period. The flow variables however are aggregated and taken to occur
within and up to the end of each period.

The inventory and flow variables are subscripted to indicate the stages in the
chain. We now give the detailed representation below:

yi kð Þ: inventory at stage i of the chain at time epoch k
with: i = 1, representing (the raw material) the upstream end of the production

facility.
i = 2 representing (the finished goods) the downstream end of the production

facility.
i = 3 representing (the finished goods) the warehouse.
q0i kð Þ: material flow in period (k-1,k] into stage i of the chain
r03 kð Þ: finished goods demand at warehouse in period (k-1,k]
The dynamic equations of the systemarewritten using deviation variables, as under:

xi kð Þ ¼ yi kð Þ � y0i kð Þ for i ¼ 1, 2, 3

qi kð Þ ¼ q0i kð Þ � q0i kð Þ for i ¼ 1, 2, 3

r3 kð Þ ¼ r03 kð Þ � r03 kð Þ

q

1

q

2

q
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Figure 1.
A three-stage serial supply chain.
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where,
y0i kð Þ is the desired or planned inventory level at time k

q0i kð Þ is the desired or planned flow in period (k-1,k]

r03 kð Þ is the anticipated or forecasted demand at the warehouse in period (k-1,k],
based on which the desired inventory levels in the chain have been set.

xi kð Þ is the inventory deviation at time k.
qi kð Þ is the material flow deviation in period (k-1,k].
r3 kð Þ is the deviation in demand observed at the warehouse in (k-1, k].
Under consistent units (in equivalent units of finished goods) for all inventory

and flows in the system, the dynamic equations of the system are written as:

xi kþ 1ð Þ ¼ xi kð Þ þ qi kþ 1ð Þ � qiþ1 kþ 1ð Þ (1)

where for i = 3, q4 kð Þ ¼ r3 kð Þ, the demand outflow from the warehouse. The
system behavior is controlled by the replenishment policies followed in the system.

Now, since the demand is a stochastic variable, it can be split into two compo-
nents, viz., a mean demand component, and a stochastic component which repre-
sents the random variations over and above the mean demand. The mean demand is
what is predicted using forecasting techniques and is the planned offtake and the
demand that the system is designed to meet in the normal course. Since prediction
can never be exact, the residual variation is the stochastic component.

In such stochastic systems, the demand has an additional stochastic term, which
is a white noise term, given by ε kð Þ � WN 0, σ2ð Þ for all k. The sequence of stochas-
tic disturbance components over each period is an independent and identically
distributed sequence of N 0, σ2ð Þ random variables.

The standard initial conditions for the system are: xi kð Þ ¼ 0 for all k≤0 and
r3 kð Þ ¼ 0 for all k≤ 1, i.e. the system is at zero deviation at time k = 0, and the first
deviation in demand is felt at the end of the first period, at k = 1.

The demand disturbance could be of the following Types:

1.a sudden shock demand increase, represented by a Dirac delta input function.

2.a sudden and sustained increase in demand, represented by a step input.

3.a demand with an increasing trend, represented by a ramp input function.

4.a demand with second order (quadratic), third order (cubic), or higher-order
trends represented by higher-order polynomial input functions.

5.a demand with seasonality, represented by a sinusoidal input function.

6.A random component which is represented by a White Noise process.

The first five components pertain to and define the mean demand disturbance,
while the last represents the residual random variations over and above the mean
demand disturbance.

The demand can have any combination of, or even all of the above components in
themean demand, and, of course, the additional stochastic component represented by a
White Noise process. Such demands are often seen in supply chain warehouses.

Thus, a demand disturbance at the downstream end (at the warehouse) provides
the perturbation to the system. The system is controlled through regulation/control
of the replenishment flows which are the control variables in the system.
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Now from the above, we can see that the system response will have two compo-
nents, theMean Response, and a stochastic component of the response. It is themean
response that characterizes the system behavior, while the stochastic component is
characterized by the inventory variance.

3. Dynamic supply chain performance metrics and control action
triggers

3.1 Dynamic performance metrics

The performance metrics of a supply chain that would be of interest to us from a
dynamic performance point of view and control system design are explained below.

Since the demand input to the system suddenly increases, we can expect the
system response to lag the demand and to fluctuate, as the system scrambles to
catch up with the increased demand. Accordingly, the key performance indicators
that would be of importance and interest to us from the point of view of both design
and operation are the following [1–9]:

a. Permanent depletion of the inventory level (the offset), if any.

b. The trough value or the lowest dip in the inventory levels (the undershoot).

c. The amplitude of fluctuations of the inventory.

d. The center-line about which fluctuations occur.

e. The fraction of time the inventory level stays depleted (in the negative
region).

f. The limiting inventory variance.

The first indicator shows whether the system is able to catch up with the
demand and whether it is ultimately restored to its original level, or not. The second
indicator, the trough value, represents the lowest point or value that the inventory
level is likely to touch, and impacts the base stock levels that would have to be carried
to maintain uninterrupted material flows in the system, (adequate pipeline inven-
tories). The third defines the magnitude of fluctuations of the inventory levels, and
high values would naturally be undesirable; and we would like to damp them down
to zero as quickly as possible. The fourth indicates the center-line about which
fluctuations occur and is indicative of the average inventory levels, which we would
like to keep at positive levels for comfortable operation. While the fifth can be taken
to be a surrogate measure of the stock-out risk, and the higher the fraction of time in
the negative region (with a depleted inventory level), the higher could be taken to
be the implied stock-out risk. The last, the inventory variance is the variation that we
could expect even after the system has been restored to its original operating levels
and is commonly taken as a measure of the robustness of the system to random
demand variations.

3.2 Control action triggers

The two most common triggers for initiation of replenishment control action in
the system are [1–9]:
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1.The inventory levels at the W/H, as found in logistic systems and warehouses,

2.The demand variations at the W/H, as in electronic-data-interchange systems.

Thus, the control flows into the W/H are set to a function of the latest available
inventory deviations and latest available Demand deviations. Thus, we have,

q3 kþ 1ð Þ ¼ f x3 k� 1ð Þ, x3 k� 2ð Þ, ::, x3 k� rð Þ; r3 k� 1ð Þ, r3 k� 2ð Þ, … r3 k� pð Þ½ �
(2)

We discuss these points in more detail for a single stage system first.

3.3 Single stage control notation

To differentiate between the standard abbreviations in conventional control
theory, we adopt the following notation used to indicate the type of control used.

P, PI, PID would represent Proportional, Proportional-integral, and
Proportional-integral-derivative control as usual. Additionally, MA denotes a
‘Moving Average’ type of control (explained in detail subsequently).

An ‘I’ within parenthesis would represent ‘inventory-triggered’ control, while
‘D’ within parenthesis would denote a ‘Demand-triggered’ control. Also, ‘ID’within
parenthesis would denote a control which would have both inventory-triggered and
Demand-triggered components. We give examples below.

Thus P(D) (pronounced as “P of D”) denotes Demand-triggered Proportional
control, PI(I) denotes Inventory-triggered PI control. Similarly, PID(ID) (pro-
nounced as “PID of ID”) denotes PID control with inventory-triggered and
Demand-triggered components.

We also could have cases of multiple inventory triggers and multiple-demand
triggers. These will be denoted as follows:

X InDmð Þ control would indicate a control of type X (P, PI, PID, MA, Composite)
with n-inventory trigger terms and m-demand trigger terms. Thus, the control
PD I5D3ð Þ (pronounced as “PD of I5D3”) would be Proportional-derivative control
with 5 inventory triggers and 3 demand triggers.

We now first look at a single stage system below which we take to be the
warehouse end of a SC.

4. Single stage control

4.1 The two response components

Since the demand has both a deterministic component as well as a stochastic
component, the response of the system can also be broken down into two compo-
nents, viz., a deterministic part which is the mean response, and a random or sto-
chastic part characterized by the inventory variance. It is the mean response that
portrays the behavior of the system and yields the performance indicators of the
system. Whereas, the stochastic part, represents the random fluctuations that have
to be accounted for even after the system is brought under full control.

From the above discussion we can see the close parallel with conventional
feedback control theory. Here the information about the warehouse inventory (the
state variable) is fed back to the system for initiating replenishment flow control
action. Additionally, we can also have controls wherein the disturbance is also
directly fed back to the system for initiation of control action.
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4.2 Single stage system controls and transportation lags

In close parallel with classical feedback control theory, the control flows are
functions of the state variables and the demand or input perturbation to the system.
The types of functions used also closely parallel classical control theory. And hence
we have P, PI, and PID controls.

Additionally, we also have Moving Average (MA) controls, wherein the control
flow is set to a weighted Moving Average of the latest available inventory deviations
of up to ‘r’ periods back. The parameter ‘r’ is termed the ‘Order’ of the Moving
Average.

We first look at Proportional Controls.
Now, for Proportional Controls of the P(I) type, the control flows into the

warehouse in stage 3 of the chain would be given by:

q3 kþ 1ð Þ ¼ K3x3 k� 1� l3ð Þ (3)

where l3 is the transportation lag in the flows into the warehouse from the
upstream unit of the system, i.e., the finished goods inventory at the manufacturing
plant in our case. And K3 is the constant of proportionality between the control flow
and the latest available inventory deviation based on which the order is initiated (and
hence ‘Proportional’ to the error in conventional control theory).

The development herein corresponds to the ‘Regulator Problem’ with ‘set point’
of zero. And hence control of a Responsive Chain parallels the regulator problem in
conventional control theory.

In conventional modeling of SCs, the lag is taken as the number of periods
strictly between the period of order initiation and the period of arrival of the
consignment, not including the period of arrival of the consignment. Thus, the lag is
taken to be zero if the replenishment consignment arrives in the period immediately
succeeding the period of order initiation. Instantaneous replenishment is not envis-
aged and is very rare in SC contexts. Arrival of the consignment within the same
period of order initiation is also not envisaged and is very rare in such contexts. The
earliest arrival of an ordered consignment is taken to be the immediately succeeding
period, for which we take the lag as zero.

This convention is based on what is normally followed in the industry and
practice, as well as the literature on dynamic modeling of SCs.

Hence in our further development of dynamic models of SCs we take the lag as
zero if an order initiated in period k i.e., in the interval (k – 1, k] arrives in period
(k + 1), i.e., in the interval (k, k + 1].

For a transportation lag of ‘l’ periods, an order placed in the interval (k – 1, k]
would arrive in the interval (k + l, k + l + 1].

Hence for the warehouse under zero lag the control flows for P(I) control would
be set as:

q3 kþ 1ð Þ ¼ K3x3 k� 1ð Þ (4)

Now it is to be noted that the order is initiated in period k i.e., in the interval (k –

1, k] based on the latest fully observed inventory deviation which in this case would be
that at the start of period k, which is the inventory recorded at the end of period (k-
1) i.e., x3 k� 1ð Þ. We take it that since the inflows in period k would be the aggregate
of flows in the interval (k – 1, k], and the order is initiated within the period k (and
not at time point k), the latest available fully observed inventory level would be
x3 k� 1ð Þ and not x3 kð Þ because x3 kð Þ would not be available to the order initiator
within period k. The value of x3 kð Þ is recorded at the closure of period k, after the
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cessation of all activities including the action of ordering, of period k. Thus, replen-
ishment orders need to be initiated within and before the closure of a period and not
at the end of a period.

Thus, warehouse records would be updated at the closure of the day’s operations
and would show the closing inventory and the replenishment orders placed during the
day. The replenishment orders would have been placed based on the previous day’s
closing stock and would arrive during the course of the next day if the lag is zero.

This is the convention that we will follow in the further development of the
models.

We next look at the next type of control, which is the PI(I) control.
For the Proportional-Integral (PI(I) type) control case with zero lag, the control

flows at the warehouse would be set as under:

q3 kþ 1ð Þ ¼ K3x3 k� 1ð Þ þ Kc

X

k�1

m¼0

x3 mð Þ (5)

where the second term is the integral term in our discrete-time system, and Kc is
the proportionality constant (gain term) factor of the integral of the error.

Next we have the PID(I) control wherein the control flows into the warehouse
under zero lag would be set to:

q3 kþ 1ð Þ ¼ K3x3 k� 1ð Þ þ Kc

X

k�1

m¼0

x3 mð Þ þ Kd x3 k� 1ð Þ � x3 k� 2ð Þð Þ (6)

where the last term represents the derivative term in our discrete-time system,
and Kd is the proportionality constant factor (gain term) of the derivative compo-
nent of the control.

Next we have the Moving Average (MA) type of control (MA(I) type), for
which the control flows into the warehouse under zero lag would be set to:

q3 kþ 1ð Þ ¼ K1
3x3 k� 1ð Þ þ K2

3x k� 2ð Þ þ K3
3x k� 3ð Þ þ … … þ Kr

3x k� rð Þ (7)

where the r is the order of the moving average, the Ks are the control parameters
(the weights) of the MA terms. Thus, the control flow is set to a weighted moving
average of the latest available fully observed inventory levels up to r period back.

The above controls discussed above are the conventional inventory-triggered
schemes. In all these types of controls, we could additionally have demand-
triggered terms also, like the PI(ID), PID(ID), MA(ID) etc.

We discuss some of them below for single stage systems.

5. Solution of single stage systems

Firstly, we note herein that in solving for the response of a supply chain system,
we will not use the Z-transform nor block diagrams and transfer functions as in
conventional control theory. Rather we will work directly on the system difference
equation in the time domain itself. And instead, we will use direct Operator
methods to obtain the system solution and response (rather than the transformed
equations and inverse transforms). This is one of the advantages of this modeling
paradigm.

Another advantage of the type of discrete time modeling taken up here is that
transportation lags do not result in differential-delay equations as in conventional
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continuous-time control theory. Rather, transportation lags would increase the
order of the resulting system difference equation, which is expected to be easier to
solve than differential-delay equations.

We now take up the simplest form of control which is the P(I) control and
illustrate the formulation of the system equation and its solution method.

5.1 P(I) control under zero lag

The control is an inventory-triggered Proportional control. And we take the
Replenishment Lag = 0 in the simplest case.

The flow balance equation for the warehouse is given by:

x3 kþ 1ð Þ ¼ x3 kð Þ þ q3 kþ 1ð Þ � r3 kþ 1ð Þ (8)

The control flows into the warehouse are given by:

q3 kþ 1ð Þ ¼ K3x3 k� 1ð Þ (9)

It is to be noted that the value of K3 < 0, since the control flows and inventory
deviation have to be of opposite sign, i.e., when the inventory deviation is (�)ve
(inventory is at a depleted level) then the flow deviation has to be (+)ve to enable
more/extra flow into the warehouse to make up the inventory shortfall. Likewise, if
the inventory deviation is (+)ve (extra inventory in stock) then the flow deviation
has to be (�)ve (i.e., reduced flow) to reduce the inflow into the warehouse to
maintain inventory levels.

Thus, we can clearly see that the controls are of the ‘feedback’ type, and they
seek to keep the inventory deviation at zero level, which is just the’ Linear Regulator
with zero set-point’ in standard control theory.

Thus, substituting for the control flow into the flow balance eqn. Above, yields
the system-dynamic eqn. For the warehouse as:

x3 kþ 1ð Þ � x3 kð Þ þ K3x3 k� 1ð Þ � r3 kþ 1ð Þ (10)

Or equivalently, x3 kþ 1ð Þ � x3 kð Þ � K3x3 k� 1ð Þ � �r3 kþ 1ð Þ (11)

The above is the deterministic part of the system equation. Since demand is a
stochastic variable with a stochastic component, the complete system equation is
given by:

x3 kþ 1ð Þ � x3 kð Þ � K3x k� 1ð Þ � �r3 kþ 1ð Þ � ε kþ 1ð Þ (12)

which has both parts. To solve the system equation completely, we split it into its
two components and solve for each of the components separately. We hence solve
the following two equations, one each for the deterministic part and the stochastic
part.

xdet3 kþ 1ð Þ � xdet3 kð Þ � K3x
det
3 k� 1ð Þ � �r3 kþ 1ð Þ for the deterministic part, and,

(13)

xstoc3 kþ 1ð Þ � xstoc3 kð Þ � K3x
stoc
3 k� 1ð Þ � �ε kþ 1ð Þ for the stochastic part: (14)

The first is a deterministic Linear Difference Equation, and the second, a
Stochastic Linear Difference Equation (SDE).
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Both are second-order Linear Difference Equations (LDEs) in the state variable
x3 kð Þ and can be solved by direct Operator methods for any type of input or
disturbance term on the RHS of the system LDE.

An excellent treatment of difference calculus and solution methods for LDEs is
given in [10]. We follow the methods given therein.

In order to solve the LDE, we first introduce the Forward Shift Operator E as

under: Ex3 kð Þ � x3 kþ 1ð Þ, with the important property that: E Ex3 kð Þ½ � ¼ E2x3 kð Þ ¼
x3 kþ 2ð Þ. Before using the Operator, we first write the LDE in standard form as
under: (the lowest time value is taken as k):

x3 kþ 2ð Þ � x3 kþ 1ð Þ � K3x3 kð Þ � �r3 kþ 2ð Þ (15)

Now using the forward Shift Operator E, we can write the LDE in Operator
form as:

E2 � E� K3

� �

xdet3 kð Þ � �r3 kþ 2ð Þ for the deterministic part, and, (16)

E2 � E� K3

� �

xstoc3 kð Þ � �ε kþ 2ð Þ for the stochastic part: (17)

5.1.1 The mean response: solution of the deterministic LDE

We first look at the deterministic part of the solution below, which will yield the
mean response. For notational convenience, we drop the superscript on x3 kð Þ.

E2 � E� K3

� �

x3 kð Þ � �r3 kþ 2ð Þ

Now this is an LDE of order two (the order being the highest power of the
Operator E).

We write the Characteristic Equation of the LDE as [10]:

α2 � α� K3 ¼ 0 (18)

to determine the characteristic roots of the LHS Operator.

From which we get the roots as : α1=2 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4K3
p

2
: (19)

The stability of the system is entirely controlled by the roots of the LHS Opera-
tor. And elementary analysis leads to the following stability conditions:

K3 ≥0: instability
�1=4≤K3 <0: stability with non-oscillatory response
�1≤K3 < � 1=4: stability with oscillatory behavior
K3 < � 1: instability with oscillatory behavior
Now we take up the solution of the system LDE for a unit step increase in

demand, i.e.,

r3 kþ 1ð Þ ¼ 1, ∀k≥0 (20)

Substituting for the demand disturbance in the system equation yields the LDE:

E2 � E� K3

� �

x3 kð Þ � �1 (21)

which we can call the “Original Non-Homogeneous Eqn.” (O-NHE).
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We first look at the solution of the homogeneous LDE (i.e., with RHS = 0). The
homogeneous LDE is:

E2 � E� K3

� �

x3 kð Þ � 0 (22)

which upon factoring the LHS Operator can be written as: (λ1, λ2 being the
distinct roots of the LHS Operator):

E� λ1ð Þ E� λ2ð Þ½ �x3 kð Þ � 0 (23)

which has the solution as: x3 kð Þ � C1λ
k
1 þ C2λ

k
2 for the case of distinct roots.

For a repeated root, the solution is given by: x3 kð Þ � C0 þ C1kð Þλk for a repeated
root of algebraic multiplicity two.

Now that we have the solution of the homogeneous LDE, we next look for a
particular solution of the Original Non-Homogeneous LDE (O-NHE).

A standard method of solution of the Non-homogeneous eqn. is by the ‘Annihi-
lator Method’ [10].

We look for the Operator that annihilates the RHS terms of the O-NHE, say A
(E). Then operating by the Annihilator on both sides of the O-NHE yields:

A Eð Þ E� λ1ð Þ E� λ2ð Þ½ �x3 kð Þ � A Eð Þr3 kþ 2ð Þ � 0 (24)

which is a homogeneous LDE albeit of a higher order, but which can be solved
by factorizing the LHS Operator. As an example, in our case of a unit step distur-
bance, r3 kð Þ � �1, ∀k≥ 1.

And the Annihilator is given by:

A Eð Þ � E� 1ð Þ,∵ E� 1ð Þr3 kð Þ � � E� 1ð Þ 1ð Þ ¼ 0

And hence the equivalent Homogeneous LDE is given by:

E� 1ð Þ E� λ1ð Þ E� λ2ð Þ½ �x3 kð Þ � 0

which has the solution:

x3 kð Þ � D 1k
� �

þ C1λ
k
1 þ C2λ

k
2 � Dþ C1λ

k
1 þ C2λ

k
2 for the case of distinct roots:

(25)

x3 kð Þ � D 1ð Þk þ C0 þ C1kð Þλk for the case of repeated roots (26)

Nowwenote that theO-NHEbeing of order two,will admit only two undetermined
constants. The above solution, however, has three undetermined constants. The third
was introduced byusdue to theAnnihilator.Hence to determine the extra constantD in
the solution, we substitute the solution into the O-NHE to determine D. Thus, and
noting that the terms involving the roots of the LHSoperator of theO-NHEare precisely
the homogeneous solution terms of theO-NHE,we only need substitute the extra terms
introduced by the Annihilator into theO-NHE. Hence, we have:

E� λ1ð Þ E� λ2ð Þ½ �D � E2 � E� K3

� �

D ¼ �1

Noting that E(D) = D itself (∵E Dð Þ � D kþ 1ð Þ � D, ∀k), we obtain D kþ 2ð Þ �
D kþ 1ð Þ � K3D � D�D� K3D ¼ �1 from which we readily obtain

D ¼ 1=K3 which is �ð Þve due to the �ð Þve sign of K3: (27)
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Thus, the full solution is given by:

x3 kð Þ � 1=K3 þ C1λ
k
1 þ C2λ

k
2 for the case of distinct roots, and (28)

x3 kð Þ � 1=K3 þ C0 þ C1kð Þλk for the case of repeated roots: (29)

Now, for stable solutions,wewill have λ1j j< 1, λ2j j< 1, andhence the terms involving
the roots of the LHSOperator decay to zero for large k, leaving the ‘Offset’ term as 1=K3

which is the Offset value. The Offset value is (�)ve because of the (�)ve sign ofK3.
The Damping rate, which is the rate at which the fluctuations decay to zero are

given by the magnitudes of the roots of the LHS Operator λ1j jk, λ2j jk
� 	

, which can

clearly be seen to decrease in magnitude with decrease in magnitude of K3j j.
However, the Offset value increases in magnitude with decrease of K3.

We take the case of distinct roots first, say for a value of K3 ¼ �1=2, in the stable
region.

Hence, we have the system equation as:

E2 � E� K3

� �

x3 kð Þ � E� E� �1=2ð Þ½ �x3 kð Þ � �1 (30)

The roots of the LHS Operator are readily obtained as: λ ¼ 1=2ð Þ �
1=2ð Þj, λ1j j< 1, λ2j j< 1, j ¼

ffiffiffiffiffiffi

�1
p

, which can be written in the form.

λ ¼ ρe�jθ � 1=
ffiffiffi

2
p� �

e�jπ=4, which hence yields the homogeneous solution as:

ACos kπ=4ð Þ þ BSin kπ=4ð Þf g 1=
ffiffiffi

2
p� �k

, and hence the full solution as:

x3 kð Þ � 1=K3ð Þ þ ACos kπ=4ð Þ þ BSin kπ=4ð Þf g 1=
ffiffiffi

2
p� 	k

(31)

� �2þ ACos kπ=4ð Þ þ BSin kπ=4ð Þf g 1=
ffiffiffi

2
p� 	k

, (32)

which shows a Damping Rate of the Order of O 1=
ffiffiffi

2
p� �k ¼ O 0:707ð Þk, with an

Offset of - 2 units. The response if plotted in Figure 2, and the ‘Undershoot’ is
obtained as �2.5 units.

We next take a value of K3 ¼ �1=4 for the case of repeated roots, again in the
stable region. The roots of the LHS Operator are obtained as: λ1 ¼ λ2 ¼ λ ¼ 1=2, and
the full solution as:

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 3 5 7 9 11 13 15 17 19 21 23

n
oit

ai
v

e
D

yr
ot

n
e

v
nI

)
k(x

Time,   k

k3 = -1/2, Stable

Oscilla�ons

K3 = -1/4, Stable, Non-

Oscillatory

K3 = -1, Marginal Stability

Figure 2.
P(I) control.
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x3 kð Þ � 1=K3ð Þ þ C0 þ C1kf g 1=2ð Þk which for K3 ¼ �1=4 yields (33)

x3 kð Þ � �4þ C0 þ C1kf g 1=2ð Þk, (34)

which shows a Damping Rate of the Order of O 1=2ð Þk ¼ O 0:5ð Þk, but with a high
Offset value of - 4 units, and an Undershoot of - 4 units.

Thus, while we would like the oscillations to be damped out rapidly, this would
compromise on the Offset value, which would impact the base stock requirements
of the system.

Thus, for the practitioner, the implications are quite clear: there is a trade-off
between stability and rapid damping on the one hand, and the base stock requirements of
the system (for low stock-out risk) on the other. The higher the damping (stability)
required, the higher would be the base-stock requirements to keep stock-out risk low; and
alternatively, the higher the (stability) damping achieved, the higher would be the stock-
out risk at fixed base-stock levels.

We next obtain the undetermined constants in the general solutions above,
using the Initial Conditions (ICs) of the system, as under:

The standard ICs of the system are as: x3 kð Þ � 0, r3 kð Þ � 0, ∀k≤0f g.
Now the system LDE: E2 � E� K3

� �

x3 kð Þ � �r kþ 2ð Þ � �1, ∀k≥0 is valid for
∀k≥0.

And hence the ICs for our warehouse system can be obtained from the system
equation itself using the standard system ICs and yields: x3 0ð Þ ¼ 0, x3 1ð Þ ¼ �1f g.
Substituting these ICs into the solutions above yields the full solutions as:

For K3 ¼ �1=2 : x3 kð Þ � �2þ 2Cos kπ=4ð Þ 1=
ffiffiffi

2
p� 	k

, k≥0 (35)

For K3 ¼ �1=4 : x3 kð Þ � �4þ 4þ 2kð Þ 1=2ð Þk, k≥0: (36)

We additionally examine the case for K3 ¼ �1 (the maximum possible magni-
tude for stability), the response is given by

x3 kð Þ � �1þ ACos kπ=3ð Þ þ BSin kπ=3ð Þ½ � 1ð Þk, k≥0, which using the LDE ICs
yields:

x3 kð Þ � �1þ Cos kπ=3ð Þ þ 1=
ffiffiffi

3
p� 	

Sin kπ=3ð Þ, k≥0, (37)

which can be simplified to.

x3 kð Þ ¼ �1� 2=
ffiffiffi

3
p� 	

Sin k� 1ð Þπ=3ð Þ
n o

H k� 1ð Þ, k≥ 1, x3 0ð Þ ¼ 0: (38)

where H(.) is the unit Heaviside step function and yields a sinusoidal pattern

with a center-line of – 1 and constant amplitude of 2=
ffiffiffi

3
p

and the maximum negative
deviation in inventory, the undershoot, equal to �2.

This last case is that of marginal stability characterized by constant amplitude
perpetual oscillations which never die down to zero.

The responses for the three cases above are plotted in Figure 2.

5.1.2 The limiting inventory variance: solution of the SDE

We next look at the determination of the limiting inventory variance, which is a
measure of the variation that we could expect even after the system (mean
inventory level) has been restored to its original value.

Also, for the behavior of the mean response as well as our inferences from it to
be meaningful, it is necessary that the limiting inventory variance be bounded and

12

Control Systems in Engineering and Optimization Techniques



finite. We can then expect the inventory levels to be within the band given by:

x3 kð Þdet � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim t!∞var x3 kð Þð Þ
p

, where x3 kð Þdet is the mean response that has been
determined above from the deterministic system LDE.

In order to determine the limiting inventory variance, we make use of the
stochastic component of the system equation and determine the stochastic part of
the response. For our system the Stochastic LDE (or SDE) is as under:

E2 � E� K3

� �

x3 kð Þ � �ε kþ 2ð Þ, (39)

where the term on the RHS of the SDE is the random variation represented by a
White Noise Process, with ε kð Þ � WN 0, σ2ð Þ.

We can note that the LHS Operator is again the same as in the deterministic part
of the system LDE that we have solved for above. Hence the roots of the LHS
Operator remain unaltered in the SDE also.

Now following the method used in [11], we can note that if unity is not a root of
the LHS Operator, then the SDE admits as a solution, an infinite weighted Moving
Average representation in terms of the White Noise disturbance terms as under:

x3 kð Þstoc �
X

k�1

l¼0

βlε k� lð Þ (40)

where the βl s are the weights.
And hence the stochastic part of the solution of the system eqn. can be written as

an infinite linear combination of the white noise disturbance terms.
Now since the individual white noise terms are Uncorrelated and Normal, i.e.,

with ε kð Þ � N 0, σ2ð Þ, and, with Cov ε ið Þ, ε jð Þð Þ ¼ δijσ
2, δij ¼

0, i 6¼ j

1, i ¼ j




, the limiting

variance of x(k) is given by:

lim k!∞var x3 kð Þð Þ ¼ lim k!∞var
X

k�1

l¼0

βlε k� lð Þ
( ) !

¼ lim k!∞
X

k

l¼0

β2l

( )

σ2

(41)

In order to solve for the weighting terms, the βs, we substitute the solution into
the system SDE above, as under:

E2 � E� K3

� �

x3 kð Þstoc � �ε kþ 2ð Þ, valid for all k≥0, (42)

which is

E2 � E� K3

� �

X

k�1

l¼0

βlε k� lð Þ
( )

� �ε kþ 2ð Þ, k≥0: (43)

Another and more convenient way to write the SDE is to use the Backward Shift
Operator L, defined by:

Lx kð Þ ¼ x k� 1ð Þ, i:e:,L ¼ E�1,E ¼ L�1: (44)

The SDE for the βs becomes:

1� L� K3L
2

� �

X

k�1

l¼0

βlε k� lð Þ
( )

� �ε kð Þ, k≥0, (45)
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which is

1� L� K3L
2

� �

β0ε kð Þ þ β1ε k� 1ð Þ þ β2ε k� 2ð Þ þ β3ε k� 3ð Þ…f g � �ε kð Þ, k≥0

(46)

Now comparing coefficients of ε(k) for each k, yields the system of equations as
below:

LDE

term

Coefft of

ε(k)

Coefft of

ε(k-1)

Coefft of

ε(k-2)

Coefft of

ε(k-3)

Coefft of

ε(k-4)

Coefft of

ε(k-5)

… . Coefft of

ε(k)

1 β0 β1 β2 β3 β4 β5 … .. βk

- L 0 �β0 �β1 �β2 �β3 �β4 … .. �βk�1

�K3L
2 0 0 �K3β0 �K3β1 �K3β2 �K3β3 … .. �K3βk�2

RHS -1 0 0 0 0 0 0 0

The above set of equations yields: β0 ¼ �1, β1 � β0 ¼ 0,&, βk � βk�1 �
K3βk�2 ¼ 0, ∀k≥ 2, which is an LDE for the βs, as.

E2 � E� K3

� �

βk � 0, ∀k≥0,with ICs : β0 ¼ �1 ¼ β1f g: (47)

We can note that the LHS Operator is the same as for the system LDE, and hence
has the same characteristics and form of solution.

We first illustrate the computation for the stable case K3 ¼ �1=2, for which the

solution form has already been obtained as: ACos kπ=4ð Þ þ BSin kπ=4ð Þð Þ 1=
ffiffiffi

2
p� �k

,
and hence plugging in the ICs, we have the solution for βs as:

βk � �Cos kπ=4ð Þ � Sin kπ=4ð Þð Þ 1=
ffiffiffi

2
p� 	k

, k≥0:

To obtain the limiting inventory variance, we firstly note that:

β2k ¼ �Cos kπ=4ð Þ � Sin kπ=4ð Þð Þ2 1=2ð Þk ¼ 1� 2Sinkπ=2ð Þ 1=2ð Þk ≤ 3 1=2ð Þk: (48)

And hence,

Limk!∞
Xk

l¼0
β2l ≤ 1þ 1þ 3 1=2ð Þ2 1þ 1=2ð Þ þ 1=2ð Þ2 þ 1=2ð Þ3 þ … …

n o

¼ 2þ 3=2

¼ 3:5:

(49)

Hence, we have: Limk!∞var x3 kð Þð Þ≤ 3:5σ2, showing that the inventory variance
is bounded and finite for this case.

We next illustrate the computation for the marginally stable case K3 ¼ �1, for
which the solution form has already been obtained as: ACos kπ=3ð Þ þ BSin kπ=3ð Þ,
and hence plugging in the ICs, we have the solution for the βs as:

βk � �Cos kπ=3ð Þ � 1=
ffiffiffi

3
p� 	

Sin kπ=3ð Þ � 2=
ffiffiffi

3
p� 	

Cos kπ=3� π=6ð Þ, k≥0 (50)

And we can see from the above that the βs oscillate in value, from �1 to 0 to +1
infinitely often, i.e., the sequence {…0, �1, �1, 0, +1,+1, 0… ..} repeats infinitely

often. And hence the series
P

∞

k¼0β
2
k diverges to infinity.
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Hence in this case the limiting inventory variance is not bounded and not finite.
It can similarly be shown that the limiting inventory variance is not bounded for

unstable solutions also.
Thus, the limiting inventory variance will be bounded only for stable cases.

5.1.3 The complete solution

We can also note from the above discussion and work up that we have also

obtained the stochastic part of the solution, as: x3 kð Þstoc �
Pk�1

l¼0βlε k� lð Þ, where the
βs are as has been obtained above. Thus, the complete solution can be written as:

x3 kð Þ � x3 kð Þdet þ x3 kð Þstoc � x3 kð Þdet þ
X

k�1

l¼0

βlε k� lð Þ (51)

where x3 kð Þdet is the mean response derived from the solution of the determin-
istic part of the LDE, and the βs in the stochastic part are as obtained above by
solution of the stochastic part of the system equation, the SDE.

The above representation proves useful for simulation purposes.
We next take up the P(ID) control. We discuss only the deterministic

system LDE hereafter, since the stochastic part of the solution and the limiting
inventory can be obtained by methods similar to that discussed above in all cases
to follow.

5.2 P(ID) control under zero lag

In this type of control an additional demand-triggered component is also added
to the control thereby making it more proactive. The control initiates corrective
replenishment action no sooner than a demand deviation is observed. It does not
wait for an inventory deviation to take place before initiating replenishment action
though it does have an inventory-triggered component also.

The replenishment control flow is given by:

q3 kþ 1ð Þ � K3x3 k� 1ð Þ þ K3
0r3 k� 1ð Þ (52)

where the first term is the inventory-triggered component and the second the
demand-triggered component. Substituting for the control flow into the system
equation yields:

x3 kþ 1ð Þ � x3 kð Þ þ K3x3 k� 1ð Þ þ K3
0r3 k� 1ð Þ � r3 kþ 1ð Þ (53)

which can be written as

x3 kþ 1ð Þ � x3 kð Þ � K3x3 k� 1ð Þ � K3
0r3 k� 1ð Þ � r3 kþ 1ð Þ (54)

We can note that the addition of the demand-triggered component has left the
LHS of the LDE unaltered. Thus, the LHS Operator of the LDE remains the same
and is unaffected by addition of demand-triggered components to the control. The
system eqn. can hence be written in Operator form as:

E2 � E� K3

� �

x3 kð Þ � K3
0r3 kð Þ � r3 kþ 2ð Þ valid in k≥0 (55)

Since r3 kð Þ � 1, ∀k≥ 1, the system LDE can be written as:
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E2 � E� K3

� �

x3 kð Þ � K3
0 � 1 valid in k≥ 1, (56)

with the ICs now as : x3 1ð Þ ¼ �1, x3 2ð Þ ¼ �2f g: (57)

The ICs for the LDE have been obtained from the system Eq. (55) above using
the standard system ICs; x3 kð Þ, r3 kð Þð Þ � 0, 0ð Þ, ∀k≤0f g applied to the Eq. (55)
above.

Since the LHS Operator is the same as for the earlier P(I) control, the stability
analysis remains the same as earlier, as also the roots of the LHS Operator for
various values of the inventory-trigger parameter discussed earlier,
i.e., K3 ¼ �1=4,�1=2,�1f g.

The solutions are the same as given earlier in Eqs. (25) and (26).
And substituting the solution back into the O-NHE yields the value of the extra

constant D as

D ¼ K3
0 � 1

K3
, (58)

which hence yields the solutions for the two cases as:

x3 kð Þ � K3
0 � 1

� �

=K3 þ C1λ
k
1 þ C2λ

k
2 for the case of distinct roots (59)

x3 kð Þ � K3
0 � 1

� �

=K3 þ C0 þ C1kð Þλk for the case of repeated roots ðK3 ¼ �1=4Þ
(60)

where the offset term is now given by K3
0 � 1

� �

=K3 for both cases.
The important point to note in the above solution is that the offset can be made

zero by choice of the demand-trigger parameter as K3
0 ¼ 1.

And hence we can observe the enhanced response of the P(ID) control over the

earlier P(I) control, in that the Offset can now be controlled by us by choice of K3
0.

In fact, we can also achieve a (+)ve value of the offset by choosing K3
0 ≥ 1.

We can now obtain the full solutions for the three cases above, using the LDE

ICs x3 1ð Þ ¼ �1, x3 2ð Þ ¼ �2f g. We take K3
0 ¼ 1 to be able to obtain zero offset.

Hence, we have:

For K3 ¼ �1=4 the repeated roots caseð Þ : x3 kð Þ � 4� 6kð Þ 1=2ð Þk, k≥ 1 (61)

For K3 ¼ �1=2 : x3 kð Þ � 2
ffiffiffi

5
p� 	

Cos kπ=4� ϕð Þ 1=
ffiffiffi

2
p� 	k

, tanϕ ¼ 2, k≥ 1 (62)

For K3 ¼ �1 the marginal stability case
� �

: x3 kð Þ � 2Cos kþ 1ð Þπ=3ð Þ, k≥ 1

(63)

The solution curves are plotted in Figure 3, from which we can see that the
response in all cases has zero offset.

We can similarly extend the modeling and analysis to PI(I), PID(I), and MA(ID)
controls.

We could also have different types of input disturbances as indicated earlier in
Section 3.1. Additionally, the third dimension of our analysis could be to have non-
zero lags, i.e., lags of one, two periods, and so on. Cases with non-zero and higher
lags will result in higher order system LDEs, and the LHS Operator would be of a
higher order.

Further details of the above can be obtained in [1–9].
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6. Controls for multi-stage supply chains

We look at the serial supply chain system as given in Figure 1.
We can see from Figure 1 that the immediately succeeding downstream stage in

a supply chain will provide the “demand perturbation” for the immediately pre-
ceding stage. Thus, the demand perturbation at the warehouse at the downstream
end will successively be felt up the chain. And the single-stage analysis described
above can be used in turn for each stage of the chain.

For non-serial supply chains, the arguments are similar and single-stage analysis
can be used as described above.

Details of some of these analyses can be found in [1–9].

7. Conclusion

This chapter has presented the application of control concepts to the control of
supply chains. The state variables have been taken to be the inventory levels, while
the control variables are the replenishment flows into the various stages of the
system. The conventional P, PI, PID controls have been discussed, as also some
newer forms of control which are especially applicable to supply chains and ware-
houses. The performance of P(I) and P(ID) controls have been derived in detail,
and their performance analyzed.

A significant feature of this chapter is that the conventional block diagrams and
transfer functions of conventional control theory have not been used. Rather direct
Operator Methods have been used to good advantage to solve the system equations.
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