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Chapter

Abel and Euler Summation
Formulas for SBV ð Þ Functions
Sergio Venturini

Abstract

The purpose of this paper is to show that the natural setting for various Abel and
Euler-Maclaurin summation formulas is the class of special function of bounded
variation. A function of one real variable is of bounded variation if its distributional
derivative is a Radom measure. Such a function decomposes uniquely as sum of
three components: the first one is a convergent series of piece-wise constant func-
tion, the second one is an absolutely continuous function and the last one is the so-
called singular part, that is a continuous function whose derivative vanishes almost
everywhere. A function of bounded variation is special if its singular part vanishes
identically. We generalize such space of special function of bounded variation to
include higher order derivatives and prove that the functions of such spaces admit a
Euler-Maclaurin summation formula. Such a result is obtained by deriving in this
setting various integration by part formulas which generalizes various classical Abel
summation formulas.

Keywords: Euler summation, Abel summation, bounded variation functions,
special bounded variation functions, Radon measure

1. Introduction

Abel and the Euler-Maclaurin summation formulas are standard tool in number
theory (see e.g. [1, 2]).

The space of special functions of bounded variation (SBV) is a particular subclass
of the classical space of bounded variation functions which is the natural setting for
a wide class of problems in the calculus of variations studied by Ennio De Giorgi and
his school: see e.g. [3, 4].

The purpose of this paper is to show that this class of functions (and some
subclasses introduced here of function of a single real variable) is the natural
settings for (an extended version of) the Euler-Maclaurin formula.

Let us describe now what we prove in this paper.
In Section 2 we obtain some “integration by parts”-like formulas for functions of

bounded variations which imply the various “Abel summation” techniques (Propo-
sitions (0.6), (0.7), and the relative examples) and in Section 3 we give some
criterion for the absolute summability of some series obtained by sampling the
values of a bounded variations function.

The last section contains the proofs of the main result of this paper (Theorem
(0.1)) that we will now describe.

We denote by C1
ð Þ (resp. Ck a, b½ �ð ÞÞ, L1

ð Þ and L∞ ð Þ respectively the space of
continuously differentiable functions (resp. k-times differentiables functions on the
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closed interval a, b½ �), the space of Lebesgue (absolutely) integrable functions and
the space of essentially bounded Borel functions on .

Given f :  !  and x ∈ we set

f xþð Þ ¼ lim
h!0þ

f xþ hð Þ, (1)

f x�ð Þ ¼ lim
h!0�

f xþ hð Þ, (2)

δf xð Þ ¼ f xþð Þ � f x�ð Þ: (3)

We denote by BV ð Þ the space of bounded variation complex functions on ;
we refer to [5, 6] for the main properties of functions in BV ð Þ.

Any real function of bounded variation can be written as a difference of two non
decreasing functions. It follows that if f ∈BV ð Þ then f xþð Þ, f x�ð Þ and δf xð Þ exist
for each x ∈ and the set x ∈jδf xð Þ 6¼ 0f g is an arbitrary at most countable subset

of . Moreover, the derivative f 0 xð Þ exists for almost all x ∈ and f 0 xð Þ ∈L1
ð Þ.

Let f ∈BV ð Þ. We denote by df the unique Radon measure on  such that for
each open interval �a, b ⊂½

df ð�a, b½Þ ¼ f a�ð Þ � f bþ
� �

: (4)

We recall that f is special if for any bounded Borel function u

ð



u xð Þdf xð Þ ¼
ð



u xð Þ f 0 xð Þdxþ
X

x ∈

u xð Þδf xð Þ: (5)

We denote by SBV ð Þ the space of all special functions of bounded variation.
We also say that f ∈BV loc ð Þ (resp. f ∈ SBV loc ð Þ) if for each a, b ∈, with a< b
the function

f xð Þ ¼
0 if x< a or x> b,

f xð Þ if a≤ x≤ b,

(

(6)

is in BV ð Þ (resp. SBV ð Þ).
We define SBVn

ð Þ inductively setting

SBV1
ð Þ ¼ SBV ð Þ, (7)

and for each integer n> 1

SBVn
ð Þ ¼ f ∈ SBV ð Þj f 0 ∈ SBVn�1

ð Þ
� �

(8)

We denote by Bn and Bn xð Þ, n ¼ 1, 2, … respectively the Bernoulli numbers and
the Bernoulli functions. Let us recall that

B1 xð Þ ¼
0 if x ∈,

x� x½ � � 1

2
if x ∈n,

8

>

<

>

:

(9)

where x½ � stands for the greatest integer less than or equal to x and Bn xð Þ, n ¼
2, 3, … are the unique continuous functions such that
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Bn xþ 1ð Þ ¼ Bn xð Þ, (10)

B0
n xð Þ ¼ nBn�1 xð Þ, (11)
Ð 1
0Bn xð Þdx ¼ 0: (12)

Moreover B2nþ1 ¼ 0 for n>0 and Bn ¼ Bn 0ð Þ for n> 1.
The main results of this paper is the following theorem.

Theorem 0.1 Let f ∈ SBVm
ð Þ, m≥ 1 and suppose f , … , f mð Þ ∈L1

ð Þ. Then

X

n ∈

f nþð Þ þ f n�ð Þ
2

¼
ð



f xð Þdxþ
X

x ∈

X

m

k¼1

�1ð Þk�1

k!
Bk xð Þδ f k�1ð Þ xð Þ

þ �1ð Þm�1

m!

ð



Bm xð Þ f mð Þ xð Þdx:

(13)

Remark. The sum “
P

x ∈
” in the right hand side of the above “Euler-Maclaurin

formula” (13) is actually a sum over the subset of the x ∈ such that some of the

terms Bk xð Þδ f k�1ð Þ xð Þ do not vanish. We point out that such a set can be an arbitrary
at most countable subset of .

Remark. Let p and q, p< q be two integers and let f be a function of class Cm on
the interval p, q½ �. Set f xð Þ ¼ 0 when x is outside of the interval p, q½ �. Then the
classical Euler-Maclaurin formula (see, e.g. Section 9.5 of [7])

X

q�1

k¼p

f kð Þ ¼
ðq

p
f xð Þdxþ

X

m

k¼1

Bk

k!
f k�1ð Þ qð Þ � f k�1ð Þ pð Þ

� �

þ �1ð Þm�1Bm

m!

ðq

p

Bm xð Þ f mð Þ xð Þdx,

(14)

follows easily from Theorem 0.1.
Remark. Any f ∈BV ð Þ decomposes uniquely as f ¼ f 1 þ f 2 þ f 3, where f 1 xð Þ

can be written in the form

f 1 xð Þ ¼
X

þ∞

n¼1

φn xð Þ (15)

where each φn xð Þ is a piece-wise constant function, f 2 xð Þ is an absolutely
continuous function and f 3 xð Þ is a singular function, that is f 3 xð Þ is continuous and
f 03 xð Þ ¼ 0 for almost all x ∈. Then f ¼ f 1 þ f 2 þ f 3 is special if, and only if, f 3 ¼ 0

and in this case, for each bounded Borel function u xð Þ,
ð



u xð Þdf 1 xð Þ ¼
X

x ∈

u xð Þδf xð Þ, (16)

Ð


u xð Þdf 2 xð Þ ¼

Ð


u xð Þ f 0 xð Þdx: (17)

In this paper we do not need of the existence of such a decomposition.

2. Integration by parts formulas

Our starting point is the following theorem:
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Theorem 0.2 Let f , g :  !  two complex function. Assume that

f ∈BV ð Þ∩L1
ð Þ and g ∈BV loc ð Þ∩L∞ ð Þ. Then

ð



f xþð Þdg xð Þ þ
ð



g x�ð Þdf xð Þ ¼ 0, (18)

ð



f x�ð Þdg xð Þ þ
ð



g xþð Þdf xð Þ ¼ 0, (19)

ð



f xþð Þ þ f x�ð Þ
2

dg xð Þ þ
ð



g xþð Þ þ g x�ð Þ
2

df xð Þ ¼ 0: (20)

Proof: Let a, b ∈ with a< b. Theorem 7.5.9 of [5] yields

ð

�a,b½
f xþð Þdg xð Þ þ

ð

�a,b½
g x�ð Þdf xð Þ ¼ f b�ð Þg b�ð Þ � f aþð Þg aþð Þ, (21)

ð

�a,b½
f x�ð Þdg xð Þ þ

ð

�a,b½
g xþð Þdf xð Þ ¼ f b�ð Þg b�ð Þ � f aþð Þg aþð Þ: (22)

Since f ∈L1
ð Þ then necessarily

lim
b!þ∞

f b�ð Þ ¼ lim
a!�∞f aþð Þ ¼ 0: (23)

Since g ∈L∞ ð Þ then g xþð Þ and g x�ð Þ are bounded and we also have

lim
b!þ∞

f b�ð Þg b�ð Þ ¼ lim
a!�∞f aþð Þg aþð Þ ¼ 0: (24)

and hence one obtains the formulas (18) and (19) taking the limits as a ! �∞
and b ! þ∞ respectively in (21) and (22).

Formula (20) is obtained summing memberwise (18) and (19) and dividing by
two. □

Next we prove:
Theorem 0.3 Let f , g :  !  two complex function. Assume that

f ∈BV ð Þ∩L1
ð Þ and g ∈ SBV loc ð Þ∩L∞ ð Þ and suppose that g0 ∈L∞ ð Þ. Then
ð



f xð Þg0 xð Þdxþ
X

x ∈

0
f xþð Þδg xð Þ þ

ð



g x�ð Þdf xð Þ ¼ 0, (25)

ð



f xð Þg0 xð Þdxþ
X

x ∈

0
f x�ð Þδg xð Þ þ

ð



g xþð Þdf xð Þ ¼ 0, (26)

ð



f xð Þg0 xð Þdxþ
X

x ∈

0 f xþð Þ þ f x�ð Þ
2

δg xð Þ þ
ð



g xþð Þ þ g x�ð Þ
2

df xð Þ ¼ 0: (27)

where

X

x ∈

0
≔ lim

a!�∞
b!þ∞

X

a< x< b

: (28)

Moreover, if the function f also is continuous then
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ð



f xð Þg0 xð Þdxþ
ð



g xð Þdf xð Þ ¼ 0, (29)

Proof: Given a, b ∈, a< b set

g a, b, xð Þ ¼
0 x≤ a,

g xð Þ a< x< b,

0 x≥ b:

8

>

<

>

:

(30)

The function h xð Þ ¼ g a, b, xð Þ is in SBV ð Þ∩L∞ ð Þ. Hence, formula (18) yields

ð



f xþð Þdh xð Þ þ
ð



h x�ð Þdf xð Þ ¼ 0: (31)

Since h ∈ SBV ð Þ we have

ð



f xþð Þdh xð Þ ¼
ðb

a
f xþð Þg0 xð Þdxþ

X

x ∈

f xþð Þδg a, b, xð Þ: (32)

But f xþð Þ ¼ f xð Þ for almost all x ∈ and hence

ð



f xþð Þdh xð Þ ¼
ðb

a
f xð Þg0 xð Þdxþ

X

x ∈

f xþð Þδg a, b, xð Þ, (33)

which combined with (31) yields

ðb

a
f xð Þg0 xð Þdxþ

X

x ∈

f xþð Þδg a, b, xð Þ þ
ð



g a, b, x�ð Þdf xð Þ ¼ 0: (34)

Using the definition of g a, b, xð Þ we have

X

x ∈

f xþð Þδg a, b, xð Þ ¼ f aþð Þg aþð Þ þ
X

a< x< b

f xþð Þδg xð Þ, (35)

and hence

X

a< x< b

f xþð Þδg xð Þ ¼ �f aþð Þg aþð Þ �
ðb

a

f xð Þg0 xð Þdx�
ð



g a, b, x�ð Þdf xð Þ: (36)

As in the proof of the previous theorem we have

lim
a!�∞f aþð Þg aþð Þ ¼ 0: (37)

Since f ∈L1
ð Þ and g0 ∈L∞ ð Þ then f g0 ∈L1

ð Þ and hence

lim
a!�∞
b!þ∞

ðb

a
f xð Þg0 xð Þdx ¼

ð



f xð Þg0 xð Þdx: (38)

The Radonmeasure df xð Þ is bounded and the functions x↦ g a, b, x�ð Þ are
equiboundedwith respect to a and b; by the Lebesgue dominated convergencewe have
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lim
a!�∞
b!þ∞

ð



g a, b, x�ð Þdf xð Þ ¼
ð



g x�ð Þdf xð Þ: (39)

From (36) it follows that

lim
a!�∞
b!þ∞

X

a< x< b

f xþð Þδg xð Þ ¼
X

x ∈

0
f xþð Þδg xð Þ ¼ �

ð



f xð Þg0 xð Þdx�
ð



g x�ð Þdf xð Þ (40)

which is equivalent to (25).
The proof of (26) is obtained in a similar manner using (19) instead of (18), and

(27) is obtained summing memberwise (25) and (26) and dividing by two.
If the function g is continuous then g xþð Þ ¼ g x�ð Þ ¼ g xð Þ for each x ∈,

X

x ∈

0
f xþð Þδg xð Þ ¼ 0, (41)

and (29) follows from, e.g., (25).
□

Example. This example shows that in the hypoteses of Theorem (0.3) the series

X

x ∈

0
f xþð Þδg xð Þ (42)

is not, in general, absolutely convergent. Indeed, set

f xð Þ ¼
0 if x≤ 1=2,

1=x2 if x> 1=2,

�

(43)

and

g xð Þ ¼ 1 if
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n� 1
p

< x≤
ffiffiffiffiffi

2n
p

, n ∈,

0 if
ffiffiffiffiffi

2n
p

< x≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p

, n ∈:

(

(44)

Then the integral

ð



f 0 xð Þg xð Þdx ¼
X

þ∞

n¼1

ð

ffiffiffiffi

2n
p

ffiffiffiffiffiffiffiffi

2n�1
p df xð Þ ¼ �

X

þ∞

n¼1

1

2n 2n� 1ð Þ (45)

is absolutely convergent, but the series

X

x ∈

0
f xþð Þδg xð Þ ¼

X

þ∞

n¼1

�1ð Þn
n

(46)

is convergent but not absolutely convergent.
We also have the following theorem.
Theorem 0.4 Let f , g :  !  two complex function. Assume that

f ∈ SBV ð Þ∩L1
ð Þ and g ∈ SBV loc ð Þ∩L∞ ð Þ and suppose that g0 ∈L∞ ð Þ. Then

ð



f 0 xð Þg xð Þdxþ
ð



f xð Þg0 xð Þdxþ
X

x ∈

δf xð Þg xþð Þ þ
X

x ∈

0
f x�ð Þδg xð Þ ¼ 0, (47)
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ð



f 0 xð Þg xð Þdxþ
ð



f xð Þg0 xð Þdxþ
X

x ∈

δf xð Þg x�ð Þ þ
X

x ∈

0
f xþð Þδg xð Þ ¼ 0, (48)

ð



f 0 xð Þg xð Þdxþ
ð



f xð Þg0 xð Þdxþ
X

x ∈

g xþð Þ þ g x�ð Þ
2

δf xð Þ

þ
X

x ∈

0 f xþð Þ þ f x�ð Þ
2

δg xð Þ ¼ 0,

(49)

where

X

x ∈

0
≔ lim

a!�∞
b!þ∞

X

a< x< b

(50)

If the function g also is continuous then

ð



f 0 xð Þg xð Þdxþ
ð



f xð Þg0 xð Þdxþ
X

x ∈

g xð Þδf xð Þ ¼ 0, (51)

Proof: Let f and g be as in the theorem. By formula (26) we have

ð



f xð Þg0 xð Þdxþ
X

x ∈

0
f x�ð Þδg xð Þ þ

ð



g xþð Þdf xð Þ ¼ 0: (52)

Since f ∈ SBV ð Þ, using the fact that g xþð Þ ¼ g xð Þ for almost all x ∈, we obtain

ð



g xþð Þdf xð Þ ¼
ð



g xð Þ f 0 xð Þdxþ
X

x ∈

g xþð Þδf xð Þ: (53)

Then (52) and (53) yield (47). Formulas (48) and (49) are obtained in a similar
manner using respectively Formulas (25) and (27) instead of (26).

If the function g is continuous then g xþð Þ ¼ g x�ð Þ ¼ g xð Þ for each x ∈,

X

x ∈

0
f xþð Þδg xð Þ ¼ 0, (54)

and (51) follows from, e.g., (47). □

Theorem 0.4 generalizes to high order derivatives.
Theorem 0.5 Let f , g :  !  two complex function. Let m>0 be a positive

integer. Assume that f ∈ SBVm
ð Þ with f , … , f mð Þ ∈L1

ð Þ and g ∈ SBVm
loc ð Þ with

g, … , g mð Þ ∈L∞ ð Þ. Then

�1ð Þ m�1ð Þ
ð



f mð Þ xð Þg xð Þdxþ
ð



f xð Þg mð Þ xð Þdx

þ
X

x ∈

X

m

k¼1

�1ð Þk�1
δ f k�1ð Þ xð Þg m�kð Þ xþð Þ

þ
X

x ∈

0 Xm

k¼1

�1ð Þk�1 f k�1ð Þ x�ð Þδg m�kð Þ xð Þ ¼ 0,

(55)
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�1ð Þ m�1ð Þ
ð



f mð Þ xð Þg xð Þdxþ
ð



f xð Þg mð Þ xð Þdx

þ
X

x ∈

X

m

k¼1

�1ð Þk�1
δ f k�1ð Þ xð Þg m�kð Þ x�ð Þ

þ
X

x ∈

0 Xm

k¼1

�1ð Þk�1 f k�1ð Þ xþð Þδg m�kð Þ xð Þ ¼ 0,

(56)

�1ð Þ m�1ð Þ
ð



f mð Þ xð Þg xð Þdxþ
ð



f xð Þg mð Þ xð Þdx

þ
X

x ∈

X

m

k¼1

�1ð Þk�1
δ f k�1ð Þ xð Þ g

m�kð Þ x�ð Þ þ g m�kð Þ xþð Þ
2

þ
X

x ∈

0 Xm

k¼1

�1ð Þk�1 f k�1ð Þ x�ð Þ þ f k�1ð Þ xþð Þ
2

δg m�kð Þ xð Þ ¼ 0,

(57)

Proof:We prove first the formula (55). The proof is by induction on m. When
m ¼ 1 (55) reduces to (47). Assume that (55) holds for m� 1, that is

�1ð Þ m�2ð Þ
ð



f m�1ð Þ xð Þg xð Þdxþ
ð



f xð Þg m�1ð Þ xð Þdx

þ
X

x ∈

X

m�1

k¼1

�1ð Þk�1
δ f k�1ð Þ xð Þg m�k�1ð Þ xþð Þ

þ
X

x ∈

0 Xm�1

k¼1

�1ð Þk�1 f k�1ð Þ x�ð Þδg m�k�1ð Þ xð Þ ¼ 0:

(58)

Replacing f with f 0, k with kþ 1 and changing the sign we obtain

�1ð Þ m�1ð Þ
ð



f mð Þ xð Þg xð Þdx�
ð



f 0 xð Þg m�1ð Þ xð Þdx

þ
X

x ∈

X

m

k¼2

�1ð Þk�1
δ f k�1ð Þ xð Þg m�kð Þ xþð Þ

þ
X

x ∈

0 Xm

k¼2

�1ð Þk�1 f k�1ð Þ x�ð Þδg m�kð Þ xð Þ ¼ 0:

(59)

Replacing g with g m�1ð Þ in (47) we obtain

ð



f 0 xð Þg m�1ð ÞÞ xð Þdxþ
ð



f xð Þgm xð Þdx

þ
X

x ∈

δf xð Þg m�1ð Þ xþð Þ þ
X

x ∈

0
f xþð Þδg m�1ð Þ xð Þ ¼ 0:

(60)

Summing (59) and (60) we obtain (55).
The proofs of (56) and (57) are similar.

□

We say that a function f ∈ SBV loc ð Þ is a step function if f 0 xð Þ ¼ 0 for almost
every x ∈.
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The following propositions are easy consequences of Theorem (0.4).
Proposition 0.6 Let u, v½ �⊂ be a bounded closed interval and let f be an

absolutely continuous function on the closed interval u, v½ �. Let g ∈ SBV loc ð Þ be a
step function. Then

ðv

u
f 0 xð Þg xð Þdx ¼ f vð Þg v�ð Þ � f uð Þg uþð Þ �

X

u< x< v

f xð Þδg xð Þ: (61)

Proof: First we extend the functions f as zero outside of the interval u, v½ �. We
may also assume that the function g is zero outside of a bounded open interval
containing the closed interval u, v½ �. Observe that then f uþð Þ ¼ f uð Þ, f v�ð Þ ¼ f vð Þ
and f u�ð Þ ¼ f vþð Þ ¼ 0 and therefore δf uð Þ ¼ f uð Þ, δf vð Þ ¼ �f vð Þ and δf xð Þ ¼ 0 for
x 6¼ u, v. By (47), we have

ð



f 0 xð Þg xð Þdxþ
ð



f xð Þg0 xð Þdxþ
X

x ∈

0
f xþð Þδg xð Þ þ

X

x ∈

g x�ð Þδf xð Þ ¼ 0: (62)

Since g is a step function then g0 xð Þ ¼ 0 for almost all x ∈ and hence it follows
that

ð



f 0 xð Þg xð Þdx ¼ �
X

x ∈

0
f xþð Þδg xð Þ �

X

x ∈

g x�ð Þδf xð Þ: (63)

The function f by construction has compact support, and hence, as f vþð Þ ¼ 0,
we have

X

x ∈

0
f xþð Þδg xð Þ ¼ f uþð Þ g uþð Þ � g u�ð Þð Þ þ

X

u< x< v

f xþð Þδg xð Þ

¼ f uð Þg uþð Þ � f uð Þg u�ð Þ þ
X

u< x< v

f xþð Þδg xð Þ,
(64)

and

X

x ∈

g x�ð Þδf xð Þ ¼ g u�ð Þδf uð Þ þ g v�ð Þδf vð Þ ¼ f uð Þg u�ð Þ � f vð Þg v�ð Þ: (65)

Summing memberwise the last two formulas we obtain

X

x ∈

0
f xþð Þδg xð Þþ

X

x ∈

g x�ð Þδf xð Þ ¼ �f vð Þg v�ð Þ þ f uð Þg uþð Þ

þ
X

u< x< v

f xþð Þδg xð Þ,
(66)

as desired. □

Proposition 0.7 Let f , g ∈ SBV loc ð Þ be two step function. Let u, v½ �⊂ be a
bounded closed interval. Then

X

u< x< v

g xþð Þδf xð Þ ¼ f v�ð Þg v�ð Þ � f uþð Þg uþð Þ �
X

u< x< v

f x�ð Þδg xð Þ: (67)

Proof: Set both the functions f and g to zero outside the closed interval u, v½ �.
Then formula (47) yields
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X

x ∈

f xþð Þδg xð Þ þ
X

x ∈

g x�ð Þδf xð Þ ¼ 0: (68)

But then

X

x ∈

f xþð Þδg xð Þ ¼ f uþð Þg uþð Þ þ
X

u< x< v

f xþð Þδg xð Þ, (69)

and

X

x ∈

g x�ð Þδf xð Þ ¼ �f v�ð Þg v�ð Þ þ
X

u< x< v

g x�ð Þδf xð Þ; (70)

hence

f uþð Þg uþð Þ þ
X

u< x< v

f xþð Þδg xð Þ � f v�ð Þg v�ð Þ þ
X

u< x< v

g x�ð Þδf xð Þ ¼ 0, (71)

which is equivalent to (67). □

Example 1. (Abel summation I) Let anð Þ, n ∈ be a sequence of complex
numbers such that an ¼ 0 for n< <0. Then the function

A xð Þ ¼
X

n< x

an (72)

is a step function in SBV loc ð Þ. If f ∈C1 u, v½ � then Proposition (0.6) yields

ðv

u
f 0 xð ÞA xð Þdx ¼ f vð ÞA v�ð Þ � f uð ÞA uþð Þ �

X

u<n< v

f nð Þan: (73)

Example 2. (Abel summation II) Let anð Þ, bnð Þ, n ∈ be two sequence of complex
numbers. Let f , g !  be defined respectively setting f xð Þ ¼ an and g xð Þ ¼ bn when
n≤ x< nþ 1, n ∈. Clearly f , g ∈ SBVloc ð Þ and they are two step functions. Let be
given two integers p and q, p< q. Set u ¼ p and v ¼ qþ 1. Then it is easy to show that

X

u< x< v

g xþð Þδf xð Þ ¼
X

q

n¼pþ1

bn an � an�1ð Þ (74)

and

X

u< x< v

f x�ð Þδg xð Þ ¼
X

q

n¼pþ1

an�1 bn � bn�1ð Þ; (75)

hence, Proposition (0.7) yields

X

q

n¼pþ1

bn an � an�1ð Þ ¼ aqbq � apbp �
X

q

n¼pþ1

an�1 bn � bn�1ð Þ: (76)

3. Sampling estimates

In this section we give some conditions which ensures the absolute convergence
of series of the form

P

x ∈E f x�ð Þ þ f xþð Þð Þ=2 where f is a function absolutely
integrable of bounded variation and E is a countable subset of .
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The basic estimate is given in the following lemma.
Lemma 0.8 Let A⊂ be an open subset and let F⊂A be a finite subset of A.

Assume that there exist a>0 such that

x1, x2 ∈F, x1 6¼ x2 ) ∣x1 � x2∣ ≥ a,

x ∈F, y ∈nA ) ∣x� y∣ ≥ a=2:
(77)

Then, for any complex functionf ∈BV ð Þ∩L1
ð Þ we have

X

x ∈F

f x�ð Þ þ f xþð Þ
2































≤
1

a

ð

A
∣f xð Þ∣dxþ 1

2

ð

A
∣df ∣ xð Þ (78)

Proof: Let define

g xð Þ ¼
0, if x< � 1=2 or x ¼ 0 or x≥ 1=2,

xþ 1=2, if � 1=2≤ x<0,

x� 1=2, if 0≤ x< 1=2,

8

>

<

>

:

(79)

and set

G xð Þ ¼
X

y ∈F

g
x� y

a

� �

: (80)

For each x ∈ we have

G x�ð Þ þ G xþð Þ
2

¼ G xð Þ (81)

By Eq. (27)

�
X

x ∈

0 f xþð Þ þ f x�ð Þ
2

δG xð Þ ¼
ð



f xð ÞG0 xð Þdxþ
ð



G xð Þdf xð Þ: (82)

We also have

δG xð Þ ¼
�1 if x ∈ F,

0 if x ∈nF,

�

(83)

which implies

�
X

x ∈

0 f xþð Þ þ f x�ð Þ
2

δG xð Þ ¼
X

x ∈F

f x�ð Þ þ f xþð Þ
2

: (84)

Set

E ¼ ⋃
x ∈F

�x� a, xþ a :½ (85)

Then F⊂E⊂A and

G0 xð Þ ¼ 1=a if x ∈E,

0 if x ∈nE,

�

(86)
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and hence

ð



f xð ÞG0 xð Þdx ¼ 1

a

ð

E
f xð Þdx: (87)

Moreover we have G xð Þ ¼ 0 if x ∈nE and hence

X

x ∈F

f x�ð Þ þ f xþð Þ
2

¼
ð



f xð ÞG0 xð Þdxþ
ð



G xð Þdf xð Þ

¼ 1

a

ð

E
f xð Þdxþ

ð

E
G xð Þdf xð Þ:

(88)

Taking modules, and observing that ∣G xð Þ∣ ≤ 1=2 for each x ∈E, we obtain

X

x ∈F

f x�ð Þ þ f xþð Þ
2































≤
1

a

ð

E
∣f xð Þ∣dxþ

ð

E
∣G xð Þkdf ∣ xð Þ:

≤
1

a

ð

A
∣f xð Þ∣dxþ 1

2

ð

A
∣df ∣ xð Þ,

(89)

as required.

Corollary 0.9 Let f ∈BV ð Þ∩L1
ð Þ and let E⊂R be a countable subset. If there

exists a real constant a>0 such that for each pair of distinct x1, x2 ∈E we have
∣x1 � x2∣ ≥ a then

X

x ∈E

f x�ð Þ þ f xþð Þ
2

























< þ∞: (90)

Proof: It suffices to choose A ¼ ; lemma (0.8) yields easily the assertion.
□

4. Proof of Theorem 0.1

Inserting Bm xð Þ instead of gm xð Þ in formula (57) of Theorem 0.5 we easily obtain

X

n ∈

0 f nþð Þ þ f n�ð Þ
2

¼
ð



f xð Þdxþ
X

x ∈

X

m

k¼1

�1ð Þk�1

k!
Bk xð Þδ f k�1ð Þ xð Þ

þ �1ð Þm�1

m!

ð



Bm xð Þ f mð Þ xð Þdx:

(91)

By Corollary 0.9 it follows that

X

n ∈

0 f nþð Þ þ f n�ð Þ
2

¼
X

n ∈

f nþð Þ þ f n�ð Þ
2

(92)

is an absolutely convergent series, and hence Theorem 0.1 follows.
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