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Chapter

A Dynamic Graph-Based Systems
Framework for Modeling, and
Control of Cyber-Physical Systems
Typified by Buildings
Fadel M. Lashhab

Abstract

In this chapter, we present a framework for modeling certain classes of
cyber-physical systems using graph-theoretic thinking. The cyber-physical systems
we consider are typified by buildings. We show that the thermal processes associ-
ated with a building can be represented as a graph in which (1) the node variables
(temperature and heat flows) are governed by a dynamic system and (2) intercon-
nections between these nodes (walls, doors, windows) are also described by a
dynamic system. In general, we call a collection of such nodes and interconnections
a dynamic graph (dynamic consensus network).Driven to explore this by develop-
ing thermal examples, this study outlines a practical framework for dynamic con-
sensus networks and dynamic graphs. In a manner that seamlessly extends these
concepts from the static cases, we will explore the combination of dynamic degrees,
adjacency, Laplacian matrices, and incident matrices. With these conceptual tools,
one can quickly identify equivalent concepts of dynamic consensus networks.

Keywords: Dynamic graphs, dynamic consensus networks, dynamic Laplacian
matrix, dynamic graph theory

1. Introduction

In this chapter, we present the analysis and design of cyber-physical systems
using graph-theoretic ideas. We are motivated by the energy-efficient control of
buildings.

Our fundamental view of a building is of overlapping, interacting networks, as
shown in Figure 1. This diagram depicts the dominant phenomenon that contrib-
utes to building as a network (or graphs). These networks consist of nodes that
constitute distinct sub-systems. For example, in heat-sensing or networks of
humans, the nodes may refer to specific rooms in a house or office building. In
contrast, nodes might represent a particular sensor, actuator, or perhaps a compu-
tational unit in a control network. The links between nodes denote communication
of fluctuating or sharing variables in a system, such as the passage of people in a
human network between rooms through hallways, or the heat flow between rooms
in the thermal network through walls and doors. Smaller circles in Figure 1 indicate
links between networks. Note that typical graph-based networks assume links that
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are in some way constant, but as we will see, in some networks, such as the building
thermal network, links between nodes may be dynamic.

Control of distributed systems, such as shown in Figure 1 is a currently active
area of research within the field of control systems. By a distributed system, we
mean one with many inputs and outputs, possibly spatially distributed dynamics,
and a decentralized decision and control architecture, with restrictions on commu-
nication between computational nodes. Many researchers have focused basically on
homogeneous systems. However, a building may be viewed as a hybrid system
where a physical process (the structure itself) has been augmented with a hardware
infrastructure (sensors and actuators) and a cyber-infrastructure (communication
and decision nodes). Such overlaid heterogeneous systems with constrained con-
nectivity and interaction between the different layers present challenges and system
optimization and control opportunities. What is needed are ways to reason about
discrete, multi-attribute heterogeneous entities (such as cyber-systems) and con-
tinuous, heterogeneous processes (such as physical phenomena) operating on a
hierarchy of layered graphs related to each other through a set of mappings or
transformations.

In this chapter, we consider methods for studying distributed systems that are
heterogeneous and possibly spatially varying. Though a building can be seen as a set
of interconnected networks, we consider only the thermal network. We begin by
showing how a building’s thermal processes can be modeled as a graph whose node
variables are temperature and heat flows and whose interconnections are walls,
doors, windows, etc. In our graphical representation of a building, both the nodes
and the interconnections can be (heterogeneous) dynamic systems. We call this a
dynamic graph (or network). For such systems, we show that the relationships
between the node variables reduce to the traditional graph Laplacian in the steady-
state, so that consensus variable convergence can be obtained by discussing the
steady-state properties of the system. We then show how a behavioral systems
approach can develop kernel relationships between all system variables in dynamic
graphs typified by building thermal models. Using these kernel relationships, we
consider the controllability analysis of such systems.

Figure 1.
A building as a collection of interacting networks.
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The consensus protocols in networking in engineering have received significant
academic and corporate attention because of their vast array of potential applica-
tions in various fields. Robotics, transportation, sensor networking, communication
networking, biology, and physics are only some potential fields that networking
consensus could benefit. This section aims to analyze a generalization of consensus
problems whereby the weights of network edges are no longer static gains. Instead,
they are dynamic systems, which lead towards dynamic consensus networks.

Network topology is static for the consensus networks, meaning that there are
no dynamics in the interconnections between the nodes λij ¼ constant≥0

� �

, and the

nodes are assumed to be integrators [1]. Thus,such problems can be written in the
time domain for each node i ¼ 1, 2, … , nn as

_xi ¼
X

j∈N i

λij x j tð Þ � xi tð Þ
� �

: (1)

The consensus protocol (Eq. (1)) can be written in matrix form as:

_x tð Þ ¼ �Lx tð Þ, (2)

where x tð Þ ¼ x1 tð Þ, x2 tð Þ, … , xn tð Þ½ �T and L, and the Laplacian matrix of the
graph L ¼ lij

� �

, is defined by

lij ¼

P

j∈N i
λij i ¼ j

�λij i 6¼ j and i, jð Þ∈ E

0 otherwise

8

>

<

>

:

(3)

For the multi-agent consensus problem, suppose that N agents develop their

personal beliefs xi ∈
1 regarding a so-called global consensus variable x by com-

municating with their next-door neighbors by the referred consensus protocol
(Eq. (1)). A key outcome is that the solution of the problem _x tð Þ ¼ �Lx tð Þ gives
xi ! x ∗ if only all edges are connected to the static graph [1]. This specific fact has
been the basis of much of the literature related to consensus problems.

There have been many engineering scientists in the past years involved in the
controllability of dynamic consensus networks. The focus was on controlling
dynamic consensus networks under the leader-follower approach, where some
nodes are considered leaders and other nodes are followers. This approach aims to
transfer followers’ trajectories from an initial position to the desired position
(set-point) by adequately selecting the leaders’ trajectory. Many authors [2–5] have
considered this framework by using some algebraic methods and the eigenvalues
and eigenvectors of the dynamic Laplacian matrix. Other researchers also investi-
gated the controllability using graphic tools such as the graph’s equitable partition
[4] and symmetry properties [3]. These graphical tools are built based on the
graph’s configuration and topology associated with the consensus network. The
controllability investigation using the minimum energy for static consensus net-
works using the first-order system formulated and proposed in [6, 7]. This Chapter
will investigate the controllability for dynamic consensus networks with edges
(links) of rational dynamical systems.

Several researchers have already studied controllability analysis for consensus
networks with static topology. The vast majority of these published academic stud-
ies have investigated the impact of the static topology on the controllability of their
respective consensus networks. Those studies have [8] introduced a graph-theoretic
characterization of static networks’ structural controllability with only a single
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leader. In their research, many illustrate that a static network with variable topology
is structurally controllable if the union graph of the underlying static topologies is
connected. For example, in [9], the controllability of the network was investigated
using the size of the graph as well as its connectivity. Meanwhile, controllability for
leader-based, multi-agent systems has been analyzed by [7, 10] based on connec-
tivity and the null space of the leader and followers’ incidence matrices. Controlla-
bility using graph symmetry and equitable partition properties has been addressed
in [11, 12]. The paper [13] formulated an equivalent data-driven Hautus-type test
for a general input/output system that assumes no knowledge of the system’s state.
The authors’ work proposed in this Chapter also provided an algorithm for data-
driven verification of controllability of the system. They used the singular value
decomposition of the Hankel matrix. A multi-vehicle system’s consensus problem
was proposed and analyzed by [14, 15] with a time- varying reference state. Under
the condition, only a portion of the vehicles can access the reference state in this
problem. Those vehicles might not have the ability to share the information with the
other cars in the team. Although their paper focused on developing an algorithm for
investigating the consensus conditions for a directed fixed information exchange
topology, so it is helpful to extend this algorithm to directed switching information-
exchange typologies. In our article, the topology (edges) that describes the inter-
connections between nodes is considered time-varying rational transfer functions.
Investigating the consensus conditions and the controllability for a multi-vehicle
system might be one of the motivating applications of this work.

The consensus protocol, such as outlined in (Eq. (1)) and its variants, have been
studied extensively in previously published academic studies. The findings from
these studies have been applied in many domains, such as for formation motion
control during time agents are mobile. However, the common intellectual idea of
the consensus paradigm can be restrictive for researchers and engineers alike in
several ways. For example, notice that we have interpreted the consensus problem
as having integrating nodes and static weights. In the next section, will we extend
this idea to networks with weights, which were transfer functions or nodes are more
than just integrators. We will explore this dilemma by modeling heat transfer in
buildings [16–19]. By the notation “dynamic systems,”wemean that linear ordinary
differential equations (LODEs) are described as relationships between the system
variables. We call such networks dynamic consensus networks because all the node
variables converge to a common value called a consensus value under some
conditions.

The Chapter is organized as follows: In Section 2, we present a general frame-
work for a dynamic consensus network. We present a detailed study of modeling
thermal processes in buildings as directed, dynamic graphs, beginning with a simple
two-room model and transitioning to multiple interconnected rooms. Section 3
outlines a theoretical framework dedicated to these dynamic graphs and dynamic
consensus networks. This framework will introduce the notion of a degree of
dynamics, adjacency, incident, and Laplacian matrices in a way that naturally
extends these concepts from a static case. By modeling this, one can easily define
equivalent concepts of dynamic interconnection matrices and dynamic consensus
networks.

2. Modeling a thermal process in a building as a directed dynamic graph

This Section first presents examples showing how a dynamic graph can arise in
applications and then give a general framework for a dynamic consensus network.
We present a detailed study of modeling thermal processes in buildings as directed,
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dynamic graphs, beginning with a simple two-room model and transitioning to a
model with multiple interconnected rooms. Motivated by this example, we then
propose a mathematical framework in service of dynamic graphs and dynamic
consensus networks.

Historically, there has always been a recognized need to model the energy
processes within buildings. Typical examples of this modeling application are sizing
HVAC equipment, determining energy usage performance, and optimizing energy
management in a building through persistent control. Current state- of-the-art
methods include modeling packages, such as Energy Plus [20], that allows users to
specify a building’s geometry, equipment, orientation, materials, and usage pat-
terns, simulated using first principles models and simulated weather data. Though
undoubtedly useful for design, these computationally complex systems may suffer
from certain limitations once a building has been constructed due to significant
deviations in construction, occupant use, and other specifications that cause the
actual building’s behavior to be quite different the model.

At the opposite extreme, so-called black box models have been developed from
observational data. Though we can utilize these models to predict future values of
particular variables, they do not incorporate any structural information about the
system when gathering data, resulting in the need for large amounts of data to train
and suffering from the difficulty of extracting relevant information about internal
physical parameters that may be of interest.

Semi-physical models resulting in an intermediate level of modeling are known
as gray-box modeling. Simple modeling elements containing parameters identified
using observational data are chosen and connected based upon physical insight to
represent the system’s actual configuration. This is commonly the modeling tech-
nique used for thermal networks, which have been used to study load-shifting and
peak-reducing control in buildings [21, 22]. A typical thermal network model for a
single room is shown in Figure 2, which was adapted from [22]. These networks of
(analogous) thermal resistors and capacitors model different building elements. To
date, this has typically been performed at a very coarse level, sometimes by

Figure 2.
Thermal model of a room.
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combining multiple rooms into one practical room per zone. In [22], a gray-box
model for an experimental building was created by utilizing measurements of
weather, room temperature, and room air supply and flow. This model was used to
predict the effects of a demand-limiting control strategy that we later validated
experimentally.

This section uses a single-room model as shown in Figure 2 from [22] as the
basis for a node and its interconnections to other nodes to build up a dynamic graph
representation of a building’s thermal processes. First, we consider two rooms
connected by a wall. We then illustrate how several such nodes may be
interconnected, using the example of a hypothetical four-room building, with anal-
ysis provided of the resulting model that motivates the generalization in the next
section.

Before proceeding, we note that the initial interest in modeling thermal pro-
cesses in a building comes from viewing a building as a group of overlapping,
interacting networks. In thermal networks, these nodes may denote rooms in an
office or school, while in the control network, they may represent a sensor, actua-
tor, or a unit of computation. The connections in the middle of nodes will represent
varibles that share information, such as the flow of air-conditioned air between
rooms through walls, windows, and doors in a thermal network. While some typical
graph-based networks consist of links that are in some way constant gains; some
networks, such as a building’s thermal network, may have dynamic links between
nodes, as we will explore in the next section.

2.1 Two rooms connected by a wall

Figure 3 depicts what is called a 3R2C model in the literature [23]. We identify a

room i as a node with node variable Ti, the lumped room temperature, Q in
i , the

input heat flow (a manipulated variable, not shown), and qij, the heat flow out of
the room through walls or doors or windows (of course with this convention, if
qij <0 then this is heat flow into the room). The parameter Cr

i is the thermal

capacity (mass) of the room i.
The interconnection between the two rooms is a wall represented analogously by

an electrical circuit with three resistors and two capacitors, simplifying the model in
Figure 3. The capacitors C2 and C4 can be thought of as the heat storage capacity of
the wall’s materials, which could be different on each side of the wall. A complete

Figure 3.
Two rooms connected by a wall using the 3R2C model.
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model adds a capacitor to represent the insulation properties in addition to that of
the wall’s board materials. For the resistors, R3 represents the heat dissipation inside
the wall, while R1 and R5 represent the heat dissipation from each room to the inside
of the wall.

As shown in [23], the heat flows in Figure 3 can be written as:

qij
qji

" #

¼
1

Bij sð Þ

Aij sð Þ �Dij sð Þ

�Dij sð Þ Aji sð Þ

� �

Ti

T j

� �

(4)

where

Aij sð Þ ¼ 1þ aij1 sþ aij2 s
2

Aji sð Þ ¼ 1þ aji1 sþ aji2 s
2

Bij sð Þ ¼ bij0 þ bij1 sþ bij2 s
2

Dij sð Þ ¼ 1þ dij1 sþ dij2 s
2

and

aij1 ¼ C4R5 þ C2R3 þ C2R5

aij2 ¼ C4C2R5R3

aji1 ¼ C4R1 þ C4R3 þ C2R1

aji2 ¼ C4C2R3R1

bij0 ¼ R5 þ R3 þ R1

bij1 ¼ C4R5R1 þ C2R3R1 þ C2R5R1 þ C4R5R3

bij2 ¼ C4C2R5R3R1

dij1 ¼ dij2 ¼ 0

Here, s is the independent variable of the Laplace transform, which can be

interpreted as s≐ d
dt �ð Þ. As noted in [23], we can interpret Gx sð Þ ¼ Aij sð Þ=Bij sð Þ as the

external conduction of the wall, Gy sð Þ ¼ Dij sð Þ=Bij sð Þ as the cross-conduction of the
wall, and Gz sð Þ ¼ Aji sð Þ=Bij sð Þ as the internal conduction of the wall.

From (3), the nodal equation can be written as:

Cr
i
dTi

dt
¼ Q in

i � qij (5)

Combining (Eqs. (4) and (5)) gives:

Cr
i s 0

0 Cr
js

" #

Ti

T j

� �

¼
Q in

1

Q in
2

" #

�
1

Bij sð Þ

Aij sð Þ �Dij sð Þ

�Dij sð Þ Aji sð Þ

� �

Ti

T j

� �

(6)

To motivate later analysis, notice that in the absence of any external heat inputs

(i.e., Q in
i ¼ 0), we can rewrite the previous equation as:
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sCr
iTi sð Þ

sCr
iT j sð Þ

� �

¼ �
1

Bij sð Þ

Aij sð Þ �Dij sð Þ

�Dij sð Þ Aij sð Þ

� �

Ti

T j

� �

, (7)

which defines the relationship between the temperatures in two rooms using the
3R2C model.

It is useful to separate (Eq. (7)) as

Ti sð Þ ¼ �
1

Cr
i s

Aij sð Þ
Bij sð Þ

Ti sð Þ �
Dij sð Þ
Bij sð Þ

T j sð Þ
� �

¼ �
1

s
λ
S
ij sð ÞTi sð Þ � λ

C
ij sð ÞT j sð Þ

h i

,

(8)

where λSij sð Þ ¼
Aij sð Þ
Bij sð Þ

is a self-correction weight and λ
C
ij sð Þ ¼

Dij sð Þ
Bij sð Þ

is a cross-

correction weight. Note that we assume Cr
i in (Eq. (8)) is equal to the unity for

simplicity. Comparing this to static-weights consensus networks, we see that this
appears similar to the equation of a two-node consensus network, in which the
nodes are integrators. The difference is that there is a separate weighting on the
terms Ti (s) and Tj (s), and these weights are dynamic.

2.2 Several interconnected rooms

This subsection uses the previous subsection’s expressions to develop a building
model with several interconnected rooms with different possible pathways between
each room and the outside environment.Ideas are developed for a specific theoret-
ical four-room building shown in Figure 4 with each room having neighboring
rooms with which heat can travel through-and-from. One such neighbor is always
the external environment (which does not include the rooms), whose variable is
denoted Ta with ‘a’ referring to the ambient outdoor temperature variable. Walls,
doors, and windows are all pathways that thermal energy can potentially flow in
such a network. Therefore, the corresponding graph for this example is shown in

Figure 5. There are several heat flows that are not shown, including q14 ¼ qdoor14 ,

q41 ¼ qdoor41 , q24 ¼ qwall24 þ qdoor24 and q42 ¼ qwall42 þ qdoor42 .

Figure 4.
A hypothetical four-room example.
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In developing a model for this system, we modify (Eq. (5)) to sum the energy
losses through all pathways connected to a node, resulting in:

Cr
i
dTi

dt
¼ Q in

i �
X

j∈N i

X

k j ∈P j

q
k j

ij (9)

where N i is the set of neighbors to which a node i is connected and P j is
the set of pathways kj associated with any neighbor j of node i. We note that

qij ¼
P

k j ∈P j
q
k j

ij .

For building thermal analysis, there may be several different types of intercon-
nection elements, though they will all have the basic format of (Eq. (4)). Because
there is negligible energy storage in doorways and windows, when these are the sole
interconnection elements between rooms, we use a single R model, so that (Eq. (4))

is expressed with bij0 ¼ R with all other variables being set to zero. To make the
notation a bit more uniform, for the common case when a door or window is in
parallel with a wall, the interconnection transfer function matrix is the sum of the
single R model and the 3R2C model. That is, the model would be given by Aij,Aji, Bij,
and Dij that satisfies:

Aij sð Þ
Bij sð Þ

�
Dij sð Þ
Bij sð Þ

�
Dij sð Þ
Bij sð Þ

Aji sð Þ
Bij sð Þ

2

6

6

6

6

4

3

7

7

7

7

5

¼

A0
ij sð Þ

B0
ij sð Þ

�
1

B0
ij sð Þ

�
1

B0
ij sð Þ

A0
ij sð Þ

B0
ij sð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

þ

1

R
�

1

R

�
1

R
1

R

2

6

6

4

3

7

7

5

, (10)

where the primed variables represent the 3R2C model, and the unprimed
variables represent the resulting parallel connection. In the expressions below, we

Figure 5.
Heat flow network corresponding to the four-room example.
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assume that this computation has been done and the resulting unprimed coeffi-
cients can be easily calculated and are thus omitted here. Note that in the case of a

door or window that is parallel to a wall, the coefficients dij1 and dij2 associated with
the unprimed variables are non-zero.

Table 1 summarizes the neighbors for each node and the pathways between
each node and each of its neighbors for this example. The table also identifies the
coefficients used in the transfer matrix describing the interconnection between each
pair of neighbors where the various polynomials Aij, Bij, Dij (when there is no
parallel door or wall) or A0

ij, B
0
ij, D

0
ij (before being combined in parallel with any

doors or windows) are defined as above in (Eq. (4)).
Combining (Eqs. (4) and (9)) for the configuration shown in Figure 5 with the

parameters shown in Table 1 and defining the vectors

T sð Þ ¼ T1 sð Þ T2 sð Þ T3 sð Þ T4 sð Þ½ �T,

Q in sð Þ ¼ Q in
1 sð Þ Q in

2 sð Þ Q in
3 sð Þ Q in

4 sð Þ
� �T

,

we can easily show that:

sT sð Þ ¼ Q in sð Þ � L sð ÞT sð Þ, (11)

Node Neighbors Paths Coefficients

1 2 1-wall A12, B12

a 2-wall A0
1a, B

0
1a

1-window Rw1a

3 1-wall A13, B13

4 1-door Rd14 = B14

2 1 1-wall D12, B12

a 2-wall A0
2a, B

0
2a

1-window Rw2a = B2a

4 2-wall A0
24, B

0
24

1-door Rd24 = B24

3 1 1-wall D13, B13

a 2-wall A0
3a, B

0
3a

1-window Rw3a = B3a

4 2-wall A0
34, B

0
34

1-door Rd34 = B34

4 1 1-door Rd41 = B41

a 1-wall A0
4a, B

0
4a

2 2-wall D0
24, B

0
24

1-door Rd42 = B42

3 2-wall D0
34, B

0
34

1-door Rd43 = B43

Table 1.
Hypothetical four room example.
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where the matrix L sð Þ ¼ Lij sð Þ
� �

is given as:

Lij sð Þ ¼

P

j∈N i

λ
S
ij sð Þ i ¼ j

�λ
C
ij sð Þ i 6¼ j and i, jð Þ∈ E

0 otherwise,

8

>

>

>

<

>

>

>

:

(12)

or L(s) is given as (Eq. (13)). We will refer to L(s) defined in this way as

L sð Þ ¼

1

Rd
14

þ
X

j¼2, 3

A1j

B1j
�

1

B12
�

1

B13
�

1

Rd
14

�
1

B21

1

Rd
24

þ
X

j¼1, 4

A2j

B2j
0 �

1

B24
�

1

Rd
24

�
1

B31
0

1

Rd
34

þ
X

j¼1, 4

A3j

B3j
�

1

B34
�

1

Rd
34

�
1

Rd
41

�1

B42
�

1

Rd
42

�
1

B43
�

1

Rd
43

1

Rd
41

þ
1

Rd
42

þ
1

Rd
43

þ
X

j¼2, 3

A4j

B4j

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(13)

a dynamic Laplacian matrix. For the graph topology shown in Figure 5, the
dynamic Laplacian matrix has the form shown in (Eq. (13)). In the previous work
[16], We have shown that when the weight matrices λij sð Þ satisfy certain assump-
tions, �L(s) can be viewed as a dynamic interconnection matrix, allowing the
demonstration of consensus.

Notice that we can redraw Figure 5 as shown in Figure 6, where

λij sð Þ ¼ λ
S
ij sð Þ �λ

C
ij sð Þ

h i

(14)

Figure 6.
A hypothetical four-room example as a dynamic consensus network.
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¼
Aij

Bij

� 	

w
þ

1

Rd
ij

� 1
Bij

� 	

w
�

1

Rd
ij

" #

, (15)

The graph shown in Figure 6 will be referred to as a dynamic graph or a dynamic
consensus network. Then applying the definition of the dynamic.

Laplacian (12) for the dynamic graph Figure 6 we get

L sð Þ ¼

P

j¼2, 3, 4
λ
S
1j sð Þ �λ

C
12 sð Þ �λ

C
13 sð Þ �λ

C
14 sð Þ

�λ
C
21 sð Þ

P

j¼1, 4
λ
S
2j sð Þ 0 �λ

C
24 sð Þ

�λ
C
31 sð Þ 0

P

j¼1, 4
λ
S
3j sð Þ �λ

C
34 sð Þ

�λ
C
41 sð Þ �λ

C
24 sð Þ �λ

C
43 sð Þ

P

j¼1, 2, 3
λ
S
4j sð Þ

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

, (16)

which reduces to (Eq. (13)) if we insert the full expressions for λCij sð Þ and λ
S
ij sð Þ

defined in (Eq. (14)). This leads us to consider the idea of dynamic consensus
networks.

Figure 7 shows a simple simulation of (Eq. (9)) for the case when Q in
i ¼ 0 and

the scalar Ta = 80 for a nominal set of parameters available from the authors upon
request (omitted here in the interest of space). As intuitively expected, all temper-
atures converge to the ambient temperature, as the external environment has infi-
nite capacity and there is no energy input or removal. This can also be seen by
examining (Eq. (9)) at steady-state with Q in ¼ 0. Further noting that L(0) has the
form of a classic graph Laplacian matrix, with row sum equal to zero (and in this
case column sum equal zero as well), we can argue that Tss ¼ Ta is a unique
solution.

Figure 7.
Example simulation.
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We also [24] consider another example that motivated a generalization of the
static consensus problem (Eq. (1)), modeling the load frequency control (LFC)
network of an electrical power grid as a dynamic consensus network. We consider
the following network:

Y i sð Þ ¼
1

s

X

j∈N i

Gi sð Þaij Y i sð Þ � Y i sð Þð Þ, (17)

i ¼ 1, … ,N, which can be viewed as a single-integrator consensus network with
dynamic interconnection coefficients Gi(s)aij. In the grid’s LFC network, each
system’s output is the phase of its voltage, which is the integration of the angular
velocity. The interconnection is power exchanges among the individual systems
through transmission lines dependent on phase differences.

Based on the dynamics of a network’s nodes and their topology, several consensus
problems can be specified. This Chapter focuses on two types of dynamic consensus
networks: directed and undirected. The dynamic consensus networks studied are:

• Dynamic Network 1: Directed dynamic networks with integrator nodes and
dynamic edges:

_xi tð Þ ¼ �
X

j∈N i

λ
S
ij tð Þ ∗ xi tð Þ � λ

C
ij tð Þ ∗ x j tð Þ

h i

, (18)

or,

xi sð Þ ¼ �
1

s

X

j∈N i

λ
S
ij sð Þxi sð Þ � λ

C
ij sð Þx j sð Þ

h i

(19)

• Dynamic Network 2: Undirected dynamic networks with integrator nodes
and strictly-positive-real (SPR) transfer function edges:

_xi tð Þ ¼ �
X

j∈N i

λij tð Þ ∗ xi tð Þ � x j tð Þ
� �� �

, (20)

or,

xi sð Þ ¼ �
1

s

X

j∈N i

λij sð Þ xi sð Þ � xij sð Þ
� �� �

(21)

• Dynamic Network 3: Undirected dynamic networks with identical nodes and
dynamic edges:

xi tð Þ ¼ �p tð Þ ∗
X

j∈N i

λij tð Þ ∗ xi tð Þ � x j tð Þ
� �� �

, (22)

or,

xi sð Þ ¼ �p sð Þ
X

j∈N i

λij sð Þ xi sð Þ � x j sð Þ
� �� �

(23)

• Dynamic Network 4: Undirected dynamic networks with heterogeneous
nodes and dynamic edges:
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xi tð Þ ¼ �pi tð Þ ∗
X

j∈N i

λij tð Þ ∗ xi tð Þ � x j tð Þ
� �� �

, (24)

xi sð Þ ¼ �pi sð Þ
X

j∈N i

λij sð Þ xi sð Þ � x j sð Þ
� �� �

(25)

Assumptions: For the dynamic networks (Eqs. (19)–(25)), we make the
following assumptions:

1.The node and edge processing in the proposed dynamic networks (Eqs. (19)–
(25)) are linear, time-invariant LTI.

2.The dynamic topology consists of dynamic edges λij sð Þ modeled as transfer
functions. For the second proposed dynamic network (Eq. (21)), we assume
the edges’ dynamics are strictly positive real (SPR) transfer functions.

3.The topology of a network can be directed or undirected. The first dynamic
network (Eq. (19)) uses a directed topology, whereas the second dynamic
network (Eq. (21)) uses an undirected topology.

4.Depending on the application, the flow is modeled differently. For instance,

λ
S
ij sð Þxi sð Þ � λ

C
ij sð Þx j sð Þ

h i

and λij sð Þ xi sð Þ � xij sð Þ
� �� �

are two different ways of

modeling flow, as is indicated by the previous Section. The difference between
these two cases is illustrated in (Eqs. (19) and (21)). These flow models are
rooted in the types of dynamic networks to be modeled per the motivation for
each network. The first dynamic network (Eq. (19)) is based upon modeling
buildings’ thermal processes as directed dynamic graphs. In contrast, the
second dynamic network (Eq. (21)) is based upon the motivation of modeling
micro-grids of power systems as undirected dynamic graphs.

5.The nodes’ dynamics can be integrators (Eqs. (19) and (21)) or more general
dynamics Eqs. (23) and (25).

6.The nodes’ dynamics and the edges can be identical Eqs. (23) or heterogeneous
Eqs. (25).

7.These models are often autonomous, meaning no input flows into the dynamic
consensus networks. However, we add inputs and disturbances to the
proposed dynamic consensus networks’ general forms in some problems.

3. Dynamic graphs definitions

Consider the example in Figure 8. These graphical depictions are outlined as a
set of nodes (or vertices) N ¼ nif g connected by a set of edges E sð Þ ¼

ni, n j
� �

: ni, n j ∈N

 �

). We modeled each respective edge as a transfer function
λij sð Þ. In this example, each edge λij sð Þ∈R sð Þ, where R sð Þ denotes the set of all
complex-valued functions analytic in the open right-half complex plane (real ratio-
nal functions). It is important to note that this model assumes that zero self-loops
are connected to any node in question. Meanwhile, if an edge between nodes exists
ni and nj, we describe such nodes as adjacent (or neighbors). We denote the neigh-

bors of each node ni as N i ¼ j : ni, n j
� �

∈ E sð Þ

 �

. As previous academic work has
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described, the path between two respective nodes consists of a sequence of edges
from which it is possible to travel along the arc sequence from one of the nodes to
the other. If there is at least one node with at least one path to every other node, the
graph is connected.

Later, we also view a node as implementing a transfer function that produces the
node variable (Pi(s) for i ¼ 1, 2, … ,N, where N is the number of nodes in the
dynamic graph).

As in the static case, we ordered the edges eij(s) by the edge originating from
node Pi(s), known as the tail node, and terminating at node Pj(s), which we referred
as the head node, which a compass can identify. If the dynamics of the nodes are
different, we will call such dynamic networks heterogeneous networks. If the nodes
have the same dynamics, the network is homogeneous. However, a particular case
does arise when integrator nodes with dynamic edges are present.

Each node Pi(s) in a directed dynamic network, such as Figure 8, is associated
with a dynamic degree vi(s) representing the total sum of the dynamic edge weights
that are connected to the node i (entering or leaving the node). More specifically,
each node has a dynamic in-degree vini sð Þ and a dynamic out-degree vouti sð Þ
representing the sum of the dynamic edge weights of the incoming and outgoing
edges, respectively. Clearly vi sð Þ ¼ vini sð Þ þ vouti sð Þ. From these dynamic degree
definitions, we can define three different dynamic degree matrices:

1.The dynamic in-degree matrix Din sð Þ ¼ diag vini sð Þ
� �

.

2.The dynamic out-degree matrix Dout sð Þ ¼ diag vouti sð Þ
� �

.

3.The dynamic degree matrix D sð Þ ¼ diag vi sð Þð Þ.

Figure 8.
Directed-dynamic graph.
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Notice that D sð Þ ¼ Din sð Þ þDout sð Þ. To illustrate, for the example shown in
Figure 8, these matrices are given by (26):

Din sð Þ ¼

λ21 sð Þ þ λ31 sð Þ þ λ41 sð Þ 0 0 0

0 λ12 sð Þ þ λ42 sð Þ 0 0

0 0 λ13 sð Þ þ λ43 sð Þ 0

0 0 0 λ14 sð Þ þ λ24 sð Þ þ λ34 sð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

;

Dοut sð Þ ¼

λ12 sð Þ þ λ13 sð Þ þ λ14 sð Þ 0 0 0

0 λ21 sð Þ þ λ24 sð Þ 0 0

0 0 λ31 sð Þ þ λ34 sð Þ 0

0 0 0 λ41 sð Þ þ λ42 sð Þ þ λ43 sð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

;

D sð Þ ¼

Din 1, 1ð Þ þDout 1, 1ð Þ 0 0 0

0 Din 2, 2ð Þ þDout 2, 2ð Þ 0 0

0 0 Din 3, 3ð Þ þDout 3, 3ð Þ 0

0 0 0 Din 4, 4ð Þ þDout 4, 4ð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

(26)

If a dynamic edge eij sð Þ exists between two nodes i and j, these nodes are
considered to be adjacent and are known as neighbors, and are denoted for a node

Pi sð Þ by N i ¼ j : ni, n j
� �

∈ E sð Þ

 �

. As before, neighbors can be distinguished based
upon whether they are associated with incoming or outgoing arcs. Thus, we can
define three dynamic adjacency matrices:

1. The incoming dynamic adjacency matrix Ain sð Þ ¼ ainij sð Þ
h i

, is defined by

ainij sð Þ ¼

P

j∈N i

eij sð Þ; coming into ni from n j
� �

if i 6¼ j

0 otherwise:

8

>

<

>

:

2. The dynamic outgoing adjacency matrix Aout sð Þ ¼ aoutij sð Þ
h i

, is defined by

aoutij sð Þ ¼

P

j∈N i

eij sð Þ; going out from ni into n j
� �

if i 6¼ j

0 otherwise:

8

>

<

>

:

3. The dynamic adjacency matrix A sð Þ ¼ aij sð Þ
� �

, is defined by

aij sð Þ ¼

total
P

j∈N i

eij sð Þ; between ni and n j
� �

if i 6¼ j

0 otherwise:

8

>

<

>

:
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Notice that A sð Þ ¼ Ain sð Þ þ Aout sð Þ. To illustrate, for the example shown in
Figure 8, these matrices are given by:

Ain sð Þ ¼

0 λ21 sð Þ λ31 sð Þ λ41 sð Þ

λ12 sð Þ 0 0 λ42 sð Þ

λ13 sð Þ 0 0 λ43 sð Þ

λ14 sð Þ λ24 sð Þ λ34 sð Þ 0

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

;

Aout sð Þ ¼

0 λ12 sð Þ λ13 sð Þ λ14 sð Þ

λ21 sð Þ 0 0 λ24 sð Þ

λ31 sð Þ 0 0 λ34 sð Þ

λ41 sð Þ λ42 sð Þ λ43 sð Þ 0

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

;

A sð Þ ¼

0 λ12 sð Þ þ λ21 sð Þ λ13 sð Þ þ λ31 sð Þ λ14 sð Þ þ λ41 sð Þ

λ21 sð Þ þ λ12 sð Þ 0 0 λ24 sð Þ þ λ42 sð Þ

λ31 sð Þ þ λ13 sð Þ 0 0 λ34 sð Þ þ λ43 sð Þ

λ41 sð Þ þ λ14 sð Þ λ42 sð Þ þ λ24 sð Þ λ43 sð Þ þ λ34 sð Þ 0

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

:

(27)

Another type of matrix is the dynamic incident matrix. For that matrix, we
outline two incident matrices: one that indicates the direction of the edges
connected to a node, where for node Pi(s) the edge eij(s) is given a value based upon

being disconnected, incoming, or outgoing and denoted as Bin
S where “S” refers to

static. Meanwhile, another can matrix capture the transfer functions of the edges

and is with this denoted as Bin
D sð Þ where “D” refers to the dynamic. Thus, the

dynamic and static incoming incident matrices are defined as Bin
D sð Þ ¼ binij�D sð Þ

h i

,

Bin
S ¼ binij�S

h i

, where,

binij�D sð Þ ¼

þλij sð Þ if arc j enters node ni

0 otherwise:

8

<

:

binij�S ¼

þ1 if arc j enters node ni

0 otherwise:

8

<

:

To illustrate, for the example shown in Figure 8 these matrices are:
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Bin
D sð Þ ¼

0 λ21 sð Þ 0 λ31 sð Þ 0 λ41 sð Þ 0 0 0 0

λ12 sð Þ 0 0 0 0 0 0 λ42 sð Þ 0 0

0 0 λ13 sð Þ 0 0 0 0 0 0 λ43 sð Þ

0 0 0 0 λ14 sð Þ 0 λ24 sð Þ 0 λ34 sð Þ 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Bin
S ¼

0 þ1 0 þ1 0 þ1 0 0 0 0

þ1 0 0 0 0 0 0 þ1 0 0

0 0 þ1 0 0 0 0 0 0 þ1

0 0 0 0 þ1 0 þ1 0 þ1 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(28)

Similarly, we can define a dynamic and static outgoing incident matrices for a

dynamic graph by, Bout
D sð Þ ¼ boutij�D sð Þ

h i

, Bout
S ¼ boutij�s

h i

, where,

boutij�D sð Þ ¼
�λij sð Þ if arc j leaves node ni

0 otherwise:

(

boutij�S ¼
�1 if arc j leaves node ni

0 otherwise:

(

To illustrate, for the example shown in Figure 8, these matrices are

Bout
D sð Þ ¼

�λ12 sð Þ 0 �λ13 sð Þ 0 �λ14 sð Þ 0 0 0 0 0

0 �λ21 sð Þ 0 0 0 0 �λ24 sð Þ 0 0 0

0 0 0 �λ31 sð Þ 0 0 0 0 �λ34 sð Þ 0

0 0 0 0 0 �λ41 sð Þ 0 �λ42 sð Þ 0 �λ43 sð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Bout
S ¼

�1 0 �1 0 �1 0 0 0 0 0

0 �1 0 0 0 0 �1 0 0 0

0 0 0 �1 0 0 0 0 �1 0

0 0 0 0 0 �1 0 �1 0 �1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(29)

Also, we can define the dynamic and static incident matrices for a directed

dynamic graph as BD sð Þ ¼ bij�D sð Þ
� �

, BS ¼ bij�S
� �

where

bij�D sð Þ ¼

�λij sð Þ if arc j leaves nodes ni

þλij sð Þ if arc j enters node ni

0 otherwise:

8

>

>

>

<

>

>

>

:

bij�S ¼

�1 if arc j leaves node ni

þ1 if arc j enters node ni

0 otherwise:

8

>

>

>

<

>

>

>

:
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Notice that BD sð Þ ¼ Bin
D sð Þ þ Bout

D sð Þ and BS ¼ Bin
S þ Bout

S . To illustrate, for the
example shown in Figure 8, the dynamic and static incident matrices are:

BD sð Þ ¼

�λ12 sð Þ λ21 sð Þ �λ13 sð Þ λ31 sð Þ �λ14 sð Þ λ41 sð Þ 0 0 0 0

λ12 sð Þ �λ21 sð Þ 0 0 0 0 �λ24 sð Þ λ42 sð Þ 0 0

0 0 λ13 sð Þ �λ31 sð Þ 0 0 0 0 �λ34 sð Þ λ43 sð Þ

0 0 0 0 λ14 sð Þ �λ41 sð Þ λ24 sð Þ �λ42 sð Þ λ34 sð Þ �λ43 sð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

BS ¼

�1 1 �1 1 �1 1 0 0 0 0

1 �1 0 0 0 0 �1 1 0 0

0 0 1 �1 0 0 0 0 �1 1

0 0 0 0 1 �1 �1 �1 1 �1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

(30)

We can now give the definition of dynamic Laplacian matrix equivalent with the
derived dynamic degree, adjacency, and incident matrices. This matrix mentioned
above has spectral properties that indicate many conditions of a graph. An undi-
rected dynamic graph has a corresponding dynamic Laplacian matrix defined by
L sð Þ ¼ D sð Þ � A sð Þ. More specifically, the dynamic Laplacian matrix we propose

here can be defined as L sð Þ ¼ lij sð Þ
� �

, where

lij sð Þ ¼

P

j∈N i

λij sð Þ i ¼ j

�λij sð Þ i 6¼ j and i, jð Þ∈ E

0 otherwise

8

>

>

>

<

>

>

>

:

: (31)

Dout sð Þ ¼

λ12 sð Þ þ λ12 sð Þ þ λ14 sð Þ 0 0 0

0 λ21 sð Þ þ λ24 sð Þ 0 0

0 0 λ31 sð Þ þ λ34 sð Þ 0

0 0 0 λ41 sð Þ þ λ42 sð Þ þ λ43 sð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

Aout sð Þ ¼

0 λ12 sð Þ λ13 sð Þ λ14 sð Þ

λ21 sð Þ 0 0 λ24 sð Þ

λ31 sð Þ 0 0 λ34 sð Þ

λ41 sð Þ λ42 sð Þ λ43 sð Þ 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

Lout sð Þ ¼

λ12 sð Þ þ λ13 þ λ14 sð Þ �λ12 sð Þ �λ13 sð Þ �λ14 sð Þ

�λ21 sð Þ λ21 sð Þ þ λ24 sð Þ 0 �λ24 sð Þ

�λ31 sð Þ 0 λ31 sð Þ þ λ34 sð Þ �λ34 sð Þ

�λ41 sð Þ �λ42 sð Þ �λ43 sð Þ λ41 sð Þ þ λ42 sð Þ þ λ43 sð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(32)

Here, we also outline the aforementioned matrix of an undirected dynamic
graph as

L sð Þ ¼ BD sð ÞBT ¼ D sð Þ � A sð Þ, (33)
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where D sð Þ∈ℂ
m�m is the dynamic degree matrix formed by the dynamic degree

of the m edges, B∈
n�m is the static incident matrix that captures the orientations

of the edges, and A sð Þ∈ℂ
n�m is the dynamic adjacency matrix.

We define the dynamic Laplacian matrix through the implementation of the the
dynamic degree and dynamic adjacency matrices which distinguish between

incoming and outgoing conventions. Examples include: Lin sð Þ ¼ Din sð Þ � Ain sð Þ and
Lout sð Þ ¼ Dout sð Þ � Aout sð Þ. With these definitions, L sð Þ ¼ Lin sð Þ þ Lout sð Þ. Particular
caution must be taken in noting that while L ¼ BBT in the static case, L sð Þ 6¼
B sð ÞB sð ÞT, Lin sð Þ 6¼ Bin sð ÞBin sð ÞT and Lout sð Þ 6¼ Bout sð ÞBout sð ÞT. To overcome this, in the
sequel, we will use Lout(s), where the outgoing, dynamic Laplacian matrix can be
defined using the incident matrices as follow:

Lout sð Þ ¼ Dout sð Þ � Aout sð Þ, (34)

where Dout(s) and Aout(s) are the dynamic-outgoing degree and adjacency
matrices, respectively. These matrices can be defined in a static case using the

incident matrices as Dout ¼ BoutBoutT and Aout ¼ �BoutBinT . Thus, the outgoing,
dynamic degree and adjacency matrices can be defined as:

Dout sð Þ ¼ BD
out sð ÞB

outT
S ,

Aout sð Þ ¼ �Bout
D sð ÞBinT

S : (35)

By combining (Eqs. (34) and (35)), the outgoing, dynamic Laplacian matrix
Lout(s) can be defined as

Lout sð Þ ¼ Bout
D sð ÞBoutT

S þ Bout
D sð ÞBinT

S

¼ Bout
D sð Þ BoutT

S þ BinT
S

� 	

¼ Bout
D sð ÞBT

S :
(36)

A similar definition can be given for Lin(s).
To illustrate, regarding the example noted in Figure 8, the associated dynamic

degree, adjacency, and Laplacian matrices are given by (Eq. (32)). Notice that λij sð Þ
depicted in (Eq. (32)) are transfer functions that describe the interconnections
(edges) between the nodes (Figure 9).

Figure 9.
Block diagram of the dynamic graph.

20

Recent Applications in Graph Theory



Now, the dynamic of each node can be represented in time domain for i ¼
1, 2, … ,N ¼ 4 by

_xi tð Þ ¼ Aixi tð Þ þ Bi uini tð Þ �
X

j∈N i

λij
d
dt

� 


∗ xi tð Þ � x j tð Þ
� �

2

4

3

5

yi tð Þ ¼ Cixi tð Þ,

(37)

where, xi tð Þ, uini tð Þ, and yi tð Þ are the state, input, and output of the node i,
respectively, λij sð Þ

�

�

S¼d
dt
. is the transfer function of the edge between the nodes i and j,

and N i is the neighboring set to the node i.
The overall system of the dynamic graph 8 can be written in frequency

domain as

P sð Þ�1Y sð Þ ¼ �Lout sð ÞY sð Þ þ uin sð Þ, (38)

where, P sð Þ ¼ �diag P1 sð Þ,P2 sð Þ, …PN sð Þð Þ; Pi sð Þ ¼ Ci sIn � Aið Þ�1Bi, uin sð Þ, Y(s)
are the Laplace transform of the input and output variables, and Lout(s) is the
outgoing-dynamic Laplacian matrix of the dynamic graph.

The block diagram for the overall system (38) can be depicted as shown in 9.
The dynamic graphs presented here are governed by dynamic consensus

protocols as discussed in the previous sections.

4. Conclusion

This Chapter studied a generalization of consensus network problems whereby
the network edges’ weights are no longer modeled as static gains. Instead, they are
represented as dynamic systems coupling the nodes. We call such networks
dynamic consensus networks because, under some conditions, all node variables
converge to a common value called a consensus. We presented examples of how
dynamic graphs can arise in applications. Detailed studies of modeling thermal
processes in buildings as directed dynamic graphs were presented. Motivated by
these examples, a framework was proposed for dynamic graphs and dynamic con-
sensus networks. This framework introduced the idea of dynamic degree, adja-
cency, incident, and Laplacian matrices in a way that naturally extends these
concepts from the static case. The dynamic consensus networks addressed herein
considered various dynamics of nodes and interconnection topology, including (1)
directed dynamic networks with integrator nodes and real-rational transfer func-
tion edges; (2) undirected dynamic networks with integrator nodes and strictly-
positive-real transfer function edges; and (3) undirected dynamic networks with
identical linear time-invariant nodes and dynamic edges. We used the established
aspects and properties of the defined dynamic graph theory in conjunction with the
behavioral approach to developing a controllability-analysis methodology for
dynamic networks.
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