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Abstract

This research paper summarises the practical relevance of additive manufacturing 
with particular attention to the latest laser powder bed fusion (L-PBF) technology. 
L-PBF is a promising processing technique, integrating intelligent and advanced 
manufacturing systems for aerospace gas turbine components. Some of the added 
benefits of implementing such technologies compared to traditional processing 
methods include the freedom to customise high complexity components and rapid 
prototyping. Titanium aluminide (TiAl) alloys used in harsh environmental set-
tings of turbomachinery, such as low-pressure turbine blades, have gained much 
interest. TiAl alloys are deemed by researchers as replacement candidates for the 
heavier Ni-based superalloys due to attractive properties like high strength, creep 
resistance, excellent resistance to corrosion and wear at elevated temperatures. 
Several conventional processing technologies such as ingot metallurgy, casting, and 
solid-state powder sintering can also be utilised to manufacture TiAl alloys employed 
in high-temperature applications. This chapter focuses on compositional variations, 
microstructure, and processing of TiAl alloys via L-PBF. Afterward, the hot corro-
sion aspects of TiAl alloys, including classification, characteristics, mechanisms and 
preventative measures, are discussed. Oxidation behaviour, kinetics and preven-
tion control measures such as surface and alloy modifications of TiAl alloys at high 
temperature are assessed. Development trends for improving the hot corrosion and 
oxidation resistance of TiAl alloys possibly affecting future use of TiAl alloys are 
identified.

Keywords: titanium aluminides, oxidation, hot corrosion, additive manufacturing, 
laser powder bed fusion

1. Introduction

Titanium aluminide (TiAl) is a member of group material referred to as 
intermetallics, consisting of various metals resulting in ordered crystallographic 
structures formed when the concentration of the alloy exceeds the solubility limit 
[1]. Properties as low density, high strength and elevated temperature properties 
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make TiAl replacement candidates for nickel-based superalloys used in the aerospace 
and automotive industries [2–4]. One such alloy tried and tested by General Electric 
[5] for commercial turbofan engines is Ti-48Al-2Cr-2Nb. Despite the attractive 
high-temperature properties attained in research to date, the inherent poor ductility 
of TiAl at ambient temperatures remains a concern [6]. Over the past 20 years and 
recently, much work has been devoted to material tailoring through compositional 
variations and alloying aimed at improving room temperature ductility [7–11].

Phase evolution in TiAl alloys governs the mechanical and physical properties 
to be obtained. Primarily, two ordered structures exist, namely, γ-TiAl (L10) and 
hexagonal α2-Ti3Al (D019), resulting from different thermo-mechanical treatments. 
Furthermore, the mechanical properties to be obtained are dependent on the micro-
structure. Three microstructures exist, namely, equiaxed single γ phase, fully or 
near (γ/α2) lamellar and duplex (consisting of colonies of lamellar γ/α2 and pure γ 
phase grains). The achieved microstructure is significant for its mechanical proper-
ties, especially in structural applications. Duplex microstructures with enhanced 
ductility measures such as fracture strength, yield strength and strain have been 
reported [12–14]. Fully lamellar structures, in particular, have shown the best creep 
performance as contrasted to other microstructural modifications [15–17].

For the intended application, considering the inherent brittle nature of TiAl 
alloys, material tailoring through microstructural evolution is often necessary. 
Additionally, the low ductility and brittleness of TiAl alloys at ambient tempera-
tures make their processing using conventional methods difficult. To overcome 
problems associated with conventional processing, such as microstructural incon-
sistencies inherited from solidification and phase evolutions resulting in the scat-
tering of mechanical properties, heat treatment cycles are often designed [18–21]. 
Traditional methods requiring post-treatment are time-consuming, labour and 
capital intensive, waste a lot of start-up material, and require unnecessary produc-
tion costs. Therefore, there is a need to manufacture TiAl alloy components without 
the above-mentioned technical deficiencies and limitations and satisfy industrial 
needs for component fabrication [22].

For the last decades of the 20th century [23], the Additive Manufacturing (AM) 
method has been employed to obtain objects by the subsequent material supply. 
AM mainly aims to complete a collection of traditional subtractive manufactur-
ing practices while avoiding and limiting the need for post mechanical process-
ing such as machining. Laser powder bed fusion (L-PBF) is an AM technique, 
historically referred to as Selective Laser Melting (SLM) developed by F&S 
Stereolithographietechnik GmbH with Fraunhofer ILT [24], where a component 
is manufactured by melting a powder bed in a layer-by-layer sequence employing 
laser beam irritation [25]. The L-PBF process is initiated by creating a 3D digital 
part model (usually scan data or a CAD file), followed by slicing the model into thin 
layers using special software. The powder bed is achieved by spreading powder onto 
the substrate surface. The powder bed is selectively melted through cross-sectional 
scanning generated from the 3D part model by applying a laser beam. After cross-
section scanning, powder bed layering is achieved by sequentially adding layers one 
after the other repeatedly until the part is complete. Recent studies [25–29] have 
shown that L-PBF is an innovative and efficient process employed to manufacture 
TiAl alloys compared to historically employed traditional manufacturing processes 
such as casting [30–32], ingot metallurgy [33–35], or even solid-state powder sinter-
ing [36–38]. The benefits of L-PBF include short production cycles and cheaper 
production costs. Also, parts produced are of high quality and have been found to 
exhibit desirable performance [39].

Exploring AM technologies to improve on properties of TiAl and its alloys is 
essential. As such, mechanical properties like compressive and tensile ductility 
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measures [40–42], wear resistance [43, 44], elevated temperature creep and 
oxidation resistance [45–48] superior to those processed by conventional means 
have been reported. Operation temperatures in new-generation gas turbines have 
fast-tracked progress in material development in the aerospace industry.

The dual combination of high temperatures and contaminant-containing 
aircraft environments shifts focus to hot corrosion and oxidation. Hot corrosion 
and oxidation can lead to catastrophic failures through material consumption at an 
unpredictably rapid rate. Much work has been devoted to understanding the hot 
corrosion and oxidation of TiAl alloys already [49–53]. As such, this research paper 
serves as a summary of the laser additive manufacturing of TiAl alloys. Particular 
attention is also given to the mechanisms, kinetics, prevention control and recent 
developments in hot corrosion and oxidation of TiAl alloys.

2.  Titanium aluminide (TiAl) alloys: phase, microstructures and 
mechanical properties

2.1 Phase and microstructural evolutions

2.1.1 Phase evolutions

The three main phases of the Ti-Al system consist of various TiAl compounds, 
namely, γ-TiAl, α2-Ti3Al and TiAl3 [1]. Of the three phases, only γ-TiAl and α2-Ti3Al 
have shown to be of engineering significance [54] with outstanding properties. 
They are lightweight and can be implemented for structural parts, automotive and 
elevated temperature aerospace applications. The γ-TiAl phase is a face-centred 
tetragonal ordered phase with an L10 structure. It consists of atomic layers at 90° to 
the c-axis [55] with lattice parameters a = 0.4005 nm, c = 0.4070 nm and a tetrago-
nality ratio (c/a) of 1.02 [56, 57]. The compositional range of the γ-TiAl phase is 
from 48.5 to 66.0 at.% of Al. The α2-Ti3Al phase has a hexagonal DO19 structure with 
a compositional range from 20 to 38.2 at.% of Al.

The α2-phase has high hydrogen and oxygen absorption rates and suffers from 
severe embrittlement, though it exhibits optimum high-temperature strength. The 
γ-phase has low gaseous absorption rates, outstanding oxidation resistance and 
poor room-temperature ductility. To maximise engineering benefits, dual-phase 
TiAl alloys consisting of γ + α2 phase are used. These alloys show excellent ductility 
[13, 58] at room temperatures due to the availability of refined lamellar colonies 
aiding γ-phase deformation [54, 59, 60]. The most known dual TiAl alloys with 
outstanding tensile properties are referred to as duplex alloys of the nominal (at.%) 
composition of Ti-(46–49) Al.

2.1.2 Microstructure-mechanical property relations

The four significant microstructures which may result in a Ti-Al system are 
namely, duplex (DP), near-gamma (NG), nearly lamellar (NL) and fully lamellar 
(FL). The obtained microstructures are greatly dependent on the processing route, 
Al compositional variations and thermo-mechanical treatments employed. Of the 
four, only fully lamellar and duplex have been considered necessary in engineering 
applications [54]. The evolutions (in Figure 1) of the microstructures mentioned 
above were be summarised in works by Cobbinah et al. [6] and Clemens et al. [61].

NG microstructures are obtained via thermal treatments slightly above the 
eutectoid temperature (Teu), while DP microstructures are achieved between Teu 
and α-transus temperatures. The thermal treatment implemented significantly 
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affects the volume fraction of lamellar grains present. As a result, NL microstruc-
tures are obtained at (Teu) and Tα relative temperatures, slightly under Tα. NL 
microstructures exhibiting a specified globular γ-grain volume fraction are shown 
as NLγ. FL microstructures are achieved by thermal treatments above Tα. Generally, 
the obtained properties compensate for other properties [22] as represented in 
Figure 1 and should be considered when the material is designed for structural 
applications. Furthermore, the microstructure-property relationship in TiAl alloys 
makes it easier to modify the material for the anticipated application.

3. Additive manufacturing (AM) of TiAl

3.1 Process overview

Additive manufacturing (AM) presents an opportunity to manufacture TiAl alloys 
with minimal processing difficulties compared to those experienced during con-
ventional processing, such as near-net-shape forging or investment casting [62]. For 
tailoring TiAl alloys with optimum properties, laser powder bed fusion (L-PBF) and 
electron beam melting have been considered suitable [63–66]. Recently, the produc-
tion of TiAl alloys using L-PBF has gained special attention [29, 67–71] owing to the 
benefits offered. Some of these benefits [6] complex geometry formation, ease of part 
dimension control, production of highly defined parts with orifices, mass customisa-
tion and material flexibility. Furthermore, during local melting of the powders, high 
solidification rates are obtained. These result in more refined microstructures.

The component is manufactured (in Figure 2) by melting a powder bed in a 
layer-by-layer sequence employing laser beam irritation [25]. The process is initi-
ated by creating a 3D digital part model (usually scan data or a CAD file), followed 
by slicing the model into thin layers using special software. The powder bed is 
achieved by spreading powder onto the substrate surface. In preparation for part 

Figure 1. 
The central portion of the binary Ti-Al phase diagram together with microscopic optical (left) and 
backscattered scanning electron (right) images showing NG, DP, NL/NLγ and FL microstructures achieved via 
heat-treating within α and (α + γ) phase-field. The phases obtained are identified using contrast, where a light 
contrast is representative of α2-Ti3Al and γ-TiAl of a darker contrast [61].
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manufacturing, powders are preheated below their melting temperatures to pro-
mote bonding and minimise distortion [6]. L-PBF part manufacturing is executed 
in an inert gas (preferably argon) sealed environment to prevent reactive powder 
oxidation.

3.2 Research milestones

The need to replace previously used Ni-based superalloys in aerospace compo-
nents has fast-tracked research and development of lightweight and cost-efficient 
TiAl alloys. To date, Ni-based alloys still outmatch TiAl alloys in fabrication costs 
and mechanical performance. This is mainly due to the poor room temperature 
ductility of TiAl alloys and the delay in engineering design practices for low ductil-
ity materials [54]. Additionally, the high part fabrication costs involved in produc-
ing TiAl alloys are related to the knowledge that low ductility fabrication processes, 
which also produce high melting point alloys, are unavailable. As such, there has 
been much investment in exploring complex part fabrication techniques, requiring 
minimal post-processing steps such as L-PBF.

The evidence of many research breakthroughs concerning the production of 
TiAl alloy parts using L-PBF does not make the processing technique immune to 
limitations. Efforts have been invested in overcoming processing limitations such 
as part cracking, micro-pore formation and uneven powder deposition through 
processing parameter optimisation [73]. Processing parameters can be varied to 
develop TiAl alloys with excellent mechanical properties in application. Some of 
these properties are beam size, laser power, scanning speed, scan hatch spacing and 
powder layer thickness [74].

Polozov et al. [75] confirmed that TiAl-based alloy crack-free samples could be 
built via L-PBF processing with a high-temperature platform preheating of 900°C. 
Fully densified samples (highest relative density of 99.9%) were attained at volume 
energy density 48 J/mm3. The refined microstructure consisted of equiaxed grains, 
lamellar α2/γ colonies and retained β-phase. As compared to conventionally produced 
TiAl alloys, high ultimate compressive strength and strain values were obtained.

Process parameters can be optimised to aid the fabrication of TiAl specimen, 
and unfortunately, the resultant part still shows pores, cracks and low densities. 
One needs to understand the crack and pore formation mechanisms and the defect-
process parameter relationships in such a case. Shi and associates [70] investigated 

Figure 2. 
Graphical representation of laser powder bed fusion method [72].
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optimal L-PBF process window and the effect of substrate preheating. Moreover, 
the relationship between crack formation, pore formation, and the process param-
eters was studied and the crack propagation discrepancy with an increase in the 
number of deposition layers. It was concluded that crack formation was related to 
process parameters and the number of deposition layers. The cracks initiated in 
the 3rd layer are accounted for by residual stress accumulation and the deviations 
in the composition of Ti-47Al-2Cr-2Nb deposition layers. Furthermore, substrate 
(Ti-6Al-4 V) preheating at 200°C alleviated cracking. Finally, a good metallurgical 
bond between the substrate and Ti-47Al-2Cr-2Nb deposition layers was found.

The addition of yttrium (Y) to TiAl alloys (specifically class TNM) and process 
parameter optimisation dramatically affects the formability, and ultimately the 
cracking behaviour and control of L-PBF produced components. Gao et al. [76] fab-
ricated TNM alloys with varying Y contents (0, 1, 2, 3, 4 wt.%) and investigated the 
mechanism of improved formability, cracking sensitivity, cracking behaviour and 
control mechanism by Y additions. Improvements in the formability of Y added-
TNM alloys were assigned to lower melt viscosities and good laser energy absorp-
tion. The addition of 2, 3 and 4 wt.% Y to the TNM alloys coupled with a laser 
energy density greater than 7.00 J/mm2 formed crack-free samples. The obtained 
microstructure and phase constituents were reported to contribute to microcrack 
formation and control significantly. Lower Y additions resulted in coarse columnar 
grains, oxygen segregation at the grain boundaries with dominating brittle B2 phase 
with poor ductility. In contrast, higher Y additions (2–4 wt.%) refined equiaxed 
grains, enhanced the oxygen-scavenging effect (through the presence of Y2O3 
particles), and decreased brittle B2 phase content at higher Y additions significantly 
improve the ductility.

Finally, adding Nb to γ-TiAl alloys was also reported to account for improved 
mechanical properties based. Ismaeel et al. [77] produced Ti-Al–Mn–Nb alloys on 
a TC4 substrate and studied the effects of different Nb contents on the microstruc-
ture and properties of the alloys. The phases obtained consisted of γ-TiAl and α2-
Ti3Al and a consecutive microstructural change with increased Nb additions from 
near full dendrite to near lamellar. Also, adding 7 at.% of Nb resulted in improved 
alloy’s hardness, strength and plastic deformation. Moreover, the elevated tempera-
ture oxidation resistance and tribological properties were significantly improved.

4. Hot corrosion

4.1 Definition

Hot corrosion can be defined as a chemical degradation on the metallic surface 
of materials operating at high temperatures, enhanced by the presence of molten 
ash and gases containing elements such as sulphur (S), chlorine and sodium [78]. 
Such environmental elements during fuel combustion promote damage to the 
protective oxide film by forming contaminants such as V2O5 and Na2SO4 [79]. This 
degradation form was initially identified in the early 1950s on combustion engines 
and boilers [80] and has been explored in numerous research works [50, 81–87].

4.2 Characteristics

Hot corrosion exists as Type I (known as High-Temperature Hot Corrosion) 
or Type II (Low-Temperature Hot Corrosion), with the former occurring above 
800–950°C and the latter at 600–750°C [88, 89]. The occurrence of either attack 
form is dependent on several parameters such as the composition of the alloy, 
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contaminant, and gas. Furthermore, other vital parameters are temperature and 
temperature cycles, erosion processes and gaseous velocity [90, 91]. The main 
difference between high-temperature hot corrosion (HTHT) and low-temperature 
hot corrosion (LTHC) is the morphologies thereof. HTHC is distinguished by the 
occurrence of a non-porous protective scale, internal sulphidisation and chromium 
(Cr) depletion.

4.2.1 High-temperature hot corrosion (HTHC)-type I

This form of attack, also referred to as molten salt-induced corrosion, comprises 
a liquid-phase salt mixture deposit observed at high temperatures at the start of 
deposition [92]. Traditionally, according to Nicholls and Simms [93], HTHC has 
been detected in a temperature array between the surface deposit melting point 
and vapour deposition dew point for the deposit. Above this suggested temperature 
band, instability of dew point deposit exists, resulting in evaporation. A series of 
chemical reactions occur, initially attacking the oxide film and progress to deplete 
Cr present in the substrate [94]. Oxidation of the base material is then accelerated 
by Cr depletion, promoting a porous oxide scale formation.

An example of this could be the formation of thermodynamically unstable liquid 
sodium sulfate (Na2SO4) deposits. The marine environment mainly sources such 
deposits in sea salt form, followed by atmospheric contaminants such as volcanic 
discharges and fuel. During combustion, the present Na2SO4 can combine with 
pollutants present in air or fuel (such as chlorides, V and Pb) to form a blend of low 
melting temperature salts, further broadening the temperature range attack [94]. 
In the presence of sodium chloride (NaCl), the following reaction after combustion 
can be observed:

 + + = +
2 2 2 4 2

2NaCl SO O Na SO Cl  (1)

HTHC can be classified into four stages from initiation up to failure [95]:

1. Stage I: Initial coating deterioration—roughening of the surface edges coupled 
with localised oxide layer disintegration and minor base metal layer depletion 
is observed. If the surface is left untreated, the condition will worsen. Surface 
recoating and stripping may be adequate to remedy this degree of damage.

2. Stage II: Oxide layer rapture—characterised by an acceleration and advance-
ment in surface roughness compared to Stage 1 and the protective oxide layer’s 
failure. Although the mechanical integrity remains maintained, there is no way 
to salvage the component to its original state.

3. Stage III: Detrimental sulphidisation—depicted by massive scale build-up on 
the component’s surface and indications of liquid Na2SO4 under the protective 
layer. The structural integrity of the part is significantly affected, attack by S 
contaminants proceeds.

4. Stage IV: Catastrophic attack—failure of the component occurs due to the 
observed significant blistered scale penetrating much into the base metal. 
Structural rigidity is lost.

This corrosion damage is characterised by a uniform attack, internal sulphide 
phases, depletion zone beneath a relatively smooth scale–metal interface [80, 96].
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4.2.2 Low-temperature hot corrosion (LTHC)-type II

Type II corrosion has been reported [97–102] as a liquid-phase deterioration by 
a blend of molten nickel (Ni) or cobalt (Co)-containing sulphates such as Na2SO4-
CoSO4 or Na2SO4-NiSO4 accountable for corrosion initiation and propagation. The 
corrosion initiation is achieved through oxide layer fluxing, while propagation is 
accelerated by the mass movement of reactive elemental components through liquids 
present in the corrosion pits [80]. Studies [103–106] have shown that conversion 
from CoO and NiO occurs when SO3 in the gas reacts with the sulphates, attributing 
to the extensive usage of mixed Na2SO4-NiSO4 in recent LTHC research studies.

LTHC can be found in coated or uncoated compressor and turbine parts. For 
instance, the sometimes turbine blade’s uncoated internal cooling systems operating 
at temperatures of about 650–750°C may be prone to this corrosion type [107]. The 
external rim of uncoated turbine blades reaches temperatures of 400–800°C [108]. 
LTHC is distinguished by the pit’s appearance and the absence of a sulphide zone at 
the corrosion front, consuming all the S [96].

4.3 Mechanisms

Two HTHC mechanisms have been proposed, namely sulphide-oxidation and 
salt fluxing mechanisms [94]. Acidic and basic fluxing reactions, presented initially 
by Goebel and Pettit [109, 110], may be obtained and rely on the compositions of 
the alloy, oxide and underlying coating [93]. According to this model, fluxing occurs 
due to the decomposition of oxides into corresponding cations and O2− (known as 
acidic fluxing) or oxides with O2− forming anions (referred to as basic fluxing).

In acidic fluxing, oxide ions are donated to the deposit melt through dissolving 
the oxide scale [93]:

 + −= +2 2MO M O  (2)

Acidic environments in molten deposits can be developed through two main 
processes, namely, alloy-induced and gas-phase acidic fluxing. Basic fluxing is 
achieved through the production of oxide ions in a Na2SO4 deposit. Such is obtained 
by removing S and oxygen from the residue through reactions with the alloy or 
underlying coating. Subsequently, the oxide scales (e.g., MO) produced can react 
with the oxide ions through reactions [93]:

 − −+ =2 2

2
MO O MO  (3)

A conventional model for LTHC was proposed by Luthra [111]. As suggested 
by the model, LTHC follows two stages, namely, formation of liquid-form sodium-
cobalt sulphate and attack propagation through SO3 migration through the liquid 
salt. In nickel-based alloys, the mechanism suggested by Shih and associates [112] 
for LTHC is sulphidisation.

4.4 Laboratory testing techniques

An alloy’s resistance to hot corrosion can mainly be determined using four 
standard tests: the electrochemical, crucible, accelerated oxidation, and burner-rig 
[94, 113]. The crucible tests remain the most highly ranked test for hot corrosion, 
simply consisting of either suspending, depositing, or completely immersing the 
testing sample in molten salts at elevated temperatures, as presented in Figure 3. 
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As far as TiAl alloys are concerned, less work has been carried out to understand the 
hot corrosion behaviour of such alloys [114–116].

Gas turbine environments can be precisely simulated by employing burner-rig 
tests [117, 118], shown in Figure 4. The salt is in aerosol or fog form and fuel oil/
air is introduced into the testing chamber to generate the test environment [119]. 
Simmons et al. [120] indicated that hot corrosion is an electrochemical process since 
hot corrosion consists of electrochemical reactions in which the molten salt acts as 
the conductive media or electrolyte.

4.5 Prevention methods

Some of the approaches used to prevent hot corrosion include maintaining 
both fuel purity and composition, properly selecting structural alloys, employing 
 coatings, cleaning hot parts and air filtering [94].

4.5.1 Fuel purity and composition

Initiation and propagation of hot corrosion are greatly affected by impurities 
such as vanadium (V), S, and various alkali earth metals [121]. This can be con-
trolled by adding magnesium (Mg), Cr, barium and calcium to the combustion fuel 

Figure 3. 
Configurations used in hot corrosion crucible testing [114].

Figure 4. 
Burner rig hot corrosion test schematic representation where (a) is an illustrates the experimental setup for 
Na2SO4(g) exposure, (b) is an image of the specimen plate for Na2SO4(g) tests in a crucible with the salt 
container and (c) is an ex-situ salt hot corrosion schematic diagram setup for experimental studies [119].
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to decrease corrosion rate. The presence of zinc (Zn) in the form of anodes in the 
combustion fuel or as part of the protective coating can significantly reduce the 
occurrence of LTHC. According to Hancock and associates [122], Zn drastically 
reacts with chloride ions (i.e., when excess NaCl is available) and transfers the 
chloride to the gas-salt interface to transform to chloride gas via sulphidisation.

4.5.2 Proper alloy selection

The addition of Cr to superalloys has effectively reduced the occurrence of hot 
corrosion [123]. Historically [121, 124], Cr (15 wt.% for Ni-based and 25 wt.% for 
Co-based alloys) has been added to superalloys to reduce HTHC. Much related to 
TiAl alloys, Garip and Ozdemir [125] studied the effect of Cr, Mo and Mn on the 
cyclic hot corrosion behaviour, and subsequently reported the beneficial effects of 
Cr and Mn additions on the hot corrosion properties of the investigated samples. 
Cr’s effect on corrosion resistance is attributed to the ability of Cr to form Cr2O3, 
stabilising the chemistry melt, preventing reprecipitation of the protective oxide 
scale. Contrarily, increased Cr additions to superalloys can compromise the high-
temperature strength and ductility [113] by forming TCP phases. The alloy and 
oxide film adhesion has been reported to be improved by the addition of zirconium, 
yttrium, scandium, cerium and lanthanum [113]. Silicon (Si), platinum (Pt), haf-
nium, Ti, Al, and Nb [126] were also found to increase resistance to hot corrosion.

4.5.3 Protective coatings

Such as diffusion, overlay and thermal barrier (TBCs) coatings can be used on 
relatively resistant alloys to combat hot corrosion. An alloy’s surface enrichment by 
Al, Si or Cr achieves diffusion coatings. Various aluminide diffusion coatings (i.e., 
PWA70, MDC3V, PWA62, TEW LDC2, Elbar Elcoat 360 and Chromalloy RT22) have 
been developed and can be alloyed with Pt to improve cyclic oxidation at high tem-
peratures [127]. Overlay coatings, commonly referred to as M (base metal)–Cr–Al–Y 
coatings, are designed for LTHC and HTHC surface protection. Overlay coatings with 
low Cr-high Al coatings are used for HTHC protection, while high Cr-low Al coatings 
are used for LTHC [94]. TBCs protects the substrate from gaseous flow caused by heat 
and consist of an external ceramic usually zirconia) and an oxidation-resistant bond-
coat overlay. Other coatings include intelligent coatings like RT22 (Pt-aluminide) and 
Sermetal 1515 (a triple-cycle Si-aluminide treatment), have been reported [127].

Inexpensive alternatives include oxide-based glass and glass–ceramic coatings 
[128, 129]. Oxide-based glass and glass–ceramic coatings exhibit a remarkable combi-
nation of properties such as excellent chemical inertness, high-temperature stability 
and superior mechanical properties, which effectively can mitigate deterioration 
caused by hot corrosion. The introduction of halogens on the surface of the alloy 
encourages the preferential formation of aluminium halides at elevated temperatures. 
The aluminium halides are then converted to thin, continuous, and protective alu-
mina oxides. Fluorine provides the best oxidation protection [130]. Further examples 
of surface modifications coating and methods studied on γ-TiAl alloys include 
magnetron sputtering [131], laser cladding [132], sol–gel [133], pack cementation 
[134], chemical vapour deposition [135], slurry [136], ion implantation [137].

4.5.4 Cleaning hot parts and air filtering

Motoring washes can be flooded with plain water [121] to prevent hot corrosion using 
specified procedures in the maintenance manual for the specific engine model. Also, 
high-efficiency filters can be used to filter out air containing high sodium contents [138].
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4.6 Hot corrosion studies for TiAl alloys

Although much work has been devoted to understanding the hot corrosion 
kinetics of Ni-based and Co-based superalloys, TiAl alloys emerged to have sparked 
much interest in recent years [1, 56, 57, 139]. Historically, reported works utilised 
alloys produced using conventional methods; however, more attention has recently 
shifted to AM routes [70, 73, 140–146]. Despite much devotion to improving struc-
ture–property relations of TiAls, little work has been reported on the hot corrosion 
of additively manufactured TiAl.

Garip and Ozdemir [147] produced an alloy to the nominal at.% composition 
of Ti-48Al-10Cr using electric current activated sintering and studied the hot 
corrosion kinetics of the alloys in Na2SO4 salt for 180 h at 700–900°C. A severe hot 
corrosion attack was observed at 900°C (refer to Figure 5), with a porous and loose 
layer consisting of Na2Ti3O7, TiO2, Al2O3 traces of TiS phase.

In a study led by Xiong et al. [67], bare alloys TiAl, TiAlNb, and Ti3AlNb, were 
severely damaged after exposure at 750°C in (Na, K)2SO4 + NaCl melts as compared 
to those coated with enamel or TiAlCr. The corrosion mechanism was described 
to be much related to self-catalysis of sulphidisation and chlorination of metallic 
components. The initial mass loss observed is due to chloride volatility via metal-
lic component chlorination. Of the alloys investigated, TiAlNb exhibited the best 
corrosion resistance due to adhesive Al2O3 enriched scale formation. Lastly, the 
degradation acceleration of sputtered TiAlCr coating was reported to be due to the 
chlorination of Cr and Al.

Additions of Nb and Si to traditional TiAl coatings were found to improve the hot 
corrosion resistance of a Ti-6Al-4 V alloy. In the stated work, Dai et al. [148] investi-
gated the corrosion mechanisms on a mass loss basis following exposure at 800°C in 
a 75 wt.% Na2SO4 + NaCl salt mixture. Increasing single Nb additions deteriorated 
the hot corrosion resistance of the coating. Comparatively, increasing single Si 
additions continued to improve hot corrosion resistance. However, additions of both 
Nb and Si simultaneously showed better resistance to corrosion than single element 
additions. The corrosion protection of both Nb and Si (as seen in Figure 6) was 
related to SiO2 and Al2O3 formation in the initial stages of hot corrosion. Secondly, 

Figure 5. 
Cross-sectional SEM images showing oxide scale microstructures with EDS analysis points represented in at.%, 
after hot corrosion exposure at (a) 800°C and (b) 900°C for 180 h [147].
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Si additions were reported to promote the formation of a Na2O-Al2O3-TiO2-SiO2 
enamel, hindering contact between the corrosive media and the oxide scales.

Tang et al. [149] studied the effect of enamel coatings on γ-TiAl against hot 
corrosion at 900°C. The enamel coating remained stable in the (Na,K)2SO4 melts, 
thus effectively protecting it against hot corrosion attack. Silicon-based coatings 
have also been shown to protect TiAl alloys. Rubacha et al. [150] evaluated the hot 
corrosion resistance of silicon-rich coated Ti-46Al-8Ta (at.%) alloy in NaCl, Na2SO4 
and a mixture of the two salts. The formation of an amorphous SiO2 layer with TiO2 
(rutile) and α cristobalite crystals enhanced the hot corrosion resistance of the TiAl 
alloy. Furthermore, Wu and colleagues [151] studied the hot corrosion resistance of 
a SiO2 coated TiAl alloy in 75 wt.% Na2SO4 + 25 wt.% NaCl salt mixture at 700°C. 
The enhanced hot corrosion resistance of the TiAl alloy was attributed to the 
formation of a compact and adherent amorphous SiO2 embedded with Na2Si4O9 and 
cristobalite. The incorporation of Si in aluminide coatings has also provided long-
term oxidation protection of γ-TiAl alloys at temperatures of 950°C by forming a 
continuous and uniform α-alumina oxide scale [152].

5. Oxidation

5.1 Definition

When metallic materials are exposed to elevated temperatures in air, oxida-
tion occurs, resulting in the formation of oxide scales. The crystal structure of 
the individual metals significantly affects the oxidation rate of high-temperature 
applicative parts [153, 154].

5.2 Oxidation behaviour in TiAl alloys

The following reactions may occur when TiAl alloys are subject to an oxidising 
environment:

 ( ) ( ) ( )+ =
2

1
2 s sg
Ti O TiO  (4)

 ( ) ( ) ( )+ =
22

1
2s sg

TiO O TiO  (5)

Figure 6. 
Representative hot corrosion model of TiAl-xNbySi coating where (a) illustrates TiO2 and Al2O3 formation 
and (b) shows an acidic dissolution of TiO2 to form sodium titanates including NaTiO2 and Na2TiO3 [148].
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The ultimate oxidation resistance of alloyed TiAls is achieved by forming 
protective Al2O3, Cr2O3 and SiO2 scales due to their outstanding thermal stabili-
ties. In contrast, the unfavourable formation of porous TiO2 with a high crack 
tendency is often observed [153]. Cobbinah et al. [155] found that 4 and 8 at.% 
Ta additions to Ti-46.5Al alloy promoted the significant formation of a consis-
tent, non-porous Al2O3 layer at the metal-oxide boundary. Additionally, the layer 
operated as a diffusion barrier and preceded to outstanding oxidation resistance 
of the TiAl alloys.

In a study by Pan et al. [156], a comprehensive understanding is provided of the 
role of alloying on the oxidation resistance of TiAl alloys. Protection was related 
much to the formation of Ti3Sn layer diminishing oxygen diffusion inwardly, pro-
moted by Sn additions. Moreover, spallation resistance was enhanced by the Al2O3 
oxide pegs providing a mechanical locking. The effect of cathodically electrodepos-
iting a SiO2 film on the oxidation resistance of a TiAl alloy was studied [157]. After 
900°C exposure in air, the resultant alumina- and silicon-enriched glass-like oxide 
scale (in Figure 7) was reported, preventing oxygen diffusion leading to remark-
ably decreased alloy oxidation rates.

Surface modification of TiAl alloys via anodising has sparked interest in many 
high-temperature oxidation studies [158–161]. For instance, the oxidation behav-
iour and protection mechanisms of a TiAl alloy were studied by anodising in a 
methanol/NaF solution and produced an aluminium (Al)-and fluorine-enriched 
anodic film [162]. After 100 h exposure at 850°C, no evidence of cracking and 
spallation was displayed on the surface. The enhanced high-temperature oxida-
tion resistance is mainly attributed to the halogen effect, generation of Al2O3 and 
oxidised Al–F species inhibiting external oxygen diffusion. Much effort has been 
devoted to developing coatings for γ-TiAl alloys, summarised in an evaluation by 
Pflumm et al. [130]. Amongst many available coating methods, Si-modified alu-
minide coatings produced via pack cementation have gained popularity. One such 
study [81] demonstrated that a continuous α-Al2O3 scale remained adherent after 
exposure to a temperature of 950°C for 3000 h.

5.3 Oxidation kinetics of TiAl alloys

When a metal operating at elevated temperatures is exposed to air, an oxide 
scale forms. As oxide scale formation proceeds, the metal’s weight change can be 
plotted against time. Several laws such as linear, parabolic, logarithmic or cubic 
can be observed when studying oxidation kinetics [163]. In as far as TiAl alloys are 

Figure 7. 
Representation of a γ-TiAl alloy coated with E-SiO2 film (a) and after thermal oxidation test (b) [157].
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Figure 8. 
Mass change against time plots for (a) oxidation rate constant of the AM produced TiAl 48–2-2 alloy and 
(b)–(c) the power-law constant – n extrapolation [48].

concerned, either linear or parabolic oxidation kinetics prevail. While the former 
offers no protection against high-temperature oxidation, the latter promotes 
diffusion-controlled oxide scale formation, improving much on the oxidation resis-
tance of the base material. Parabolic oxidation follows and obeys the following law:

 ( )∆ =
2

p
m k tA  (7)

where ∆m  = change in weight (in mg), A = surface area (in cm2), t = time  

(in sec) and pk  = parabolic oxidation rate constant (in mg2.cm−4.sec1).

The optimum oxidation protection governed by the parabolic law often results 
in a thick and continuous TiO2 and Al2O3 scale. As such, Swadźba et al. [48] inves-
tigated the short-term oxidation behaviour of a TiAl 48–2-2 alloy produced by AM 
at a temperature range of 750–900°C in air. At 900°C, a non-porous scale consist-
ing of TiO2, Al2O3 and nitrates, exhibiting parabolic oxidation (in Figure 8), was 
observed.

Garip [164] likewise studied the oxidation kinetics at 900°C in air for 200 h for 
TiAl alloys produced via pressureless and resistance sintering. Both alloys exhibited 
a nearly parabolic oxidation response, with oxidation rate constants of the pressure-
less sintered alloy of 0.6391 mgn cm−2n h−1, 1.8 times higher than that of the alloy 
compacted using resistance sintering. Multi-layered oxide scales consisting of TiO2 
and Al2O3 were obtained.
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5.4 Effect of alloy modifications on the oxidation resistance of TiAl

Oxidation protection offered by forming a continuous Al2O3 scale followed 
by a multilayer of TiO2 + Al2O3 is limited, unfortunately, to the maximum service 
temperature of ~830°C. Above this temperature, the protection potential presented 
by the oxide scales formed severely deteriorates, limiting the high-temperature 
application potential for structural components [165]. The current trend in research 
is to improve the oxidation resistance of TiAl through alloy modifications.

Nb is one element used in many research works [86–90] to improve the oxida-
tion resistance of TiAl alloys. Al activities are promoted by Nb additions and 
accelerate protective Al2O3 oxide film formation, limiting oxygen diffusion into the 
alloy [166]. Also, the α2 phase present in TiAl alloys is significantly decreased by Nb 
additions, decreasing its oxygen solubility [54]. Although Nb was primarily used 
for improving oxidation resistance [167], other high-temperature properties such as 
strength and creep resistance have been enhanced by the presence of Nb.

The creep resistance and the oxidation resistance of TiAl and its alloys can be 
enhanced by adding Si. The oxidation improvement is said to be achieved through 
the refinement of TiO2 particles, inducing refined and compact TiO2 scales on the 
surface [165]. Moreover, Si promotes Al diffusion into the oxide scale, stabilises Ti, 
reduces Ti4+ ions and impedes external Ti4+ ions diffusion [168].

The effect of adding molybdenum (Mo) alone to TiAls to improve on high-
temperature oxidation is minimal. The protection of Mo-containing TiAl alloys is 
through the formation of inner oxide layers of TiO2 and Ti2AlMo near the substrate 
surface [165]. Unfortunately, Mo additions cannot alter the external oxide film 
formed (i.e., comprises of loose and porous TiO2 scales) and its characteristics. It is 
recommended in practice that the improvement of high-temperature oxidation can-
not be derived from adding Mo alone; instead, the combination of Mo with other 
alloys can have a beneficial effect on the alloys’ resistance to oxidation [169].

Cr additions promote the formation of Cr2O3 oxides, which act as mass ion 
transport barriers [170], enhancing oxidation resistance. In addition, the Al content 
existing in the alloys can be significantly suppressed by Cr additions, promot-
ing the formation of Al2O3 scales. Oxygen diffusion at elevated temperatures can 
be accelerated by Cr3+ ion doping in titanium oxide, improving oxygen vacancy 
concentration. Contrarily, the doping effect may impair the TiAl alloy’s oxidation 
by making Ti4+ interstitially occupying TiO2 sites, improving the potential energy 
with a noticeable decrease in diffusion activation energy, encouraging the diffusion 
of Ti4+ in TiO2 [171].

Zirconium (Zr) additions can also enhance oxidation properties by altering the 
characteristics of the oxide formed during the primary stages of oxidation and pro-
mote oxide grain nucleation [172]. As a result, the refinement of the oxide particles 
occurs, which can hinder oxygen diffusion. Rare earth metals have been reported to 
enhance the oxidation resistance of TiAl alloys. As discussed in detail in a research 
paper by Dai et al. [165], the protection mechanism is contributed by grain refine-
ment, substrate purification, oxide adherence improvement and promotion of Al 
selective oxidation.

6. Conclusions

The need for materials to give excellent mechanical properties under high tem-
peratures and extreme conditions such as TiAl is in demand. The use of such alloys 
would mean a reduction in pollution and noise levels for aero-based engines due to 
improved thermal efficiencies. There are challenges in producing such alloys using 
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the conventional arc and induction melt casting techniques due to the extremely 
high melting temperatures of the alloys. The AM route, particularly L-PBF, presents 
an opportunity to produce such alloys. What is critical in such trials is the operating 
parameters during processing. This has a direct influence on the performance and 
mechanical properties of the alloys so produced. Hot corrosion and oxidation of 
TiAl alloys are of great concern in gas turbine engines. Hot corrosion can be clas-
sified into HTHC and LTHC, with particular reference to mechanisms and char-
acteristics. Protection control methods may result in fewer catastrophic failures. 
The hot corrosion process must be either totally prevented or detected early to 
avoid catastrophic failure. A sound understanding of oxidation mechanisms and 
kinetics of TiAl alloys makes it easier to tailor oxidation-resistant alloys by alloy 
modifications.
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