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Chapter

Blue Laser Diode-Based Visible 
Light Communication and  
Solid-State Lighting
Amjad Ali, Qian Li, Hongyan Fu and Syed Raza Mehdi

Abstract

In this chapter, we review our recent work on blue laser diode-based visible light 
communication and solid-state lighting. Gallium nitride (GaN) phosphor-con-
verted white light-emitting diodes (Pc-WLEDs) are emerging as an indispensable 
solid-state lighting (SSL) source for next-generation display system and the lighting 
industry. Together with the function of lighting, visible light communication (VLC) 
using Pc-WLEDs has gained increasing attention to fulfill the growing demand for 
wireless data communication. Practically, the low modulation response and low 
emitting intensity of light-emitting diodes (LED) are the drawbacks for the devel-
opment of ultrahigh-speed VLC and high-quality SSL system. Blue GaN laser diode 
(LD) and remote phosphor-based white light can be used for both high-speed VLC 
and SSL simultaneously. We demonstrated a color-rendering index (CRI) of 93.8, 
a correlated color temperature (CCT) of 4435 K, and a data rate of 1.6 Gbps under 
NRZ-OOK modulation by an exciting blue laser diode on narrowband green−/
red-emitting composite phosphor film. This work opens up exciting possibilities for 
future high-speed indoor VLC and high-quality SSL.

Keywords: laser diode, phosphor, visible light communication, solid-state lighting

1. Introduction

1.1 Visible light communication (VLC)

Visible light communication (VLC) is an emerging technology that is intended 
to enable high-speed data transmission. It operates in visible band (390 nm- 
700 nm) and uses an LED or LD as a transmitter. The bandwidth available in the 
visible light spectrum is 390 THz, which is 1300 times greater than the bandwidth 
of radio frequency (RF) shared by many applications [1, 2]. The massive increase 
of mobile data traffic leads to saturation of the available RF communication 
bandwidth, which leads to a decrease in the quality of service. Considering the 
saturation of RF communication bandwidth, a complementary solution is required. 
VLC is one of the most promising alternative candidates to provide an additional 
spectrum. It simultaneously offers illumination, communication, and localization 
[3, 4]. In 5G/6G communication, the VLC system is one of the forthcoming candi-
dates for indoor wireless access. It offers several advantages over existing wireless 
communication systems, such as high bandwidth, worldwide availability, network 
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security, and unlicensed bands. VLC satisfies the growing demand for wireless data 
communication. Therefore, it has been proposed to be used in vehicle-to-vehicle 
communication [5], indoor communication [6], wireless local area networks, 
wireless personal area networks, and underwater wireless optical communication 
(UWOC) [7, 8]. The possible application scenario of VLC is shown in Figure 1.

1.2 Solid-state lighting (SSL)

Solid-state lighting (SSL) is a technology in which semiconductor mate-
rial converts electricity into visible light [10]. Such technology produces visible 
light utilizing the principle of electroluminescence (EL). EL is a phenomenon in 
which semiconductors emit light when an electric current pass through them. SSL 
technology generates visible light with reduced heat generation and less energy 
dissipation as compared to the traditional lighting sources. Over the past few years, 
SSL attracted much attention for general lighting than conventional light sources 
due to their advantages: small size, long lifetime, lower energy consumption, high 
efficiency, high color rendering index, high luminous efficacy, and environmental 
friendliness. According to the U.S. Department of Energy (DOE), by 2035, SSL will 
penetrate over 90% market and reduce lighting energy consumption by 75% [10].

2. Optical transmitters

One of the critical components in VLC and SSL to achieve high data rate data 
link and high CRI lighting is the optical transmitter. The modulated electrical 
signal is applied to the transmitter. The transmitter usually consists of LED and LD 
to convert the electrical signal to an optical signal. Further optical elements and 
color converter phosphor can be used to control the shape and color of the emitted 
light beam, respectively. The transmitter’s capabilities are usually determined by 
its design. In VLC and SSL promising light source requires high energy conversion 
efficiency, large modulation bandwidth, high light output power, low operating 
voltage, small foot print and long lifetime. Practically, the low modulation response 
and low emitting intensity of LED are the drawbacks for the development of 
ultrahigh-speed VLC and high-quality SSL system. Blue gallium nitride (GaN) laser 

Figure 1. 
The possible application scenarios of VLC [9].
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diode (LD) and remote phosphor based generated white light can be used for both 
high-speed VLC and SSL simultaneously. The specification difference between LED 
and LD is shown in Table 1.

3. Strategies for generating white light from laser diodes

Generally, there are three strategies for generating white light from laser 
diodes (LDs).

3.1 Multiple LD’s chips

White light can be generated by mixing light from three individual (red, green, 
and blue) LDs. The luminous efficacy of generated white light is relatively higher 
because of the absence of color conversion phosphors and quantum deficits. Color 
variations with temperature can be observed because each LD’s wavelength shift 
may differ with temperature changing. Because multiple LDs are used in this 
scheme, it is relatively expensive and complex.

3.2 Blue LD chip and color conversion phosphors

White light can be generated by using a blue LD to excite remote phosphor film 
composed of green and red-emitting phosphors. The mixture of the residual blue 
light and emitted red and green lights forms a white light. The green and red-emit-
ting phosphors can have broad emission wavelength ranges, which helps generate 
high CRI white light. An enormous loss of energy occurs in converting the blue light 
into green and red through the phosphors.

3.3 UV LD chip and RGB phosphor

White light can be generated by using ultraviolet (UV)-LD to excites RGB 
emitting phosphors. The mixture of emitted blue, green, and red lights results 

Parameters Light emitting diode Laser diode

Working operation Spontaneous emission. Stimulated emission.

Bias/Current It requires small applied bias and 

operates under relatively low current 

densities.

It requires high driving power and 

high injected current density is 

needed.

Coupled power Moderate High

Ease of use Easier Harder

Spectral width Wider, 25 to 100 nm (10 to 50 THz) Narrower, <10–5 to 5 nm (<1 MHz 

to 2 MHz)

Modulation Bandwidth Moderate, Tens of KHz to tens of MHz High, Tens of MHz to tens of GHz

E/O Conversion 

Efficiency

10 to 20% 30 to 70%

Eye Safety Generally considered eye-safe Must be rendered eye-safe, 

especially for λ < 1400 nm

Cost Low Moderate to High

Table 1. 
Specification difference between LED and LD [11].
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in white light to human eyes. High CRI white light can be generated using this 
method because the red, green, and blue phosphors emission can cover the 
whole visible region. When the UV radiation is down-converted into the vis-
ible light, there is a large loss of energy, therefore the luminous efficacy of this 
scheme is low.

4. Laser diode-based solid-state lighting

Blue GaN LD is an emerging candidate in the future high-luminance SSL 
because of its advantages over the LED and traditional lighting sources. The higher 
efficiency of LD at higher current densities makes LD an alternative promising 
excitation source for higher-luminance SSL application. The LD light source has the 
potential to generate more efficient white light as compared to LED. LD has high 
coherence, high power per unit area, and narrow spectral width. Recently the 
attention of the researchers shifted towards LD-based phosphor-converted white 
light source. Different types of phosphor films have been previously reported to 
generate LD-based white light in SSL. For example, in 2008, Xu Yun et al. generated 
a UV GaN LD-based white light source of 5.7 lm with a CRI of 70and a CCT of 
5200 K by using strontium halophosphate activated with divalent europium as a 
blue phosphor, and a YAG as a yellow phosphor [12]. In 2009, the same research 
group generated white light of 3.6 lm with CCT of 5393 by exciting near-UV laser 
diode on red-, green-, and blue-emitting phosphors [13]. In 2010, white light 
emission of 5 lm with an efficacy of 10 lm/W by exciting 445 nm blue LD on 
Eu-doped silicate [ ( ) 2

42
BaSr SiO : Eu + ] yellow phosphor is reported [14]. Kristin et 

al. generated a white light of 252 lm with a CCT of 400 K and a CRI of 57 using blue 
LD in combination with yellow-emitting cerium-substituted yttrium aluminum 
garnet (YAG: Ce) [15].

4.1 Advantages of LD based SSL

4.1.1 Efficiency

LED is an excellent energy-efficient light source for artificial lighting applica-
tions. Despite the outstanding achievement, LED still has drawbacks. The effi-
ciency of LED drops at high current densities, limiting the luminous flux per unit 
area of an LED chip. The comparison of efficiency versus input current density 

Figure 2. 
(a) The comparison of the efficiency versus input current density between state-of-the-art and future LEDs 
and LDs. (b) The comparison of the area of PC-LED and PC-LD phosphor film [16].



5

Blue Laser Diode-Based Visible Light Communication and Solid-State Lighting
DOI: http://dx.doi.org/10.5772/intechopen.100106

between LEDs and LDs are shown in Figure 2(a). The efficiency of LEDs is high 
at a relatively low input current density and decreases with the increasing input 
current density. In contrast to LEDs, the LDs efficiency is low at low input current 
density and keeps rising with input current density after threshold current. At 
higher current densities, the efficiency of the LDs eventually drops because of 
resistivity loss.

4.1.2 LD’s directional emission

The directional emission beam with a small divergent angle of LD can be 
easily collected and focused on phosphor film compared to the LED’s Lambertian 
emission, as shown in Figure 2(b). LD’s etendue is very small and can achieve 
high-luminance lighting; hence, LD can be used in automotive lighting. Bayerische 
Motoren Werke (BMW) proposed a headlamp by exciting blue LD on remote phos-
phor film. It was reported that the efficiency and brightness of LD-based headlamp 
are higher than LED-based headlamp [17]. LD-based headlamp can project the 
high luminescent, low divergent white beam to half-mile from the vehicles. The 
laser beam’s visual range is 600 m, while that of the LED is 300 m [18]. In the case 
of LD-based SSL, a small phosphor area and small lens are required; thus, gener-
ated light can be more efficiently coupled into an optical fiber and used for micro 
luminaires.

4.1.3 Narrow spectral width

The emission spectrum of the LED and LD is shown in Figure 3. The full width 
half maximum (FWHM) of the LED is 20 nm, while that of LD is 2.5 nm. In the 
illumination process, the spectral width reflects the color purity of the generated 
light. The requirements on spectral width are slightly different in different areas. In 
the LED-backlit display, the spectral width is the smaller the better, which leads to a 
purer emitted light color and is useful for color matching.

Figure 3. 
The emission spectrum of LED and LD [19].
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4.2 Disadvantages of LD based SSL

4.2.1 Saturation and heat

The phosphor film heats up when an intense light from an LD penetrates 
through it. The phosphor temperature and output power versus input current are 
shown in Figure 4(a). It can be seen that after the input power exceeds the critical 
value, the temperature of phosphor suddenly increases while the output power 
decreases. The part of optical energy is converted into heat due to quantum effi-
ciency loss and stock shift loss. This heat can cause the limitation of the lifetime of 
phosphor and thermal quenching. The quantum efficiency versus phosphor tem-
perature of commercially available phosphor YAG: Ce is shown in Figure 4(b). As 
the temperature increases, the QE remains stable, and above a certain temperature, 
the QE starts decreasing.

4.2.2 Speckle

The laser light is highly coherent and thus can induce speckles. In LD-based 
white light, speckles are inherent due to the residual pump source, which degrades 
the contrast and visual definition. Luminaires that use powder phosphor exhibit 
less speckles than single crystal phosphor because multiple light scatterings occur 
in powder phosphor, destroying the optical coherence. Hence, powdered phosphor-
based light exhibits little speckles. The speckles can be reduced by using a rotating 
diffuser and light-diffusing membranes.

5. Color conversion phosphors

Commercial, industrial, and residential lighting are promptly shifting towards 
a phosphor-converted white light system. The most preferred way to generate 
white light from LEDs/LDs is to use phosphors that have the ability to absorb 
the high energy (short wavelength) photons and down-convert them into lower 
energy (longer wavelength) ones. The chemical composition of phosphor plays an 
essential role in display, SSL, and VLC. In the 19th century, phosphor’s name arose 
as a generic term for a material that glows in the dark. Phosphor is a kind  
of photoluminescent material that emits visible light when exposed to certain 
radiation. The luminescence process of the phosphor is shown in Figure 5(a).  

Figure 4. 
(a) The phosphor temperature and output power versus input currents. (b) Quantum efficiency versus 
phosphor temperatures of commercially available phosphor YAG: Ce [19].
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The luminescence process occurs when the activator absorbs the radiant energy 
and goes to a higher energy state. As the excited state is unstable, the excited pho-
ton emits absorbed energy in the relaxation state and falls back to a lower energy 
state. The Jablonski diagram of the downconversion phosphor luminescence 
process is shown in Figure 5(b).

The properties associated with ideal phosphor are color quality, CRI, thermal 
stability, emission spectrum, photoluminescent lifetime, etc. Recent studies have 
highlighted that phosphor-based white light quality depends on photoluminescent 
material, size, composition, and arrangement with the package. The absorption 
rate depends on the crystal structure, particle size, and particle size distribution of 
phosphor. The difference between the spectral position of the peak of absorption 
and emission spectra is called stock shift, expressed in wavelength. The extent of 
the stock shift depends on the characteristic of phosphor. During the illumination 
process, the phosphor cannot absorb all excitation energy; some of the energy is 
reflected or transmitted. The most absorbed energy will be released in the form 
of light, and the rest of the energy may be converted into heat; therefore, in this 
process, emitted energy is always less than the absorbed energy, and thus the wave-
length of excitation light is always shorter than that of emitted light. The phosphor’s 
efficiency depends on how much relaxation (loss of energy) occurs during activa-
tion and emission.

Phosphors are increasingly utilized in lighting devices, such as compact fluo-
rescent lamps, LEDs, and LDs. Nowadays, phosphors are using everywhere and 
extensive research have been carried out to find proper color conversion phosphors. 
The color conversion phosphor that can be excited by the blue or ultraviolet laser 
diode is shown in the Table 2.

5.1 Properties of some currently available color conversion phosphor

Blue LD-based white light can be generated by using down-conversion phos-
phors. In this study, two phosphor types were studied as a potential replacement for 
blue LD-based high CRI lighting and high-speed VLC. These include cesium lead 
bromide quantum dot 3(CsPbBr -QD) and potassium fluorosilicate (KSF). We 

fabricated a polymethyl methacrylate (PMMA) doped phosphor film consisting of 

3CsPbBr -QD and KSF as a color converter. Additionally, we systematically studied 

the properties of generated white light from the fabricated composite phosphor film 
and commercially available phosphor coated on glass CL827-R45-XT. The basic 
introduction of these phosphors is presented below.

Figure 5. 
(a) The luminescence process of phosphor. (b) Jablonski diagram of downconversion luminescence process.
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5.2 Cesium lead bromide quantum dot 3(CsPbBr -QD)

Quantum dots (QDs) are semiconductor nanoparticles, which can be used to 
generate high-quality solid-state lighting. QDs are separated into three types: 
cadmium(Cd)-based QDs, Cd-free QDs, and perovskite QDs. Perovskite quantum 
dots have shown great potential in nanotechnology and optoelectronic applications. 
They have been widely studied for successful next-generation optoelectronic 
applications because of their high PLQY and short PL lifetime [25]. The general 
chemical formula of perovskite quantum dot is APbX3, where A could be an organic 
cation such as methylammonium ( 3 3CH NH +, MA) or inorganic cation such as 

cesium (Cs+) and rubidium (Rb+), Pb represents the lead, and X represents 
different halide, such as Chloride (Cl), bromide (Br), or iodide (I). Inorganic lead 
halide perovskites have been attracted enormous scientific attention because of 
their outstanding optoelectronic properties. They have tunable emission wave-
length, high quantum yield, fast radiative response, and a short PL lifetime. These 
characteristics make them highly attractive for wide range next-generation opto-
electronic applications such as LED [26, 27], LD [28, 29], solar cells [30], photode-
tector [31], and wide gamut display [32]. The cubic crystal structure and 
photoluminescence emission spectra of APbX3 are shown in Figure 6(a) and (b), 
respectively.

The PL decay lifetime of 3CsPbBr -QD is approximately 7.0 ± 0.3 ns, as shown in 

Figure 7(a). The absorption and emission spectra of 3CsPbBr -QD is shown in 

Figure 7(b). 3CsPbBr -QD exhibits an emission peak at 510 nm with narrow full 

width at half-maximum (FWHM) of 22 nm. 3CsPbBr -QD exhibits high 

(PLQY>70%), narrow full width half maximum (FWHM = 22 nm) [34, 36–39], 
relatively short PL lifetime (7 ns) [32], and a modulation bandwidth of 491 MHz [34], 

Emission color Phosphor Excitation wavelength(nm) Ref.

2SrS : Eu+ 450 [20]

4
2 6K SiF :Mn + 445 [21]

Red 2
2 2La O S :Eu+ 380–420 [22]

3
2 2Gd O S :Eu+ 380 [20]

2
3CaAlSiN :Eu+ 450–480 [22]

2
s 4SrGa S : Eu+ 460 [20]

2
2 4SrAl O :Eu+ 400 [20]

Green 2
2 4 :CaSc O Ce

+ 450–480 [22]

3CsPbBr 445 [23]

2
3 6 12 2Ba Si O N :Eu+ 380–420 [22]

Zns : Ag+ 400 [20]

( ) 2
10 17Ba,Sr MgAl O :Eu+ 380–420 [22]

Blue ( ) 2
2 83

Sr,Ba MgSi O :Eu+ 380–420 [22]

3CsPbCl 385 [23]

( ) 2
5 4 3

Sr PO CL :Eu+ 375–400 [24]

Table 2. 
Color conversion phosphor that can be excited by the blue or ultraviolet laser diode.
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which is significantly greater than those of organic materials (40–200 MHz). 
Therefore, 3CsPbBr -QD is considered a promising substitute for VLC and SSL.

5.3 Potassium fluorosilicate (KSF)

Red emitting phosphor is required to compensate for red color deficiency, which 
increases phosphor-converted SSL performance, such as high CRI and tunable color 
temperatures. Nowadays, mostly rare-earth-doped nitride red phosphors are used 
to generate SSL. Red nitride phosphors have some drawbacks, such as high-temper-
ature synthesis process (1500–2000°C), oxygen-free environment [40, 41], broader 
emission band (FWHM >75–100 nm) [41, 42], low quantum efficiency [41], and 
emission peak greater than 650 nm (beyond the sensitivity range of human eyes) 
[43–45]. Therefore, it was necessary to find an alternative narrow-band red-emit-
ting phosphor to enhance the color qualities further. Efficient narrow-band red-
emitting phosphors such as 4

2 6K SiF : Mn + (KSF), with an emission peak at 631 nm, 

were developed to replace wide band nitride red phosphor. Many studies had been 

Figure 6. 
(a) The cubic crystal structure of APbX3 [33]. (b) Photoluminescence emission spectra of APbX3 [33].

Figure 7. 
(a) Photoluminescence decay of 3CsPbBr -QD monitored at 515 nm [34]. (b) The absorption and emission 

spectra of 3CsPbBr -QD [35].
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Figure 9. 
(a) Photography of KSF phosphor coated on glass. (b) Emission spectra of KSF as functions of driving bias 
currents.

conducted to optimize the environmental stability, quantum efficiency, and 
synthesis of KSF [46–48].

Recently, a new class of 4
Mn

+ doped fluoride non-rare-earth red phosphor 

compounds such as 4
2 6A XF :Mn +  (𝐴 = 𝐶𝑠, Na, Rb, 4NH , K; X= 𝑍𝑟, 𝐺𝑒, 𝑇𝑖,  𝑆𝑛, 𝑆𝑖) 

has emerged, which has many advantages over red nitride phosphors. Firstly, these 
components’ thermal stability is high and good enough for practical application 
[49]. Secondly, their internal quantum efficiency is 92–98% [40, 50], and that of 
nitride red phosphor is 75–80%. Thirdly, they show highly efficient narrow-band 
red emissions (FWHM <2–10 nm) [51–53], and the red emission peak is generally 
shorter than 650 nm, which improves color purity and visual colorimetric param-
eters. The color coordinates of these phosphor components are located deep in the 
1931 Commission Internationale de l’Eclairage (CIE) diagram [44]. The excitation 
and emission spectrum of KSF are shown in Figure 8.

The photography of KSF phosphor coated on a glass substrate is shown in 
Figure 9(a). The acquired emission spectra of generated red light with 445-nm 

Figure 8. 
The excitation and emission spectrum of KSF red phosphor [54].
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excitation at room temperature under bias currents of 280 mA, 320 mA, and 
360 mA are shown in Figure 9(b). The emission peak of KSF is at 631 nm.

5.4 CL-827-R45-XT

Conventionally, phosphors are mixed with organic or silicone resin to form a 
phosphor film; however, such composition will ultimately harden and leads to 
discoloration. Moreover, these components are sensitive to heat and water, reducing 
the device’s lifespan and making them unsuitable for outdoor applications. 
Phosphor on glass is increasingly replacing conventional color convertors, especially 
for outdoor high power and high brightness applications. The fabrication process of 
phosphor on glass is simple as the mixture of phosphors is coated on a transparent 
glass and can be sintered at 0800 C. The characteristic of generated white light can 

also be easily controlled by changing the phosphor concentration ratio and thick-
ness. This section studied the properties of generated white light from commercially 
available phosphor coated on glass CL-827-R45-XT. The Photography of CL-827-
R45-XT is shown in Figure 10.

The experimental setup to measure emission spectra of generated white light 
at different bias currents is shown in Figure 11(a). The emission spectra of the 
generated white light after the blue LD exciting the phosphor coated on glass at 
room temperature, under bias currents of 220 mA, 240 mA, 280 mA, 320 mA, 
360 mA, are shown in Figure 11(b). The peak emission wavelength of blue light is 
at 439 nm, while that of the yellow light is at 577 nm. It can be seen that the peak 
emission wavelength of generated light is not changed considerably with increasing 

Figure 10. 
Photography of CL-827-R45-XT.
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bias current, which indicates that the phosphor-coated on glass is suitable to be used 
with the high injection bias current.

The photography of the generated white light spot is shown in Figure 12(a). The 
CIE coordinate of the white light source at 360 mA on the CIE 1931 chromaticity 
diagram is shown in Figure 12(b). At 360 mA, white light has a CCT of 3786, CRI 
of 87.9, and the CIE coordinates fall at (0.3556, 0.3026), which is very close to the 
standard neutral white light (0.33, 0.33).

6. High CRI lighting and high-speed visible light communication

The laser based white-light has demonstrated with a color rendering index (CRI) of 
78, color temperature of 6000–7000 K, and luminous flux up to 600 lm for a single-
chip device [55]. The frequency response of the system adhering phosphor film, is 
shown in Figure 13(a). The throughput modulation response was reduced mainly due 
to the relevant absorption and scattering by the phosphorous film. The -10 dB band-
width of the system is approximately 1500 MHz, at the driving current of 750 mA. 

Figure 11. 
(a) Experimental setup to measure emission spectra. (b) The emission spectra of the generated light at different 
bias currents.

Figure 12 
(a) The photography of generated white light spot. (b) Chromaticity coordinates diagram of the 
generated white light at 360 mA.
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The data rate achievable at different signal bandwidths is shown in Figure 13(b). It 
indicates that the white laser VLC system is capable of a high data rate up to 4.72 Gbps 
at 1300 MHz. At higher signal bandwidths beyond 1400 MHz, the data rate of the VLC 
system will not steadily increase due to the system’s power limitation.

We demonstrated a color-rendering index (CRI) of 93.8, a correlated color 
temperature (CCT) of 4435 K, and a data rate of 1.6 Gbps under NRZ-OOK modu-
lation by an exciting blue laser diode polymethyl methacrylate (PMMA) doped 
phosphor film based on cesium lead bromide quantum dot ( 3CsPbBr -QD) and 

potassium fluorosilicate 4
2 6 :K SiF Mn

+ (KSF) [56]. Figure 14(a) shows the optical 

spectrum of generated white light in which blue, red, and green fluorescent compo-
nents are observed. In terms of peak emission, the blue light is at 445 nm, the green 
light is at 510 nm with an FWHM of 22.42 nm, and the red light is at 631 nm with an 
FWHM of 3.02 nm. Unlike traditional phosphorous materials, 3CsPbBr QD−  and 

KSF have a relatively narrow FWHM. The BER at different data rates is shown in 
Figure 14(b), where the BER of 2.7× 310−  is measured at 1.6 Gbps. The obtained 

BER measurement adheres to the standard FEC threshold of ≤ 33.8 10−× .

7. Recent progress in blue laser diode-based VLC and SSL

Over the past few years, LD based VLC and SSL techniques have gained sig-
nificant attention from researchers, due to their advantages, e.g., environmental 

Figure 13. 
(a) Frequency response of LD laser VLC system. (b) Measured date rate at different bandwidths in the LD 
laser VLC system [54].

Figure 14. 
(a) Spectrum of generated white light (b) measured bit-error rates at different data rates.
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friendliness, minimum light-emitting surface, ultrafast operating speed, high 
efficiency, long lifetime and small footprint. By leveraging the advantages men-
tioned above, LD-based VLC and SSL is outperforming LED-based VLC and SSL. 
This technique promises wide applications in academia, science, and industry. 
Meanwhile, many research laboratories around the world have been focusing on 
blue laser-based VLC and SSL. The resent research achievements in blue laser-based 
VLC and SSL is summarized in Table 3.

8. Summary

Nowadays white light based on blue laser diode has become the rapidly growing 
technology for high speed VLC and high CRI lighting. This Chapter aims to under-
stand the blue laser diode-based VLC and SSL using color converter remote phos-
phor to overcome the bottlenecks of LED-based VLC and SSL. Recently, phosphors 
are using everywhere; therefore, multiple approaches and research have been 
carried out to find the best color conversion phosphor. We have studied the down-
conversion luminescence properties of cesium lead bromide quantum dot 3(CsPbBr

-QD) and Potassium silicon fluoride 4
2 6K SiF : Mn + (KSF). Furthermore, we have 

studied the properties of generated white light from commercially available phos-
phor coated on glass CL-827-R45-XT by changing bias currents. We demonstrated a 
VLC and SSL system simultaneously with a data rate of 1.6 Gbps over 50 cm 
free-space link based on NRZ-OOK modulation. Additionally, the generated white 
light exhibits with low CCT of 4435 K and CRI of 93.8. According to our discus-
sions, we can conclude that laser diode based generated white light can be used for 
both high-speed visible light communication and solid-state lighting 
simultaneously.

Ref Source Color 

converter

CRI CCT 

(K)

Modulation 

scheme

Data rate 

(Gbps)

Dist 

(cm)

Year

[57] B-LD YAG:Ce 58 4740 OOK 2 5 2015

[3] B-LD YAG:Ce — 6409 16 QAM 4 50 2015

[34] B-LD Perovskite 89 3223 OOK 2 — 2016

[58] B- SLD YAG:Ce 85.1 3392 OOK 1.45 25 2018

[59] B-SLD Y-phosphor 88.2 — 16-QAM 3.4 100 2019

[60] B-LD YAG:Ce 67.2 6391 OOK 1 — 2019

[61] B-LD Y-phosphor — — OOK 1.25 100 2019

[62] B-SLD Perovskite 91 6113 — — — 2019

[56] B-LD 3CsPbBr /KSF 93.8 4435 OOK 1.6 50 2020

[63] B-LD YAG:Ce — — OFDM 6.915 150 2020

[64] 2- B-LD Y-phosphor — — OFDM 22.45 300 2020

[65] B-LD 3CsPbBr /KSF 91 5056 OOK 1.4 30 2020

B-LD, SLD stand for blue laser diode and superluminescent diode, respectively. YAG: Ce, 3CsPbBr , KSF stand for 
yttrium aluminum garnet cerium-doped, cesium lead bromide and potassium fluorosilicate, respectively. OOK, 
QAM, OFDM denote for on–off keying, quadrature amplitude modulation, orthogonal frequency division 
multiplexing, respectively.

Table 3. 
Recent progress in blue laser-based VLC and SSL using phosphors.
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