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Chapter

Black Holes as Possible Dark
Matter
Aloke Kumar Sinha

Abstract

Black holes and Dark matter are two fascinating things that are known very
little. They may have non gravitational interactions, but those are definitely
extremely feeble in comparison to their gravitational interactions. Nowadays some
people think that one may contain the other. In this chapter we will see that some
black holes may contain the dark matter. These black holes decay under Hawking
radiation, but do not vanish completely. They produce stable end states due to both
quantum gravitational effects and thermodynamic reasons. These end states are the
replicas of what we call dark matter. We will develop the complete theory for decay
of such black holes, starting from some scheme independent assumptions for the
quantum mechanical nature of the black holes. We will then consider explicit
examples of some black holes to show that they indeed produce replicas of dark
matter at their end states. Thus this chapter is going to be a manuscript for theoret-
ical development of black hole decay from a quantum mechanical perspective and
its consequences for producing replicas of dark matter.

Keywords: Quasi thermal stability, Thermal black holes, Black hole phase
transition, Quantum gravity, Dark matter

1. Introduction

Einstein had first shown, with the help of his classical field equations of general
theory of relativity, that black holes accreted everything surrounding them [1, 2].
Hence they are expected to grow in size in an unbounded manner. His theory was
entirely classical. But Hawking later invoked quantum mechanics in the context of
black hole [3], to study its interaction with matters surrounding it. He proved
explicitly that black holes could radiate and as a consequence they decayed away.
Thus a black hole radiates along with simultaneous accretion.

Hawking considered only matters as quantum entities, but spacetime was still
classical in his theory. Hence in his theory, black holes were still classical. Thus this
theory was semi classical as matters were treated differently in comparison to black
holes. We had resolved this issue in our earlier works [4, 5]. Semiclassical analysis
claimed the thermal instability of asymptotically flat, non extremal black holes under
Hawking radiation. They are unstable as their specific heat is negative [6, 7] and have
been deduced from semiclassical facts based on their classical metric. Their tempera-
ture increases as they lose mass, indicating a complete thermal run away process. It is
to be noted that semiclassical analysis explicitly depends on the classical metric of a
black hole. Hence it is inherently a ‘case-by-case’ analysis. This shortcoming implies
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that such semiclassical analysis cannot give general results about the thermal stability
of generic black holes under Hawking radiation. Semiclassical analysis predicted the
thermal instability of asymptotically flat black holes from the negativity of their
specific heat, defined semi classically from their metric. But this result does not say
anything in general about an arbitrary black hole. It is of course true that gravity is yet
to be quantized fully. But we realistically expect certain symmetries for that theory
[4]. These symmetries are sufficient for us to construct the grand canonical partition
function of a generic black hole, if we assume the black hole to be in contact with the
rest of the universe, that acts as a heat bath. We derived the criteria for thermal
stability of a generic black hole with arbitrary number of parameters in any dimen-
sional spacetime, based on the convergence of the grand canonical partition function
[5]. These criteria appeared as a series of inequalities, connecting second order deriv-
atives of black hole mass with respect to its parameters.

These criteria imply that AdS black holes with fixed cosmological constant are
stable under Hawking radiation for a certain range of their parameters [4]. We have
also noticed that asymptotically flat rotating charged black holes satisfy some of the
stability criteria, but not all together, in certain regimes of spacetime [4, 5]. Thus
although these black holes decay, they are different from unstable black holes, like
asymptotically flat Schwarzschild black holes. These black holes are named as
“Quasi Stable” black holes. We will later see that AdS black holes with varying
cosmological constant are also quasi stable under Hawking radiation.

We had calculated the fluctuations for the parameters of a stable black hole and
they were expectedly turned out to be very small [8]. These tiny fluctuations are
actually the indications of the stability for a black hole. We did the same for quasi
stable black holes and it resulted in tiny fluctuations for some parameters [9],
like stable black holes, in a certain regime of parameter space. This is as quasi stable
black holes satisfy some of the stability criteria. This makes them slow down their
decay rate in certain regimes of their parameter space [9].

Black holes, like ordinary thermodynamic systems, also have different phases.
Stable and unstable black holes respectively possess stable and unstable phases in
possible allowed regimes of their parameter spaces. The respective examples are AdS
black holes with fixed cosmological constant and asymptotically flat Schwarzschild
black holes. Unstable black holes remain in the same phase during their decay. Stable
black holes likewise stay in a stable phase, maintaining equilibrium with their sur-
roundings and hence they do not decay under Hawking radiation. But things are
changed entirely for quasi stable black holes. We had already shown that quasi stable
black holes also have various different phases. The quasi stable black holes undergo
phase transitions among these phases during their decay process. The nature of
fluctuations change from one phase to another phase. In this way quasi stable black
holes decay under Hawking radiation. But at the end states, most of these black holes
become tiny balls of the order of Planck size. They settle down to these tiny size balls
due to quantum gravity effects. On the other hand, some other parameters of certain
quasi stable black holes settle down to their macroscopic values at the end states. Thus
we see that these black holes become thermodynamically stable, preventing further
decay under Hawking radiation. Hence they stop interacting with the rest of the
universe, except gravitational interaction. Thus these black holes seem to behave like
dark matter (the way we call it). In fact some of these black holes may have electric
charge as well. Hence it may correspond to charged dark matter. But some unknown
mechanism must be there to prevent it from interacting with the universe through
known electrical interaction.

This chapter is organized as follows: A detailed discussion on thermal stability of
black holes is done in Section 2. In the next section, we have discussed quasi stability
and phase transitions of quasi stable black holes. In the following section, we have
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considered some examples of quasi stable black holes and have discussed their quasi
stability and hence the possible connection with dark matter. We finished in the
next chapter with a special note.

2. Thermodynamic stability criteria for black holes

A rotating, electrically charged black hole is represented classically by four
parameters M,Q, J,Að Þ, where M,Q, J,A are respectively the mass, electric charge,
angular momentum and horizon area of the black hole. These four quantities are
related by a relation on the horizon. Thus these parameters are expected to be
promoted as operators if black hole can be treated as a quantum system. Three out
of these four parameters are independent and the remaining one depends on the
other three. It is certainly not possible to have charged rotating black hole without

any mass and horizon area. Thus Q̂ and Ĵ have to play the status of primary

operators i.e. role of fundamental observables. We choose Â, Q̂, Ĵ
� �

to be the

primary operators and bM to be the secondary operator. Hence bM as an operator

becomes bM ¼ bM Â, Q̂, Ĵ
� �

. Now horizon area, like electric charge, is invariant under

SO(3) rotations beside its invariance under U(1) gauge transformation. SO 3ð Þ
generates angular momentum while global gauge group U 1ð Þ generates electric
charge. These give the following commutation relations,

Â, Ĵ
h i

¼ Â, Q̂
h i

¼ Q̂, Ĵ
h i

¼ 0 (1)

Since bM is a quantum operator of secondary observable (M A, J,Qð Þ), Eq. (1) can
be extended as,

Â, Ĵ
h i

¼ Â, Q̂
h i

¼ Â, bM
h i

¼ Q̂, Ĵ
h i

¼ bM, Q̂
h i

¼ Ĵ, bM
h i

¼ 0 (2)

Thus Q̂, Ĵ, Â can have simultaneous eigenstates. Hence definite values of electric
charge, angular momentum and horizon area can be assigned to a black hole up to

quantum and thermodynamic fluctuations. The eigenvalues of Q̂, Ĵ and Â are
precisely the parameters used in the classical metric of a black hole to express its
mass (M) as a function of them. We consider the isolated horizon to be the
boundary of the black hole.

2.1 Quantum geometry

The boundary degrees of freedom and their dynamics of a classical spacetime is
determined by the boundary conditions. For a quantum spacetime, fluctuations of
the boundary degrees of freedom have a ‘life’ of their own [10, 11]. Hence the
Hilbert space of a quantum spacetime with boundary has the tensor product
structure H ¼ Hb ⊗Hv, where b vð Þ denotes the boundary (bulk) component.

So a generic quantum state(∣Ψi) is expandable as,

∣Ψi ¼
X

b, v

Cb,v∣χbi⊗ ∣ψvi (3)

where, ∣χbi and ∣ψvi are respectively the boundary and bulk component of the
full quantum state.
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The total Hamiltonian operator(Ĥ) is given as,

bH � cHb ⊗ Iv þ Ib ⊗cHv

� �
(4)

where, respectively, cHb
cHv

� �
are the Hamiltonian operators on Hb Hvð Þ and

Ib Ivð Þ are the identity operators on Hb Hvð Þ.
In presence of rotation and electric charge, ∣ψvi is be the composite bulk state

and consequently it is annihilated by the full bulk Hamiltonian i.e.

cHv∣ψvi ¼ 0 (5)

This is the quantum analouge of the classical Hamiltonian constraint [12].

The charge operator (Q̂) is defined as,

Q̂ � Q̂b ⊗ Îv þ Îb ⊗ Q̂v

� �
(6)

where, Q̂b and Q̂v are respectively the charge operators for the boundary(∣χbi)
and the bulk states (∣ψvi).

Electric charge is defined on the horizon of a classical black hole (e.g.
Einstein-Maxwell or Einstein-Yang-Mills theories in [13]) and hence bulk does not
carry anything i.e. Qv≈0, the Gauss law constraint for electrodynamics. Hence, its
quantum version takes the form,

Q̂v∣ψvi ¼ 0 (7)

Similarly angular momentum operator (̂J) is defined as,

Ĵ � Ĵb ⊗ Îv þ Îb ⊗ Ĵv
� �

(8)

where Ĵb and Ĵv are respectively the angular momentum operators for the
boundary (∣χbi) and the bulk state(∣ψvi).

Local spacetime rotation, as a part of local Lorentz invariance, leaves quantum
bulk Hilbert space invariant. Hence angular momentum operator, being the gener-
ator of spacetime rotation, annihilate the bulk states i.e.

Ĵv∣ψvi ¼ 0 (9)

So Eqs. (5), (7) and (9) together imply,

cHv � βΦcQv � βΩbJv
h i

∣ψvi ¼ 0 (10)

where, Φ, β and Ω are arbitrary functions at this stage.

2.2 Grand Canonical partition function

We will now consider a grand canonical ensemble of quantum spacetimes with
horizons as boundaries, in contact with a heat bath, at some (inverse) temperature β.
We will assume that this grand canonical ensemble of massive rotating charged black
holes can exchange energy, angular momentum and electric charge with the heat
bath. Therefore the grand canonical partition function becomes,
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ZG ¼ Tr exp �βĤ þ βΦQ̂ þ βΩĴ
� �� �

(11)

where the trace is taken over all states. Φ and Ω are respectively electrostatic
potential and angular velocity of the black hole on the horizon.

Hence Eqs. (3), (4), (6), (8), (10) and (11) together yield

ZG ¼
X

b, v

Cb,vj j2 ψvj⊗ χbj exp �βĤ þ βΦQ̂ þ βΩĴ
� �

jχb
D E

⊗ jψv

D E

¼
X

b

Cbj j2 χbj exp �βĤb þ βΦQ̂b þ βΩĴb

� �
jχb

D E (12)

assuming that the boundary states can be normalized through the squared normP
v cvbj j2 ψvjψvh i ¼ Cbj j2. This is analogous to the canonical ensemble scenario

described in [14].
The partition function thus turns out to be completely determined by the

boundary states (ZGb), i.e.,

ZG ¼ ZGb ¼ Trb exp �βĤb þ βΦQ̂b þ βΩĴb

� �
(13)

The spectrum of the boundary Hamiltonian operator is assumed to be a function
of the discrete electric charge and angular momentum spectrum associated with the
horizon1. The total electric charge of a black hole is proportional to some funda-
mental charge from a quantum mechanical point of view and hence the electric
charge spectrum is considered to be equispaced [16–20]. In fact the angular
momentum spectrum can also be considered as equispaced in the macroscopic
spectrum limit of the black hole [21], in which we are ultimately interested.

It has already been seen that electric charge, horizon area and angular momen-
tum operators of a black hole commute among them and hence they can be diago-
nalized simultaneously. Therefore working in such diagonalized basis, the partition
function (13) becomes

ZG ¼
X

k, l,m

g k, l,mð Þ exp �β E Ak,Q l, Jmð Þ �ΦQ l �ΩJmð Þð Þ (14)

where g k, l,mð Þ is the degeneracy factor. k, l,m are respectively the quantum
numbers corresponding to eigenvalues of horizon area, electric charge and angular
momentum. In the macroscopic spectra limit of quantum isolated horizons i.e.
regime of the large area, electric charge and angular momentum eigenvalues
k≫ 1, l≫ 1,m≫ 1ð Þ, the Poisson resummation formula [22] implies

ZG ¼
ð
dxdydzg A xð Þ,Q yð Þ, J zð Þð Þ exp �β E A xð Þ,Q yð Þ, J zð Þð Þ �ΦQ yð Þ � ΩJ zð Þð Þð Þ

(15)

where x, y, z are respectively the continuum limit of k, l,m respectively.

1 Actually this second assumption follows from [13, 15] for spacetimes admitting weakly isolated

horizons where there exists a mass function determined by the area and electric charge associated with

the horizon. This is an extension of that assumption to the quantum domain.
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Now, A, Q and J are respectively, functions of x, y and z alone. Therefore we
have,

dx ¼ dA

Ax
, dy ¼ dQ

Qy

, dz ¼ dJ

Jz

where, Ax � dA
dx and so on.

So, the partition function, in terms of area, electric charge and angular momen-
tum as free variables, can be written as follows

ZG ¼
ð
dAdQ dJ exp S Að Þ � β E A,Q, Jð Þ �ΦQ �ΩJð Þ½ �, (16)

where, following [23], the microcanonical entropy of the horizon is defined by

exp S Að Þ � g A xð Þ,Q yð Þ, J zð Þð Þ
dA
dx

dQ
dy

dJ
dz

and is a function of horizon area(A) alone [10, 11, 24].

2.3 Stability against Gaussian fluctuations

2.3.1 Saddle point approximation

The equilibrium of a black hole is given by the saddle point (A,Q, J) in the space
of integration over horizon area, electric charge and angular momentum. It is now

to study the grand canonical partition function for fluctuations a ¼ A� A
� �

, q ¼
Q � Q
� �

, j ¼ J � J
� �

around the saddle point to determine the stability of the black

hole under Hawking radiation. We as usual restrict ourselves only up to Gaussian
fluctuations, in order to extremize the free energy for the most probable configura-
tion. Taylor expanding Eq. (16) about the saddle point, gives

ZG ¼ exp S A
� �

� βM A,Q, J
� �

þ βΦQ þ βΩJ
� �

�
ð
da dq dj exp

(
� β

2

"
MAA � SAA

β

� 	
a2 þ MQQ

� �
q2 þ 2MAQ

� �
aq

þ MJJ

� �
j2 þ 2MAJ

� �
ajþ 2MQJ

� �
qj

#)
,

(17)

where M A,Q, J
� �

is the mass of the isolated horizon at equilibrium. Here

MAQ � ∂
2M

∂A∂Q





A,Q,Jð Þ

etc. and they are evaluated on the horizon. We will take the

entropy of a black hole as linear in horizon area and hence SAA equals to zero.
Now, in the saddle point approximation the coefficients of terms linear in a, q, j

vanish by definition of the saddle point. These imply that

β ¼ SA
MA

,Φ ¼ MQ ,Ω ¼ MJ (18)

Of course these derivatives are evaluated at the saddle point.

2.3.2 Criteria

Convergence of the integral (17) implies that the Hessian matrix (H) has to be
positive definite, where
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H ¼
βMAA βMAQ βMAJ

βMAQ βMQQ βMJQ

βMAJ βMJQ βMJJ

0
B@

1
CA (19)

The necessary and sufficient conditions for a real symmetric square matrix to be
positive definite are: determinants of all principal square submatrices, and the
determinant of the full matrix, are positive [25]. This condition leads to the
following ‘stability criteria’:

MAA >0 (20)

MQQ >0 (21)

MJJ >0 (22)

MQQMJJ � MJQ

� �2� �
>0 (23)

MJJMAA � MAJ

� �2� �
>0 (24)

MQQMAA � MAQ

� �2� �
>0 (25)

h
MAA MQQMJJ � MJQ

� �2� �
�MAQ MAQMJJ �MJQMAJ

� �

þMAJ MAQMJQ �MQQMAJ

� �i
>0

(26)

Of course, (inverse) temperature β is assumed to be positive for a stable
configuration.

Now, the temperature is defined as, T � 1
β
¼ MA

SA
(From Eq. (18)).

The relation T ¼ MA

SA
implies that,

dT

dA
¼ βMAMAA

SAð Þ2
(27)

Hence positivity of MAA implies that a stable black hole becomes hotter as it
grows in size. Schwarzschild black hole, violating this, invites its own thermal
instability and decays under Hawking radiation [22].

It is obvious from Eq. (18) that,MQQ ¼ dΦ
dQ andMJJ ¼ dΩ

dJ . Hence positivity ofMQQ

implies that accumulation of charge increases the electric potential of the black hole,
whereas positivity ofMJJ implies that accumulation of angular momentummakes the
black hole to rotate faster. These are the features of a stable black hole (22).

The conditions for the convergence of grand partition function under Gaussian
fluctuation imply the convexity of entropy [22, 23, 26]. Thus the above inequalities
are correctly the conditions for thermal stability of a charged rotating black hole.
Eqs. (20) and (27) together correctly reproduce that positivity of specific heat is the
only criteria for thermal stability of an electrically neutral non rotating black hole
[14]. Actually both mass and temperature of such black holes are functions of the
horizon area (A) only and hence specific heat(C) is given as,

C � dM

dT
¼ SAð Þ2

βMAA
(28)

Eqs. (20), (21) and (25) together describe the thermal stability of a non rotating
electrically charged black hole, while (20), (22) and (24) together describe the same
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for rotating electrically neutral black holes [27]. Thus we find that positivity of
specific heat cannot be the only criteria for thermal stability of an electrically
charged rotating black hole, unlike Schwarzschild black hole, but the charge and the
angular momentum play vital roles as well.

So far we have considered only the quantum version of a classical charged
rotating black hole. But a quantum black hole may have other types of quantum
charges as well. Hence we will consider all the charges of a quantum black hole in
the same footing including angular momentum and electric charge. We consider a

quantum black hole with n charges C1, … ,Cn. Now following exactly the same
prescription for constructing grand canonical partition function from operator
algebra, we get the partition function here as,

ZG ¼ exp S A
� �

� βM A,C
1
, … ,C

n
� �

þ βPiC
i

h i

�
ð
dA

Yn

i¼1

ð
dCi

 !
exp

(
� 1

2

" 
MAAa

2 þ 2
Xn

i¼1

βMACiaci

þ
Xn

i¼1

Xn

j¼1

βMCiC jcic j

#)
,

(29)

where M A,C
1
, … ,C

n
� �

is the mass of equilibrium isolated horizon and

MACi � ∂
2M=∂A∂Ci




A,C

1
,… ,C

n
� � etc., are evaluated on the horizon.

Convergence of the above integral (29) implies that the Hessian matrix (H) has
to be positive definite, where

H ¼

βMAA βMAC1 βMAC2 … … … βMACn

βMAC1 βMC1C1 βMC1C2 … … … βMC1Cn

βMAC2 βMC2C1 βMC2C2 … … … βMC2Cn

:… … :… … … … … … … :… …

βMACn βMCnC1 βMCnC2 … … … βMCnCn

0
BBBBBBBB@

1
CCCCCCCCA

(30)

Here, all the derivatives are calculated at the saddle point. Hence the stability
criteria i.e. the criteria for positive definiteness of Hessian matrix are given as:

D1 >0,D2 >0, :… ,Dnþ1 >0 (31)

where,

D1 ¼ βMAA, D2 ¼
βMAA βMAC1

βMAC1 βMC1C1













,

D3 ¼
βMAA βMAC1 βMAC2

βMAC1 βMC1C1 βMC1C2

βMAC2 βMC2C1 βMC2C2




















, ::… ,Dnþ1 ¼ Hj j

(32)

where, ∣H∣ ¼ determinant of the Hessian matrix H.
The inverse temperature β is expectantly assumed to be positive for a stable

black hole. We again find that temperature must increase with horizon area, inher-
ent in the positivity of MAA. 0n0 equals two for a charged rotating black hole and
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hence according to (32) there should be three stability criteria, not seven (20)–(26).
It is to note that those seven conditions are not all independent, actually only three
of them are independent.

3. Quasi stability, thermal fluctuations and phase transitions of black
holes

Some black holes may not satisfy all the stability criteria together everywhere in
their parameter spaces. Such regimes are regions of quasi stability for that black
hole and the black hole is quasi stable in that regime. Thus quasi stability of a black
hole depends entirely on the regime of parameter space where the black hole is. Of
course certain stability criteria may not hold anywhere in parameter space for some
black holes and they are completely quasi stable. We will see the relationship
between quasi stability and thermal fluctuation in this section.

We found for stable black holes that the grand canonical partition function is
converging. We can hence define fluctuation of their parameters. The standard
deviation of the statistical distribution of a quantity measures the expectation value
of its fluctuation. This knowledge along with the grand canonical partition function
implies the standard deviation of charge(Q) as,

ΔQð Þ2 ¼
Ð
da dq dj q2 exp � β

2 MAA � SAA
β

� �
a2 þ MQQ

� �
q2 þ 2MAQ

� �
aqþ MJJ

� �
j2 þ 2MAJ

� �
ajþ 2MQJ

� �
qj

h in o

Ð
da dq dj exp � β

2 MAA � SAA
β

� �
a2 þ MQQ

� �
q2 þ 2MAQ

� �
aqþ MJJ

� �
j2 þ 2MAJ

� �
ajþ 2MQJ

� �
qj

h in o

(33)

where, ΔQ is the standard deviation for the electric charge of the black hole.
Similarly, ΔJ and ΔA are respectively the same for angular momentum and horizon
area of the black hole.

Both the numerator and denominator are converging and turns out to be,

ΔQð Þ2 ¼ � 2

β
� 1

ZG
� ∂ZG

∂MQQ
¼ 1

∣H∣
� ∂∣H∣

∂ βMQQ

� � (34)

where, ∣H∣ ¼ determinant of Hessian matrix(H).
The above said process is invalid for quasi stable black holes as their grand

canonical partition functions diverge. Hence necessary rearrangements are required
to express their grand canonical partition function in the diagonal basis of their
Hessian matrices and then to look for stable modes. Fortunately fluctuations of
these stable modes are calculable and finite, although their grand partition functions
diverge.

We can now rewrite the grand canonical partition function (ZG) in the diagonal
basis of the Hessian matrix as,

ZG ¼
Ynþ1

j¼1

ð
dc j

 !
exp � 1

2
D1 c1
� �2 þD2

D1
c2
� �2 þ … þDnþ1

Dn
cnþ1
� �2

� �
 �
(35)

where the expressions of D1,D2, ,Dnþ1 are the same as given in (20). The new
variables (c1, , cnþ1) are related to the old variables (a, c1, , cn) by some linear trans-
formation. The linear transformation matrix is a nþ 1ð Þ dimensional upper trian-
gular square matrix and hence it has unit determinant. The elements of this
transformation matrix are functions of the elements of the Hessian matrix H. Thus
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it is obvious that exactly one of the c j is equal to C j, but that identification is not
unique. This actually helps us to calculate the fluctuation of any parameter of quasi

stable black hole that we want. If at least one of D1,
D2

D1
, … , Dnþ1

Dn
is negative, then ZG

blows up.
We can now define fluctuations for quasi stable black holes in the same way as

we did for stable black holes. If D1 is positive then the fluctuation of c1 Δ c1ð Þ2
� �

is

finite and equals to 1
2D1

, otherwise it blows up. Similarly Δ c2ð Þ2, Δ c3ð Þ2, … ., Δ cnþ1ð Þ2

can be defined and equal to D1

2D2
, D2

2D3
, … ., Dn

2Dnþ1
respectively only if these ratios of the

coefficients are positive.
A stable black hole with n charges possesses nþ 1ð Þ independent thermal stabil-

ity conditions [5]. But it was already shown that an electrically charged, rotating
stable black hole possessed seven conditions for thermal stability [4]. But only three
of them are independent, the rest depend on those three conditions. But this con-
clusion holds only for stable black holes, not for quasi stable black holes. Thus one

has to check the positivity of determinants of all 2nþ1 � 1
� �

submatrices of Hessian

matrix H (including itself) to ensure the quasi stability of a black hole.
Thus we see that stability of a black hole is determined by the signs of the

functions, appeared in the stability criteria. There will be nþ 1ð Þ no. of fluctuations
for a black hole having 0n0 no. of charges. These fluctuations are individually related,
to be shown later, with some physical quantities of the black hole. Signs of each of
these physical quantities designate one distinguished phase. Thus a quasi stable

black hole with 0n0 charges can at most have 2nþ1 number of phases. Any of these
physical quantities can possess the same sign in different regimes of parameter
space and hence the black hole can enter in the same phase once again. So a
decaying black hole may be lucky enough to enjoy the phases of its younger age
once more. These interesting reoccurrence of phase transitions are completely
absent in both stable or unstable black holes. The relationship among the boundary
degrees of freedom determines these phases in a quasi stable black hole.

Finite, bounded fluctuations of the parameters of both stable and quasi stable
black holes are directly connected with their respective stability criteria [8, 9].
These fluctuations will be shown to be related with some physically measurable
quantities of the black hole. Flipping of their signs indicate phase transitions, gen-
eralization of Hawking’s old idea for asymptotically flat Schwarzschild black hole
(AFSBH) [6] but in case of quasi stable black holes. Hawking showed that negative

specific heat made AFSBH thermally unstable. Divergence in ΔA2 made it happen
for AFSBH [8]. But quasi stable black holes possess too many parameters, other
than horizon area. Hence fluctuations of other parameters are similarly expected to
be related with other physical quantities of the black hole. We will see soon that this
expectation is actually the reality.

We will now use the summation formalism of partition function to build up
various physical quantities in connection with quasi stable black holes.

In this formalism, grand canonical partition function is given as [4],
ZG ¼

P
r
exp �β Er �ΦQr �ΩJrð Þð Þ; here summation is taken over eigenstates.

The various symbolic terms like Φ, Ω etc. are as before.

Define, Φ � βΦ and Ω � βΩ. Φ and Ω respectively determines the electrical and
rotational equilibrium between two connected systems [28].

Hence the grand canonical partition function becomes,

ZG ¼
X

r

exp �βEr þΦQr þΩJr
� �

:
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Thus, average value of angular momentum can be defined as,

J �

P
r
Jr � exp �βEr þΦQ r þ ΩJr

� �

ZG
¼ ∂ ln ZGð Þð Þ=∂Ω

Similarly we can calculate J
2
and is given as,

J
2 �

P
r
J2r � exp �βEr þΦQr þΩJr

� �

ZG

We can calculate fluctuation of angular momentum and this turns out to be

Δ Jð Þ2 �

P
r

Jr � J
� �2 � exp �βEr þΦQr þΩJr

� �

ZG
¼ J

2 � J
� �2 ¼ ∂

2 ln ZGð Þð Þ=∂Ω2

The convergence of fluctuation for angular momentum is mandatory for the
above calculation. Most importantly the above partial derivatives are taken at the

constant values of β and Φ. Likewise partial derivatives with respect to Φ can be

taken at constant values of β, Ω and so on.
The rotational inertia of a black hole (SJ) is defined as,

SJ � β � ∂J=∂Ω and is equals to β � Δ Jð Þ2.
It is important to note the following issue:

The quantities β, Φ and Ω are functions of independent variables A, Q and J and

hence consequently A, Q and J are the inverse functions of β, Φ and Ω. Hence

partial derivatives for example with respect to Ω, at constant β, Φ, can be evaluated

and so on. So SJ and Δ Jð Þ2 are independently calculable. They are related only when

fluctuation in angular momentum is bounded and finite. Δ Jð Þ2 approaches zero and
then suddenly blows up at the point of phase transition. But SJ vanishes there and
flips its sign afterwards. It starts to disrespect the above equality afterwards.

Electric capacitance of a black hole(SQ) is defined as,

SQ � β � ∂Q=∂Φ and is equal to β � Δ Qð Þ2, only when Δ Qð Þ2 is finite and bounded.

SQ and Δ Qð Þ2 respectively are in same footings as that of SJ and Δ Jð Þ2 regarding
their relationship and behavior at the point of phase transition. Hence flipping in
signs of electric capacitance and rotational inertia separately mark two different
phase transitions.

4. Decay of quasi stable black holes and possible identification with
dark matter

4.1 Asymptotically flat Reissner-Nordstrom black hole

The mass(M) of asymptotically flat Reissner-Nordstrom black hole (AFRNBH)
depends on its parameters as [29],

M ¼
ffiffiffiffi
A

p

4
ffiffiffi
π

p þ
ffiffiffi
π

p
Q2

ffiffiffiffi
A

p (36)
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We can now calculate the temperature of AFRNBH and it will be function of its
electric charge(Q) and horizon area(A). On calculation, it turns out that tempera-

ture (∝MA) is positive only if Q2

A <
1
4π. This restricts the parameter space.

We can calculate various second derivatives of the black hole mass (M) with
respect to its parameters from the above relation. On calculation, this turns out that.

MQQ ¼ 2
ffiffiffi
π

p
ffiffiffiffi
A

p ,MAQ ¼ �
ffiffiffi
π

p
Q

A3=2
,MAA

¼ � 1

16
ffiffiffi
π

p
A3=2

þ 3
ffiffiffi
π

p
Q2

4A5=2
, MQQMAA � MAQ

� �2� �
¼ � 1

8A2 þ
πQ2

2A3

� 	

Thus MQQMAA � MAQ

� �2� �
is positive only if Q2

A >
1
4π. But this region of param-

eter space is not accessible to any real AFRNBH as it is excluded due to negativity of

temperature. Hence MQQMAA � MAQ

� �2� �
is negative throughout its physically

accessible regime of parameter space. Now, MQQ is always positive while MAA is

negative if Q2

A <
1

12π. Thus AFRNBH can never be thermally stable as it never satisfies

any of the above two stability criteria completely. So AFRNBH is actually a quasi
stable black hole [9].

Now, MQQMAA � MAQ

� �2� �
is always negative for AFRNBH. Keeping this in

mind, We can conclude that,

1.Δ Að Þ2 always blows up as MQQ is always positive.

2.Δ Qð Þ2 converges and equals to the MAA

2β MQQMAA� MAQð Þ2
� � only ifMAA <0 i.e. Q

2

A <
1

12π.

AFRNBH gradually becomes smaller in size due to unbounded area fluctuation

and hence ultimately decays. Thus Q2

A , even if it is less than 1
12π at the beginning,

increases as area(A) decreases. But it cannot go beyond 1
4π. In the regime

1
4π >

Q2

A >
1

12π, electric charge(Q) of this black hole fluctuates appreciably enough to

reduce the value of Q. Thus this ratio becomes lower than the bench mark value 1
12π.

Hence we see that this toggling keeps on going around the value 1
12π. In this process

the black hole will continue to lose its electric charge and horizon area and conse-
quently moves forward to its end state with a certain minimum area [30], having
almost no electric charge. At this point, the black hole will not decay any further
and becomes thermodynamically isolated. Only gravitational interaction remains
active. This is quite similar to the nature of dark matter. This correspondence is
possible only if we are ready to accept that what we think of as dark matter is
actually some region of the spacetime of our universe. Thus this region pretends to
be neutral Planck dark matter as the size of black hole is now of the order of Planck
length.

4.2 Asymptotically flat Kerr-Newman black hole

The mass(M) of this black hole depends on its parameters as [31],

M2 ¼ A

16π
þ π

A
4J2 þ Q4
� �

þ Q2

2

12
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So the parameter space is restricted by the inequality 4J2 þQ4
� �

<
A2

16π2 as tem-

perature(∝MA) of a non extremal black hole is always positive. Hence both electric
charge and angular momentum are bounded for a given horizon area of the black
hole. ∣H∣ can be shown to be always negative and hence this black hole would decay
under Hawking radiation. It will consequently lose its area. Hence charge and
angular momentum have to adjust them respectively through their fluctuations to
maintain the above bound. This bounded region is shown in the Figure 1.

Now, it can be easily shown that MQQ βMAA � SAAð Þ � β MAQ

� �2� �
is negative in

the upper portion of the shaded region of the above figure. Thus this is the region

for bounded fluctuation of angular momentum. So, the higher values of J
A make the

fluctuation of angular momentum large. As the area of this black hole always

decreases, the ratio J
A increases. Thus the fluctuation of angular momentum

becomes appreciably large and hence angular momentum is reduced to maintain the

non extremality bound. So, J
A ratio again comes to the regime where J does not

fluctuate much. But area(A) as usual decreases continuously and consequently J
A

ratio again becomes large enough such that J starts to fluctuate appreciably again.

Thus this flipping of J
A ratio from larger to smaller value and vice versa keeps on

going. Hence angular momentum gradually decreases and consequently KN black
hole proceeds to transform into a non rotating black hole.

On the other hand, it can be easily shown that MJJ βMAA � SAAð Þ � β MAJ

� �2� �
is

negative in the lower portion of the shaded region of the above figure. Thus this is

the region for bounded fluctuation of charge. So, higher values of Q2

A make the

fluctuation of charge bounded only if the ratio J
A is sufficiently high. But we have

just seen that J
A ratio cannot always be high, along with the fact that the ratio Q2

A is
itself bounded. Thus Q reduces gradually as the area of the black hole decreases. So,

the ratio Q2

A oscillates between higher and lower values, exactly in the same manner

as J
A ratio does the same and gradually discharges all its charges. Consequently it

proceeds to transform into a chargeless, non rotating black hole. Thus it resembles
neutral Planck dark matter due to the fact explained in the last section. The differ-
ence between this sort of dark matter and the earlier one is only that their origins
are different.

Figure 1.
Pictorial representation of region of positivity of temperature.
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4.3 Asymptotically flat Kerr-Sen black hole

The mass(M) of this black hole depends on its parameters as [32],

M2 ¼ A

16π
þQ2

2
þ 4πJ2

A

The parameter space here is restricted by the inequality J
A <

1
8π as temperature

(∝MA) of a non extremal black hole is always positive. It is important to notice that
the electric charge of this black hole, unlike AFKNBH, is not bounded by the non
extremality of this black hole. We will see its interesting consequences soon. The

quantity MQQ βMAA � SAAð Þ � β MAQ

� �2� �
is negative in the regime J

A <
0:4
8π , but

βMAA � SAAð ÞMJJ � β MJA

� �2� �
is always negative. Hence both Δ Jð Þ2 and Δ Qð Þ2 are

bounded in the regime J
A <

0:4
8π for KS black Hole, maintaining a perfect balance

between the incoming and outgoing quanta of angular momentum and electric
charge respectively. But this balance is lost only for angular momentum in the

regime 0:4
8π <

J
A <

1
8π, whereas the same for electric charge is maintained everywhere

in the parameter space. But the KS black hole ultimately decays due to unbounded

nature of Δ Að Þ2.
Suppose the angular momentum(J) is such that J

A <
0:4
8π and hence J does not

fluctuate much as its fluctuation is bounded in this region. But area(A) as usual

decreases and hence the ratio J
A increases and becomes greater than 0:4

8π . Once this

ratio crosses that value, J starts to fluctuate rapidly. But this ratio, due to non
extremality, cannot be greater than 1

8π with decreasing area(A). Thus J ultimately

reduces and hence the ratio J
A becomes lesser than 0:4

8π . This process will go on. This

means that KS black hole tries to reduce the angular momentum, in order to satisfy
its extremality bound, during the Hawking decay. Hence the black hole gradually
loses its area and angular momentum, keeping the charge unchanged. Thus it
proceeds to transform into a black hole with charge only. This transformation is
purely thermodynamical in nature. Thus we find the difference between KS and KN
black hole in terms of their end states.

It is important to note that KS black hole, unlike KN black hole, hardly dis-
charges throughout its life. One has to go back to the construction of grand canon-
ical partition to understand this. We in this analysis have assumed the mass of a
rotating charged black hole as a function of its area, charge and angular momentum.
It is a fact in any theory of quantum gravity that area, charge and angular momen-
tum are good self-adjoint operators. But mass is not a good primary operator. We
still can represent it as a secondary operator in terms of other primary operators.
Hence we here consider fluctuations of area, charge and angular momentum only.
In semiclassical analyses, one gets various restrictions on the parameter space from
the condition of avoiding the naked singularity. We, in thermodynamical analysis,
equivalently obtain various restrictions on the parameter space from the condition
of avoiding the absolute zero temperature. Semi classically, it had been shown [33]
that a charged rotating KN black hole should lose its charge and angular momen-
tum, just from the condition of various restrictions on the parameter space. We also
obtain similar results for KN black holes, just from the condition of various restric-
tions on the parameter space imposed by positivity of the temperature. But this
analysis is a bit interesting for KS black hole. Positivity of temperature does not put
any bound on its electric charge. Close to the end state, this black hole loses almost
all its angular momentum. The area also becomes comparable with the Planck area
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[30]. Hence mass of the black hole is approximated given there as, M2≈
Q2

2 . This is
very much similar to stable extremal black holes with magnetic monopoles. Of
course the last example is the outcome of semiclassical analysis, where the mass of

this black hole in the limiting case is given as, M2≈P2, P is magnetic charge. We
compare this thermodynamical analysis with well known semiclassical analyses not
to establish our analysis, but to show the simplicity as well as superiority of this
analysis. B.carter, through his semi classical analysis [34], had shown that charged

black hole with initial mass of order of 1015 kg does negligibly discharge throughout
its life. This, if translated for KS black hole, implies KS black hole almost does not
discharge if its initial charge is roughly one mole of electrons. In fact charged black
holes with sufficient initial mass, under certain idealized conditions, had been
shown semi classically [35] not to discharge. This again supports our conclusion
regarding stability of electric charge for decaying KS black hole.

The end state of this black hole can now be identified as charged Planck dark
matter. Thus we get a possible scenario for obtaining a charged black hole through
our line of thoughts.

4.4 (2 + 1) dimensional charged BTZ black hole

The mass(M) of 2þ 1ð Þ dimensional charged BTZ black hole (Λ3BTZBH)
depends on its parameters as [36],

M ¼ r2

8l2
�Q2

16
ln r=lð Þ:

Here l is known as cosmic length and is related with Λ as Λ ¼ 1=l2. r is the radius
of the circular horizon. Hence area of it, which is actually its perimeter, is given as
A ¼ 2πr. So the mass(M) of Λ3BTZBH can be expressed in terms of Λ and A as,

M ¼ A2
Λ

32π2
� Q2

32
ln

A2
Λ

4π2

� 	
(37)

We can now calculate the temperature of Λ3BTZBH from above relationship
and it becomes a function of its charge(Q), area(A) and Λ. On calculation, it turns

out that temperature(¼ MA) is positive if A
2
> π2Q2=Λ. This restricts the parameter

space.
We can calculate various second order derivatives of the black hole mass(M)

with respect to its parameters from the above relationship. On calculation, this
turns out that.

MQQ ¼ � 1

16
ln

A2
Λ

4π2

� 	
,MAQ ¼ � Q

8A
,MQΛ ¼ � Q

16Λ
,MΛΛ ¼ Q2

32Λ2 ,MΛA

¼ A

16π2
,MAA ¼ Λ

16π2
þ Q2

16A2

� 	

We, with the help of the above six second order derivatives ofM, can show that.

1. MΛΛMAA � MAΛð Þ2
� �

¼ A2

256π4
π2Q2

2ΛA2 þ π4Q4

2Λ2A4 � π2
� �

. Now positivity of

temperature implies A2
> π2Q2=Λ. Hence MΛΛMAA � MAΛð Þ2

� �
is always

negative.
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2. ∣H∣ ¼ ln A2
Λ

4π2

� �
� A2

256�32π4 � 2� π2Q2

2ΛA2 � π4Q4

2Λ2A4

� �
þ 6Q2

265�32π2Λ 1� π2Q2

A2
Λ

� �
. Now again the

positivity of temperature fixes the sign of ∣H∣, but here it is positive.

Thus we explicitly see that MΛΛMAA � MAΛð Þ2
� �

is always negative for

Λ3BTZBH, whereas ∣H∣ is always positive for it. Hence Λ3BTZBH is actually quasi
stable under Hawking radiation. The most interesting point to note that ∣H∣ is
always positive here, unlike other quasi stable black holes [9, 28, 37].

We have earlier shown that [9, 37] quasi stable black holes possess tiny fluctua-
tions for some of their parameters in certain regions of parameter space. So, the
same is expected in case of Λ3BTZBH. We already knew [9] how fluctuations were
related to stability criteria. In fact we also knew [9] how to calculate fluctuations in
case of quasi stable black holes. Now, ∣H∣ is always positive. Keeping this in mind,
we can conclude2 that,

1.Δ Að Þ2 is bounded only if MQQMΛΛ � MΛQ

� �2� �
is positive. On calculation it

turns out that, MQQMΛΛ � MΛQ

� �2� �
¼ � Q2

256Λ2 1þ 1
2 � ln A2

Λ

4π2

� �� �
and is

positive if A2
Λ<

4π2

e2 .

2.Δ Qð Þ2 is always unbounded as MΛΛMAA � MAΛð Þ2
� �

, has already been shown,

is always negative.

3.Δ Λð Þ2 is bounded only if MQQMAA � MAQ

� �2� �
is positive. On calculation it

turns out that, MQQMAA � MAQ

� �2� �
¼ � 1

16 ln A2
Λ

4π2

� �
Λ

16π2 þ
Q2

16A2

� �
þ Q2

4A2

� �
and

is positive if ln A2
Λ

4π2

� �
< � 4

1þ AΛ

π2Q2

. Now positivity of temperature gives

A2
> π2Q2=Λ and consequently this implies � 4

1þ AΛ

π2Q2

� 	
is greater than �2. Thus

A2
Λ<

4π2

e2 is the region for positivity of MQQMAA � MAQ

� �2� �
. In fact this

upper limit is greater than the estimated value as A2
Λ

π2Q2 is greater than unity. So,

π2Q2
<A2

Λ<
4π2

e2 is a legitimate regime in parameter space, where ΔΛ2 is

bounded.

We have just seen that charge always fluctuates with large magnitude. Now,

suppose area(A) is initially so large that it satisfies both the inequalities π2Q2
<A2

Λ

and A2
Λ>

4π2

e2 by far. In this regime of parameter space all the parameters charge

(Q), area (A) and cosmological constant(Λ) together fluctuate appreciably. Area
gradually decreases due to Hawking radiation. Cosmological constant also gradually
decreases due to bubble emission [38]. Hence charge has to decrease sufficiently
fast to maintain the positivity of temperature, as otherwise zero temperature would

2
Δ Λð Þ2 measures the fluctuation of cosmological constant from its equilibrium value and is

mathematically expressed as [8, 9], Δ Λð Þ2 ¼
Ð
da dq dλ λ2f a, λð ÞÐ

da dq dλ
, where f a, λð Þ ¼

exp � β

2 MAA � SAA
β

� �
a2 þ MQQ

� �
q2 þ MΛΛð Þλ2 þ 2MAQ

� �
aqþ 2MAΛð Þaλþ 2MQΛ

� �
qλ

h i� �
. Similarly,

Δ Að Þ2 and Δ Qð Þ2 are defined.

16

Dark Matter - Recent Observations and Theoretical Advances



cause the thermodynamic death of the black hole. Thus the black hole would once

cross the curve A2
Λ ¼ 4π2

e2 , making the term MQQMΛΛ � MΛQ

� �2� �
positive. Hence

Δ Að Þ2 becomes bounded, suppressing its large unbounded magnitude exponen-

tially. In fact MQQMAA � MAQ

� �2� �
becomes positive even before A2

Λ becomes

equal to 4π2

e2 . This consequently makes Δ Λð Þ2 bounded, like Δ Að Þ2, suppressing its

large unbounded magnitude exponentially. Thus we find that in the regime

π2Q2
<A2

Λ<
4π2

e2 , both area and cosmological constant do not fluctuate appreciably.

But charge gradually decreases as before and hence the last inequality holds good.
Thus once the black hole loses almost all its charge, it transforms into a stable
chargeless BTZ black hole, having negative cosmological constant. This end state of
Λ3BTZBH, as we have seen, is different from other AdS black holes as their horizon
areas become close to the Planck area in their end states [39]. Thus we now get a
non Planck sized dark matter from our line of thoughts.

5. Note

The readers may wonder how this chapter can be something about dark matter?
We have hardly used the word “dark matter” so far, at most have used it on a few
occasions. But theoretically the connection, which is discussed here, between black
holes and dark matter is extremely appealing. There are some experimental evi-
dences that mostly rule out the possibility of connection between dark matter and
black hole [40], that we have described. On the other hand the recent observations
of LIGO and VIRGO now suggest that black holes are much more common than
once imagined and hence they could very well be the missing dark matter [41].
Anyway this chapter is written with the belief that dark matter is the possible end
state of the quasi stable black holes. Many more future experiments are required to
conclude definitively about the validity of our predictions.
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