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Chapter

Nonlinear Generalized
Schrödinger’s Equations by Lifting
Hamilton-Jacobi’s Formulation of
Classical Mechanics
Gérard Gouesbet

Abstract

It is well known that, by taking a limit of Schrödinger’s equation, we may
recover Hamilton-Jacobi’s equation which governs one of the possible formulations
of classical mechanics. Conversely, we may start from the Hamilton-Jacobi’s equa-
tion and, by using a lifting principle, we may reach a set of nonlinear generalized
Schrödinger’s equations. The classical Schrödinger’s equation then occurs as the
simplest equation among the set.

Keywords: Schrödinger’s equation, Hamilton-Jacobi’s equation, correspondence
principle, lifting principle

1. Introduction

Schrödinger’s equation is the fundamental equation of quantum mechanics.
Using a correspondence principle, we may recover the classical limit of mechanics
under the form of the Hamilton-Jacobi’s equation. This is a up-down process, from a
general theory to a limit restricted theory, i.e. from quantum mechanics to classical
mechanics. We may use another principle, that I call a lifting principle, which,
starting from Hamilton-Jacobi’s equation allows one, through a bottom-up process,
to reach a set of generalized Schrödinger’s equations, encompassing nonlinear
terms. From this generalized set, we may turn back to a up-bottom process. In a
first step, we recover the classical Schrödinger’s equation as, in some sense, the
simplest equation in the set and, in a second step, we recover again classical
mechanics from quantum mechanics, using again a correspondence principle.

The chapter is organized as follows. Section 2 recalls the Hamilton-Jacobi’s
equation of classical mechanics which, in the present chapter, may be viewed as a
turning equation, both the end of a up-bottom process and the beginning of a
bottom-up process. Section 3 exemplifies a way to obtain Schrödinger’s equation by
using an analogy relying on Hamilton-Jacobi’s equation. Section 4 expounds the
bottom-up process from Hamilton-Jacobi’s equation to a set of generalized
Schrödinger’s equations. Section 5 provides a complementary discussion while
Section 6 is a conclusion.
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2. Hamilton-Jacobi’s formulation of classical mechanics

We know that classical mechanics can be declined under four different formu-
lations, which are mathematically and empirically equivalent. These are the New-
ton’s, Lagrange’s, Hamilton’s and Hamilton-Jacobi’s formulations. In the present
chapter, we rely on the Hamilton-Jacobi’s formulation, see for instance Louis de
Broglie [1], Blotkhintsev [2], Landau and Lifchitz [3], and Holland [4]. This
formulation of nonrelativistic classical mechanics of a matter point relies on an
equation, that I shall call Hamilton-Jacobi’s equation, reading as:

�
∂S

∂t
¼

1

2m

∂S

∂xj

� �2

þ V (1)

This equation allows one to study the motions of a particle of mass m in a

potential V ¼ V xj, t
� �

. The xj’s denote Cartesian coordinates and t is the time. The

field S ¼ S xj, t
� �

is a real field that I shall call the Jacobi’s field. Eq. (1) has to be

complemented by two other equations reading as:

W ¼ �
∂S

∂t
(2)

pj ¼
∂S

∂xj
(3)

in whichW is the energy and pj is the momentum. From Eq. (2), we see that S is

an action (energy multiplied by time) and, from now on, we may call it the action.
Also, inserting Eqs. (2) and (3) in Eq. (1), we see that we obtainW ¼ T þ V, which
should be enough to convince us of the equivalence between Newton’s and
Hamilton-Jacobi’s formulations. For a conservative motion, the energy (that we
denote E in that case) is constant along each particular motion, and Eq. (2) implies:

S xj, t
� �

¼ S0 xj
� �

� Et (4)

Inserting Eq. (4) into Eq. (1), we obtain:

∂S0
∂xj

� �2

¼ 2m E� Vð Þ (5)

We now consider the locus of the points for which S0 possesses a given value C0:

S0 xj
� �

¼ C0 (6)

Eq. (6) shows that the locus is a time-independent surface. There is one surface,
and only one, containing a point P of space, according to C0 ¼ S0 xj Pð Þ

� �

. The whole

space is therefore filled by a set of motionless surfaces forming what I call the
Jacobi’s static field. From Eqs. (3) and (4), we have:

pj ¼
∂S

∂xj

� �

¼
∂S0
∂xj

� �

(7)

Therefore, pj is the gradient of S (and of S0). This means that trajectories are

orthogonal to the surfaces S (and to the surfaces S0). Next, we consider the locus of
the points for which the action S possesses a given value C:
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S xj, t
� �

¼ C (8)

Eq. (8) shows that the locus is still a surface but which now depends on time.
When times goes on, the surface moves and, in general, experiences a deformation.
For a given time t, the moving surface S xj, t

� �

¼ C coincides with a motionless

surface S0 xj
� �

¼ C0, according to, from Eq. (4): C ¼ C0 � Et. Therefore, when time
goes on, the moving surface S ¼ C sweeps over all motionless surfaces S0 ¼ C0.

We now consider a fictitious point P, pertaining to the surface S ¼ C, and
therefore moving with it, with the constraint that its displacement remains orthog-
onal to the swept surfaces S0 ¼ C0. The velocity of the moving surface may then be
defined as:

wj ¼
dxj
dt

(9)

in which dxj is an infinitesimal displacement of the point P. But we have:

dS

dt
¼

dC

dt
¼ 0 (10)

that is to say:

∂S

∂xj

dxj
dt

þ
∂S

∂t
¼ 0 (11)

leading to:

pjwj ¼ E (12)

But wj (modulus: w) is colinear to pj (modulus: p). Hence, with E positive, we

obtain:

w ¼
E

p
¼

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m E� Vð Þ
p (13)

We are therefore facing two different velocities (i) the velocity v ¼ p=m of the
material point and (ii) the velocity w ¼ E=p of the fictitious point P. Finally,
inserting Eq. (13) into Eq. (5), we obtain:

∂S0
∂xj

� �2

¼
E2

w2
¼ p2 (14)

We then remark that Newton’s formulation relies on the existence of trajectories
while Hamilton-Jacobi’s formulation relies both on trajectories and on a field filling
the space. Hamilton-Jacobi’s formulation is the first one in which the motion of a
localized object has been associated with a space filling field. In other words,
Hamilton-Jacobi’s formulation is nonlocal. This nonlocality actually anticipates the
nonlocality of quantum mechanics and the space filling field S is an anticipation as
well of a space filling field of quantum mechanics. It has furthermore been argued
that Newton’s and Hamilton-Jacobi’s formulation, although empirically equivalent,
are ontological contradictory, representing an example of the Duhem-Quine
ontological underdetermination of theory by experience [5, 6].
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3. Guessing Schrödinger’s derivation

Strictly speaking, there is no derivation of Schrödinger’s equations but a variety
of guessing approaches, with different flavors depending on the preferences of the
authors. Basically, however, Schrödinger’s equation has been introduced in [7, 8]
under its stationary form and in [9] under its time-dependent form. English trans-
lation is available from [10] and French translation from [11]. The derivation relies
on an analogy between Hamilton-Jacobi’s formulation of classical mechanics and
geometrical optics. As rather usual when something new is exposed for the first
time, Schrödinger’s argument is more complicated than necessary. For instance, it
relies on the use of non-Cartesian coordinates and on a non-Euclidean interpreta-
tion of the configuration space, requiring the use of covariant and contravariant
components of vectors (more generally, of tensors), which may be unfamiliar to
some readers. Feynman even commented that some arguments invoked by
Schrödinger are erroneous [12]. Without showing any disrespect to Schrôdinger’s
work, I prefer to present a more recent exposition extracted fromWinogradski [13]
who defended her thesis under the supervision of Louis de Broglie.

We begin with scalar wave optics and with the corresponding wave equation
reading as:

∂
2
Ψ

∂x2j
�

1

u2
∂
2
Ψ

∂t2
¼ 0 (15)

in which u ¼ u xj, t
� �

is the velocity of the wave Ψ xj, t
� �

. We may also introduce
the refractive index n of the medium according to n ¼ c=u in which c is the speed of
light. We now consider a steady medium (∂n=∂t ¼ 0) which may support mono-
chromatic waves of angular frequency ω, reading as:

Ψ xj, t
� �

¼ Ψ0 xj
� �

exp �iωtð Þ (16)

Because Ψ and Ψ0 are, in general, complex fields, we set:

Ψ0 ¼ A exp iϕ0ð Þ A,ϕ0 ∈R (17)

leading to:

Ψ ¼ A exp iϕð Þ (18)

with:

ϕ xj, t
� �

¼ ϕ0 xj
� �

� ωt (19)

In these expressions, Ψ0 is a complex amplitude, A a real amplitude, ϕ xj, t
� �

and

ϕ0 xj
� �

are phases. We may then introduce the wave-number vector reading as:

kj ¼
∂ϕ

∂xj
¼

∂ϕ0

∂xj
(20)

The wave-number k is defined as
ffiffiffiffiffi

k2j

q

and the wave-length λ is defined by λ ¼

2π=k. Also, we have:

ω ¼ �
∂ϕ

∂t
(21)
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Inserting Eq. (16) into Eq. (15), we obtain:

∂
2
Ψ0

∂x2j
þ
ω2

u2
Ψ0 ¼ 0 (22)

Next, inserting Eq. (17) into Eq. (22), we obtain two equations relating the real
amplitude A and the phase ϕ0:

1

A

∂
2A

∂x2j
�

∂ϕ0

∂xj

� �2

þ
ω2

u2
¼ 0 (23)

2

A

∂A

∂xj

∂ϕ0

∂xj
þ

∂
2ϕ0

∂x2j
¼ 0 (24)

If the medium, besides being steady, is homogeneous (∂n=∂xj ¼ 0), the wave
equation admits plane wave solutions reading as:

Ψ xj, t
� �

¼ A exp i kjxj � ωt
� �

(25)

in which A, kj,ω are constant quantities, and λ becomes the spatial period of the
wave along the direction of propagation.

We are now equipped enough to turn to a discussion of geometrical optics which
is an approximation to wave optics. This approximation is valid whenever the
optical wave approximately behaves as a plane wave over a distance of the order of

the wave-length λ, that is to say when A xj
� �

and kj ¼ ∂ϕ0=∂xj are approximately
constant over λ. Equivalently, we may take the limit λ ! 0. There is a rigorous but
tedious way to take this limit by examining the relative variations of ΔA=A and
Δkj=k over λ, in the direction x kð Þ, relying on Taylor expansions. I shall rather use

heuristic and convincing enough arguments which furthermore lead to the correct
results. Because A is approximately a constant, Eq. (23) reduces to:

�
∂ϕ0

∂xj

� �2

þ
ω2

u2
¼ 0 (26)

Furthermore, because kj ¼ ∂ϕ0=∂xj is approximately a constant too, Eq. (24)
reduces to an identity 0 � 0: Therefore, Eq. (26) is the geometrical optics version of
the wave optics. Eqs. (23) and (24), i.e. two equations, have collapsed into a single
one. We observe that Eq. (26) contains the phase ϕ0, but does not contain any more
the amplitude A. This means that the concept of amplitude has no meaning, in a
strict sense defined by the above derivation, in geometrical optics (this does not
prevent to build geometrical optics models using the concept of amplitude).

Also, from Eqs. (20) and (26), we have:

k2 ¼
ω2

u2
(27)

Now, similarly as for S0 and S, ϕ0 and ϕ are equiphase surfaces satisfying the
following obvious analogous results. The locus of the points for which ϕ0 possesses
a given value C0, i.e. ϕ0 xj

� �

¼ C0, is a time-independent equiphase surface. There is

one surface, and only one, containing a point P of space, given by C0 ¼ ϕ0 xj Pð Þ
� �

.

The whole space is therefore filled by a set of motionless surfaces forming the
static phase field. The trajectories orthogonal to these surfaces are called rays.
The locus of the points for which ϕ possesses a given value C, i.e. ϕ xj, t

� �

¼ C, is a
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time-dependent equiphase surface. For a given time t, the moving equiphase sur-
face ϕ ¼ C coincides with a motionless equiphase surface ϕ0 ¼ C0. When time goes
on, the moving surface ϕ ¼ C sweeps over all motionless surfaces ϕ0 ¼ C0.

Assembling the results obtained for the conservative Hamilton-Jacobi’s classical
mechanics and for geometrical optics, we obtain a remarkable analogy exhibited in
Table 1.

This analogy has been discovered by Hamilton, about one century (!) before its
use to the discovery of Schrödinger’s equations, see Refs. [14, 15], references therein
and prior references from Hamilton. Formally, we may express the same structure
by using a mechanical language or an optical language. Both languages may be
translated, from one to the other, by using a dictionary D exhibited in Table 2,
where the newly introduced constant G has the dimension of an action.

An analogy is not necessarily significant but any analogy should be, at least
tentatively, taken seriously. If the analogy is fully meaningless, then the value of the
constant G does not matter, and any value for G would do. A contrario, if the
analogy is somehow meaningful, that is to say if the motion of a material point can
be somehow associated with the propagation of a certain scalar field (the point of
view taken very seriously by Louis de Broglie in his double solution), then the
constant G should be a new fundamental constant of nature. We now know that the
analogy under study may be taken seriously enough, and that it eventually leads to
G ¼ ℏ. Lines (c) and (d) of Table 2 then lead to:

pj ¼ ℏkj (28)

E ¼ ℏω (29)

Classical mechanics Geometrical optics

S ¼ S0 � Et Φ ¼ Φ0 � ωt

S0 ¼ S0 xj
� �

Φ0 ¼ Φ0 xj
� �

E ¼constant ω ¼ constant

pj ¼
∂S
∂xj

¼ ∂S0
∂xj

kj ¼
∂Φ

∂xj
¼ ∂Φ0

∂xj

E ¼ � ∂S
∂t ω ¼ � ∂Φ

∂t

∂S0
∂xj

� �2
¼ E2

w2 ¼ p2 ∂Φ0

∂xj

� �2
¼ ω2

u2 ¼ k2

w ¼ E=p u ¼ ω=k

Trajectory Ray

Table 1.
Analogy between Hamilton-Jacobi’s classical mechanics and geometrical optics.

S ¼ GΦ (a)

S0 ¼ GΦ0 (b)

pj ¼
∂S
∂xj

¼ G ∂Φ

∂xj
¼ Gkj (c)

E ¼ � ∂S
∂t ¼ �G ∂Φ

∂t ¼ Gω (d)

w ¼ E
p ¼

ω
k ¼ u (e)

trajectory $ ray

Table 2.
The dictionary.

6
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which we call de Broglie, or Einstein-de Broglie relations. Eq. (28) expresses an
equivalence between momentum (mechanical language) and wave-number (optical
language), while Eq. (29) expresses an equivalence between energy (mechanical
language) and angular frequency (optical language).

The situation we are facing is now sketched in the Figure 1 below. First, we
possess an analogy between Hamilton-Jacobi’s classical mechanics and geometrical
optics, expressed by a dictionary D. Second, geometrical optics is an approximation
to scalar wave optics. The Figure 1 then exhibits three filled rectangles, and we may
feel intuitively but clearly that something is lacking, corresponding to the fourth
empty rectangle. To fill this rectangle, we apply the dictionary D to wave optics.
From the dictionary of Table 2, with G ¼ ℏ, we have:

ω2

u2
¼ k2 ¼

p2

ℏ
2 ¼

2m E� Vð Þ

ℏ
2 (30)

We may then translate Eq. (22) to:

∂
2
Ψ0

∂x2j
þ
2m

ℏ
2 E� Vð ÞΨ0 ¼ 0 (31)

which is exactly the time-independent (stationary) Schrödinger’s equation.
Therefore, Eq. (16) is translated to:

Ψ ¼ Ψ0 exp �iEt=ℏð Þ (32)

and we readily establish that Ψ also satisfies Eq. (31) that we better rewrite as:

�
ℏ
2

2m

∂
2
Ψ

∂x2j
þ VΨ ¼ EΨ (33)

Next, we can eliminate E from Eq. (33) by using Eq. (32). The “simplest” way to
do it is to write:

EΨ ¼ iℏ
∂Ψ

∂t
(34)

Figure 1.
Guessing Schrödinger’s equation.
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leading to:

iℏ
∂Ψ

∂t
¼ �

ℏ
2

2m

∂
2
Ψ

∂x2j
þ VΨ (35)

which is the general time-dependent Schrödinger’s equation. Invoking the
“simplest” way to obtain Eq. (34) rules out awkward expressions such as the one
obtained by deriving Eq. (32) twice with respect to time, i.e.:

EΨ ¼ iℏ

ffiffiffiffiffiffiffiffiffiffiffiffi

Ψ
∂
2
Ψ

∂t2

s

(36)

4. Deriving a set of generalized Schrödinger’s equations

There are good reasons to believe that classical mechanics is suspicious. One of
them is the existence of singularities in classical mechanics such as exhibited in the
mechanical rainbow [16, 17]. If we trust a non-singularity principle stating that
“local infinity in physics is not admissible” [18], we arrive to the conclusion that we
must build a wave mechanics (nowadays better known as “quantum mechanics”).
For this, we decide to start from what we know (actually what we are supposed to
know), namely classical mechanics. We are looking for a wave mechanics based on
a wave Ψ xj, t

� �

which should have the virtue of washing out the singularities

exhibited by classical mechanics. The most general form for a wave reads as:

Ψ ¼ eiT (37)

in which T ¼ T xj, t
� �

is a complex dimensionless phase. At this stage, our

amount of knowledge is supposed to be very weak. We only possess one field
S xj, t
� �

for classical mechanics and two fields Ψ xj, t
� �

and T xj, t
� �

for wave mechan-
ics. These fields are the only quantities involved in the problem. Therefore, we have
to search for a relationship between Ψ and S (first option), or between T and S
(second option). Because T and S possess the same nature (they are fields without
being waves), I preferably choose the second option. Of course, the first option is
likely to be valid as well, but it would certainly lead to more complicated derivations
and equations.

For the relationship between T and S, we could search for T Sð Þ or for S Tð Þ.
Because wave mechanics (T) is assumed to be more general than classical mechanics
(S), it is apparent that we better have to try to determine T Sð Þ rather than the inverse

version S Tð Þ. We therefore have to explicitly consider T xj, t
� �

¼ T S xj, t
� �� �

. How-
ever, this is to be slightly corrected. Indeed, T is dimensionless while S is an action
(the action). This will require us to introduce a new constant, that will be denoted g.

Now, I invoke a principle that I call the lifting principle (later to be commented a
bit more when the demonstration is completed). This principle tells us something
very simple, even looking a bit like tautological, as follows: classical mechanics is an
approximation to wave mechanics. Rather than simply using the argument S in T Sð Þ,

we then have to look for a function T S
� �

in which the functional argument S ¼

S xj, t
� �

reads as:

S ¼
1

g
Sþ iεS1ð Þ (38)

8
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in which g is a constant having the dimension of an action, S1 is a correcting
function, and ε is a small parameter. To recover classical mechanics from wave
mechanics, we shall have to take the limit ε ! 0 so that, the constant g being
dismissed, we are left with the field S (and with its equation). Also, we can take
ε∈R. Indeed, if ε were complex, it would exhibit a phase factor which could be
absorbed in S1. Similarly, the prefactor “i” which is introduced for convenience
could be absorbed in S1:

The function T S
� �

may be explicitly written as:

T ¼ Tε

Sþ iεS1
g

� �

(39)

in which we used a subscript ε to insist on the fact that T depends on ε. Eq. (39)
may give the feeling that we are dealing with a restricted first-order perturbation
approach. However, instead of Eq. (38), let us assume:

S ¼
1

g
Sþ iεS1 þ iεð Þ2S2 þ … Þ
�

(40)

This can be rewritten as:

S ¼
1

g
Sþ iε S1 þ iεS2 þ …

� �	 


(41)

which, relabelling, identifies with Eq. (38).
We are now looking for a differential equation satisfied by the wave Ψ,

involving partial derivatives with respect to xj and t. This equation must be
fundamental, that is to say it must contain lowest-order derivatives compatible
with the constraints imposed by the problem under study. Once the fundamental
equation is obtained, we can of course generate other equations by further
differentiating with respect to xj and t, but such extra-equations are said to be
non-fundamental.

We begin with the assumption that, besides derivatives with respect to xj, the
wave equation only contains the first derivative ∂Ψ=∂t with respect to time. We
shall later comment on the use of higher-order derivatives with respect to time.

The derivative ∂Ψ=∂t may always be written as:

∂Ψ

∂t
¼ f ε K, ∂Ψf gð Þ (42)

in which we again use a subscript ε to insist on the dependence on ε. Also, K is an
extra-field (i.e. a function of time and space, but not a dynamical field possessing
its own differential equation), possibly a constant, and ∂Ψf g represents a set of
arguments formed from various derivatives of Ψ with respect to xj:

Ψi1i2i3 … ir ¼
∂

∂xi1

∂

∂xi2

∂

∂xi3
…

∂

∂xir
Ψ (43)

The set ∂Ψf g is infinite and there is a systematic way to generate all arguments of
the set. For instance, the subset generated by Ψijk contains ΨijkΨiΨjΨk, ΨijkΨijΨk, … ,

and other arguments obtained by using complex conjugations.
We may also express the derivative ∂Ψ=∂t from Eqs. (37) and (39), so that we

obtain:
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∂Ψ

∂t
¼ i

dTε

dS

1

g

∂S

∂t
þ iε

∂S1
∂t

� �

Ψ (44)

We rewrite Eq. (44) as:

�
∂S

∂t
¼ iε

∂S1
∂t

�
g

i dTε

dS
Ψ

∂Ψ

∂t
, Ψ 6¼ 0 (45)

or, invoking Eq. (42):

�
∂S

∂t
¼ iε

∂S1
∂t

�
g

i dTε

dS
Ψ
f ε K, ∂Ψf gð Þ (46)

But, Hamilton-Jacobi’s equation (and the lifting principle) implies that the r.h.s.
of Eq. (46) must contain a term with no derivative associated with V in Eq. (1), and

a term involving ∂S=∂xj
� �2

, associated with the first term in the r.h.s. of Eq. (1).
These terms have to be involved in the function f ε. Upon investigation, we find

that the term involving ∂S=∂xj
� �2

can only be generated by Ψjj which indeed is
found to be:

Ψjj ¼
iΨ

g
f
T

g

∂S

∂xj

� �2

þ
2iεT

g

∂S

∂xj

∂S1
∂xj

(47)

�
ε2T

g

∂S1
∂xj

� �2

þ
dTε

dS

∂
2S

∂x2j
þ iε

∂
2S1
∂x2j

 !

g

in which:

T ¼ i
dTε

dS

� �2

þ
d2Tε

dS
2 (48)

We therefore set, without any loss of generality:

f ε K, ∂Ψf gð Þ ¼ a
∂
2
Ψ

∂x2j
þ bΨþ hε K, ∂Ψf gð Þ (49)

in which hε is a complementary function, possibly including non-linear terms,

and which also could possibly annihilate the terms a∂2Ψ=∂x2j and bΨ if, eventually,

we would find that they should be zero.
The evolution Eq. (42) then takes the form:

∂Ψ

∂t
¼ a

∂
2
Ψ

∂x2j
þ bΨþ hε K, ∂Ψf gð Þ (50)

and our next task is to evaluate a and b.
To this purpose, we now return to Eq. (46) and insert in it Eqs. (49) and (47),

leading to:

�
∂S

∂t
þ
a

g

∂S

∂xj

� �2

i
dTε

dS
þ
d2Tε=dS

2

dTε=dS

 !

þ
gb

i dTε

dS

¼ Aþ B þ C (51)
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with:

A ¼ �a
∂
2S

∂x2j
� g

hε

i
dTε

dS
Ψ

B ¼ ε i
∂S1
∂t

�
2ia

g
i
dTε

dS
þ
d2Tε=dS

2

dTε=dS

 !

∂S

∂xj

∂S1
∂xj

� ia
∂
2S1
∂x2j

" #

C ¼ ε2
a

g

∂S1
∂xj

� �2

i
dTε

dS
þ
d2Tε=dS

2

dTε=dS

 !

In the classical limit (ε ! 0), Eq. (51) simplifies to:

�
∂S

∂t
þ
a

g

∂S

∂xj

� �2

i
dT0

dS
þ
d2T0=dS

2

dT0=dS

 !

þ
gb

i dT0

dS

¼ �a
∂
2S

∂x2j
� g

h0

i dT0

dS
Ψ

(52)

which must identify with Hamilton-Jacobi’s equation. Under the proviso to be
checked later that the r.h.s. of Eq. (52) must be vanishingly small, we then obtain,
from the l.h.s.:

gb

i dT0

dS

¼ �V (53)

a

g
i
dT0

dS
þ
d2T0=dS

2

dT0=dS

 !

¼ �
1

2m
(54)

in which T0 ¼ T0 S=gð Þ and S therefore reduces to S=g. Eq. (53) implies:

b ¼ �
iV dT0

dS

g
(55)

We must now recall that the coefficient b has been actually set as a function
b xj, t
� �

, and Eq. (50) shows that it must pertain to the wave mechanical level. In
other words, it does not pertain to the classical mechanical level, that is to say, as a

rational demand, we would not like it to depend on S. Therefore, dT0=dS must be a
constant that we denote as C1.

From Eq. (55), we then have:

b ¼
�iV

g
C1 (56)

With d2T0=dS
2
¼ 0 (since the first derivative is a constant), Eq. (54) then implies:

a ¼
ig

2mC1
(57)

Inserting Eqs. (56) and (57) into Eq. (50), we then obtain:

ig
∂Ψ

∂t
¼ �

g2

2mC1

∂
2
Ψ

∂x2j
þ VC1Ψþ ighε (58)
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Concerning the constant C1, I have (at least at the present time) no theoretical
reason to assign a value to it.

Let R denote the r.h.s. of Eq. (52). We still have to check that it is vanishingly
small. With Eq. (57), we obtain:

R ¼ �
g

C1

i

2m

∂
2S

∂x2j
þ

h0
iΨ

 !

(59)

which is indeed 0 in the limit g ! 0. This implies that g is a small action, actually
so small that it could not be detected in a classical framework.

Eq. (58) is the main result of this subsection. It provides a set of generalized
Schrödinger’s equations, being admitted that they are evolution equations (first
derivative with respect to time), obtained by a deformation of Hamilton-Jacobi’s
equation, according to the lifting principle. The classical Schrödinger’s equation is,
in a certain sense, the simplest equation in the set. It is obtained by setting the
nonlinear term hε to 0 and C1 to 1, while the constant g identifies with the Planck’s
constant ℏ. This is equivalent to saying that in Eqs. (49) and (50), only the a- and
b-terms in the r.h.s. of the equations, required to match Hamilton-Jacobi’s equation
in the classical limit, are retained.

Let us note that the function hε in Eq. (58) may be significant because it allows
one to introduce non-linear wave equations. Non-linear Schrödinger’s equations in
quantum theory are considered in the literature in many papers. For example, they
are comprehensively discussed by Doebner and Goldin in [19], and in many refer-
ences therein. We may also meet such equations in the Bohm-Bub hidden-variables
theory [20], or with the Ghirardi-Rimini-Weber equation for spontaneous collapse
of the wave function [21]. More generally, non-linear equations may provide a
solution to the measurement problem insofar as linear equations, in utmost rigor, do
not allow one to get rid of quantum superpositions. This fact has been recently
heavily emphasized by R. Penrose in one of his books [22]. A word of caution is
however required, namely that, according to Gisin [23], “the Schrödinger evolution
is the only quantum evolution that is deterministic and compatible with relativity”.
Hence, “the fact that a deterministic evolution compatible with relativity must be
linear puts heavy doubts on the possibility to solve the measurement problem [… ]
by adding non linear terms to the Schrödinger equation”.

5. Complementary discussion

From the generalized Schrödinger’s Eq. (58) we may recover the classical
Schrödinger’s equation, as we have commented, by setting hε ¼ 0, C1 ¼ 1 and g ¼ ℏ,
leading to:

iℏ
∂Ψ

∂t
¼ �

ℏ
2

2m

∂
2
Ψ

∂x2j
þ VΨ (60)

This is a first application of the correspondence principle. A second application
of this correspondence principle afterward allows one to recover the classical
Hamilton-Jacobi’s equation from Schrödinger’s equation, as discussed for instance
by Blotkhintsev [2]. From the generalized Schrödinger’s equation, we therefore
recover the classical Hamilton-Jacobi’s equation by a two-step up-bottom process,
applying twice the correspondence principle. Another approach is to use Eq. (58) as
an Ansatz under the form:
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ig
∂Ψ

∂t
¼ A xj, t

� � ∂
2
Ψ

∂x2j
þ B xj, t

� �

ΨþHε

and to pursue the game with the correspondence principle to recover, using again
a two-step approach, Hamilton-Jacobi’s equation. But the use of an Ansatz is less
rigorous than the lifting principle because it contains the risk to make the Ansatz too
simple, and therefore to omit significant terms. Note, however, that we have implic-
itly made the assumption that the state of the wave is defined by the wave ψ itself so
that we have obtained what is called an evolution equation. The use of a second-order
derivative with respect to time would require, for integration, to have the state
defined by ψ and by its first derivative (and similar considerations for higher order
derivatives with respect to time) so that the result would not be an evolution equa-
tion. Therefore, in utmost rigor, what we have demonstrated is that Schrödinger’s
equation is the simplest evolution equation satisfying the lifting principle.

To clearly emphasize the difference between the correspondence and the lifting
principles, let us consider two theories, denoted TG (G standing for “general”) and
TA (A standing for “approximate”). By taking some kind of limit on TG, we must
recover TA, a up-down process (↓) that may be denoted as TG ! TA. We then say
that TG satisfies a correspondence principle with respect to TA. If TG is unknown
and under construction, any valid candidate, say TG1, TG2 … must satisfy the
correspondence principle: TG1 ! TA, TG2 ! TA … . It it does not, it is not valid and
must be rejected. If several valid candidates are retained, then the discrimination
among the candidates may need to rely on other considerations, or even remaining
undecidable, such as when dealing with the Duhem-Quine underdetermination of
theories by experiments. The lifting principle is a down-up process (↑): TA ! TG.
It starts from a theory relying on an equation (or a set of equations) which is
acknowledged to be valid within a certain domain of applicability and extends this
domain of validity by extending the original equation (or set of equations) under
conditions defined by physical requirements.

For example, the lifting principle tells us that classical mechanics is an approxi-
mation to quantum mechanics. Therefore, quantum mechanics must indeed satisfy
a correspondence principle, meaning that the correspondence principle is contained
in the lifting principle. However, as we have seen, it does not identify with it. What
we have done to use it is to start from TA and find a way to reach candidates for TG.
However, the word “lifting”may have other meanings, for instance in the theory of
nonlinear dynamics when, to study a low-dimensional system it can be easier to
study its elevation in a higher dimensional system [24, 25]. On the one hand, the
higher-dimensional system must satisfy a correspondence principle. One the other
hand, it is said that it is obtained as a result of the “lifting” of the low-dimensional
system. My choice of the word “lifting” in the context of the present chapter is the
result of my borrowing it to the context of chaos theory.

Another point of view may be taken by using a metaphor from Feynman [12]
according to which the correspondence principle proceeds from one object to its
shadow (and there is one shadow for one object) while the lifting principle proceeds
from a shadow to objects (and there are several possible objects for a given
shadow). Our results agree with this expectation. We did not reach Schrödinger’s
equation, but rather a set of generalized Schrödinger’s equation. The derivation
of Schrödinger, and all Schrödinger-like derivations, reach a single result because
they used analogies, guesses and trials, with more or less implicit assumptions.
Conversely, the use of the lifting principle simultaneously provides the whole
set of admissible possibilities with a minimal number of assumptions (namely
that we have to deal with an evolution equation). All candidates are reached in a
single step.
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6. Conclusion

The realm of nonlinear Schrödinger’s equations is very rich, with many applica-
tions such as to fluid mechanics, solitons, nonlinear optics and Bose-Einstein con-
densates. In the present chapter, we have demonstrated, using a lifting principle,
that such equations occur naturally as a generalization of Hamilton-Jacobi’s formu-
lation of classical mechanics, without however pretending that nonlinear equations
obtained by the lifting process identify with nonlinear Schrödinger’s equations used
in other different contexts (this would require another specific study outside of the
scope of the present chapter). The material presented in this chapter is extracted
from a book, namely [26]. It is here however presented under a single roof and
might then attract the interest of other readers.
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