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Chapter

Different Approaches to Develop 
More Sustainable Concrete 
Alternatives
Mauricio Pradena and Andrés César

Abstract

As important as it is, sustainability related with the concrete material is more 
than reducing the amount of cement in concrete mixes. In effect, there can be other 
types of contributions to a sustainable development using this fundamental mate-
rial. The purpose of this book chapter is to analyse some of these approaches, in 
particular, concrete durability, reducing the amount of required concrete (and then 
cement) through innovative structural design, and reducing the amount of aggre-
gates used in the concrete material. More specifically, examples and results obtained 
in Chile with biological self-healing concrete, thinner concrete pavements and 
concrete with industrial and domestic waste as partial aggregate replacement are 
included in the chapter. Due to its importance, the geo-dependency of the concrete 
material is addressed as well.

Keywords: sustainability, concrete with waste, concrete durability, thinner concrete 
pavements, self-healing concrete, life-cycle

1. Introduction

Concrete is the most widely used building material due to its strength, adapt-
ability, low maintenance requirements during the lifetime of structures, and the 
economic and extended accessibility of its components [1], which makes it very dif-
ficult to replace in many infrastructure applications [2]. In fact, globally, concrete 
production is estimated at approximately 25 billion tonnes per year [3].

However, a relevant challenge is the amount of harmful emissions produced by 
concrete [4]. Actually, cement manufacturing and concrete production account for 
6–9% of global man-made CO2 [5, 6]. Furthermore, by 2050, this value is projected to 
increase by 4% due to an increase of 12–23% in cement consumption [7]. Cement pro-
duction generates, as well, high NOx and SOx emissions, which contribute to the devel-
opment of acid rain, deterioration of public health and global climate change [8, 9].

Additionally, the high demand for natural aggregates used in the concrete mix 
generates a loss of vegetation and fauna, a decrease in air quality due to emissions 
of particulate matter, loss of fertile soil, risks of contamination of groundwater 
and deterioration of the life quality of people living near the extraction sites [10]. 
Furthermore, the extraction of aggregates can cause morphological alterations in 
the shape of the channel, bottom and banks, which has repercussions upstream 
through rebound erosion, generating a considerable increase in the velocity and 
shear stress of the flow and favouring the erosion processes in the riverbed [11].
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The negative impacts related with the concrete material can be minimised by 
adopting a sustainable approach [12], where sustainability is understood as meeting 
the needs of the present without compromising the ability of future generations 
to meet their own needs [13]. In this context, sustainable engineering implies not 
only the use of sustainable materials, but a sustainable engineering system, where 
different engineering stages and processes can include factors such as reduction 
of environmental impacts, economic accessibility and access to the engineering 
solution regardless of the geographical location [14]. Therefore, from this holistic 
approach, the result is an alternative with ae technical, environmental, economic 
and social balance [15].

As important as it is, sustainability related with the concrete material is more 
than reducing the amount of cement in concrete mixes. Actually, sustainable 
characteristics have been reported by optimising the design of structures [16–18], 
replacing natural aggregate with different types of waste such as recycled crushed 
concrete, marble waste [19] or waste foundry sand [20] and incorporating non-
traditional materials such as fibres [21, 22], biological material [23], hazardous 
waste material [24] or nanomaterials into concrete [25].

The objective of this book chapter is to analyse different types of contributions 
to a sustainable development using the concrete material. Although some examples 
are mentioned for the case of reducing the amount of cement directly in the concrete 
mixes, the analysis is focussed on the other approaches presented in Section 3 and 
analysed in Section 4 using different examples, most of them proposed from the 
concrete laboratory of the University of Concepción, Chile. Related with this, Section 
2 presents the fundamental concept of geo-dependency, which is directly related 
with the development of practical and useful sustainable concrete alternatives.

2. Geo-dependency of the concrete material

Concrete is composed of local raw materials. This characteristic is one of the 
explanatory factors of the massive use of concrete in the construction industry. 
However, this geo-dependency means that the specific types of cement used, the 
aggregates and the water influence the final behaviour of the concrete.

The aggregates represent between 70% and 80% of the volume of concrete and 
almost 90% of the total concrete weight. Therefore, the shape, surface roughness 
and mineralogical type of the aggregate plays a relevant role in defining the thermal 
and mechanical properties of the concrete [26].

Similarly, the composition of the cement and the fineness with which it is 
ground in its manufacture have significant effects on the concrete behaviour. For 
instance, in the heat of hydration, which can have effects on the durability and 
service life of concrete structures [27, 28].

Furthermore, the performance of concrete in service is also influenced by condi-
tions of the site environment such as levels of chlorides, sulphates, humidity, pH, 
CO2 and thermal amplitude.

Hence, the concrete is a geo-dependent material because its functional perfor-
mance is determined by the raw materials used in its manufacture and the local 
construction conditions. In this way, concrete mixes produced in two different 
regions of the planet are different, even though they can have the same strength.

Geo-dependence is also crucial when dealing with waste materials incorporated 
in concrete, especially because these alternative solutions must be practical and 
feasible to implement in order to effectively reuse the waste [29]. Therefore, they 
must be feasible not only from a technical point of view, but from an economic 
perspective, as well, including all associated costs.
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In effect, if the final purpose is to efficiently reuse waste by incorporating it into 
concrete, geo-dependency leads to an evaluation of the performance of these solutions 
according to the local context. In this way, the results obtained contribute to the opti-
mal use of waste and then to sustainable development, which can be adopted in other 
regions as well. For instance, regions with similarities, that can be in the type of cement 
composition, cement substitute materials and/or characteristics of the aggregates.

3. Sustainable approaches related with the concrete material

3.1 Approaches based on the phases of the concrete material life-cycle

The methodology to assess the environmental impact of a material, includes the 
calculation of the related emissions generated and energy required in the different 
phases of the material life-cycle, i.e. from the extraction of raw materials to the end 
of the first life. Therefore, the use of the life-cycle phases of the concrete material 
results especially useful to analyse different contributions to more sustainable 
alternatives of this massive use material.

Evaluating the energy consumption and generated emissions of material 
alternatives allows to quantify sustainable benefits at different stages of the life-
cycle. For instance, in the material production stage, alternatives can be generated 
to reduce the amount of cement and natural aggregates used in the concrete mix. 
And in the product manufacture stage, benefits can be achieved by implementing 
optimised design and construction procedures that reduce the amount of concrete 
or alternatives with less demanding maintenance interventions, or with better 
thermal insulation and then less demanding of heating energy. Furthermore, more 
durable concrete can be produced in such a way that at the end of the first life the 
material can be reused.

In the present section some of those different approaches are introduced (Figure 1).

3.2 Reducing the amount of cement in the concrete mix

An alternative to minimise the harmful emissions generated by concrete is to 
directly reduce the consumption of cement in the mix. For that purpose, supple-
mentary cementitious materials have been developed to replace part of the required 
cement [31].

Figure 1. 
Material life-cycle [30].
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These alternative materials include the reuse of waste such as fly ash, which 
can replace 15–30% of cement [32–36] and silica fume which replace cement by 
5–25% [37, 38]. There are other residues as well that have been used, such as ground 
granulated blast furnace slag [39], metakaolin [40, 41], sewage sludge ash [42, 43], 
rice husk ash [44], which can replace up to 20% of cement.

Alkaline activated cements can be used to replace more than 50% of conven-
tional cement [45–48]. This material is a product with cementitious properties 
generated from the reaction of a powdery material with an aluminosilicic nature 
and an alkaline agent [49]. Alkaline cements are mainly characterised by low 
hydration heats, high mechanical performance, good durability against different 
chemical attacks, often using industrial waste as the only raw material and not 
requiring high energy consumption compared to the Portland cement manufactur-
ing process [50].

Even a “cementless concrete” can be produced by implementing a sub-group 
of alkaline-activated materials called geopolymers [50]. In this regard, the main 
author of this chapter has the experience of design and making geopolymer mate-
rial with Chilean aggregates in the Microlab TU Delft. The results were optimal, 
obtaining without problems the design strength.

However, the implementation of the technology of actively alkaline cements and 
geopolymers requires great care in their production. In addition, the polymerisation 
reaction is very sensitive to temperature and requires the curing of the geopolymer 
concrete to be at an elevated temperature under a strictly controlled temperature 
regime [51, 52]. These aspects coupled with the lack of standardisation of the 
material make the practical implementation of this technology limited to particular 
engineering solutions such as the construction of prefabricated structures like 
sewer pipes and marine members.

3.3 Implementation of optimised designs

Another approach to reduce the environmental impact of concrete is to imple-
ment sustainable design features. For instance, optimised structures requiring 
fewer concrete material to satisfy the in-service demands or optimised structures 
requiring less conditioning energy during their use phase. Optimisation has been 
applied in the design of hydraulic structures as dams [16–18]. Actually, Deepika and 
Suribabu used differential evolution algorithm to find the best optimal shape of a 
gravity dam reducing 20% the demand of concrete [53].

Similarly, Hashemian proposed a cambered curve beam which requires 20% less 
concrete than the conventional prismatic beam [54].

Other possibility of optimization is to take better advantage of intrinsic properties 
of the concrete material in the design of structures. An of example of is the concrete 
thermal inertia, which is the characteristic of taking a long time to warm up, but, once 
warm, taking a long time to cool down, and vice versa. This property incorporated in 
building design can result in structures that maintain a comfortable internal tem-
perature by means of a better interaction with the environment [55, 56]. As a result, a 
reduction of the conditioning energy over the lifetime of the building is achieved.

3.4 Improving the concrete durability

From a sustainable and technical perspective, the greater the durability of the 
concrete material, the greater the benefits. Certainly, it is not the same to have a 
concrete material, for the same application, enduring 15 or 60 years. If the struc-
ture has good durability, then it will require less significant interventions and the 
service life can be extended. In this regard, the ICRI Committee 160 mentions that 
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the most effective sustainability strategy for concrete and masonry structures is to 
avoid the need of repairing [57].

A particular case is reinforced concrete, where it is very important to avoid or 
reduce the entrance of atmospheric agents that can corrode the reinforcement [58–60]. 
This can prevent advanced deterioration and damage, which repair works, require 
substantial resources. For example, in the UK the annual cost of repairing reinforced 
concrete structures near coastal areas is £755,000,000 [61]. Similarly, between 1991 
and 2001, the cost of corrosion repair of reinforced concrete structures in the United 
States was $276 million, representing 3.1% of the gross domestic product [62].

In order to prevent corrosion deterioration, it is essential to reduce the formation 
and propagation of micro-cracking generated by the concrete shrinkage phenom-
ena at early age [60, 63, 64]. As alternatives to limit the micro-cracking and thus 
increase the concrete durability, Jonkers et al. developed a promising self-healing 
concrete technology based on the application of mineral produced by bacteria 
included in the mix [23]. This method allows to repair from inside the material 
without requiring external agents to activate the process.

Another widely evaluated alternative is the incorporation of fibres in the con-
crete, which can reduce the number, size and propagation of microcracks [21, 22]. 
In this case, compared to man-made fibres, natural fibres are less expensive, locally 
available (in some cases as industrial waste), renewable, lightweight, biodegradable 
and less energy intensive to produce [65–67].

3.5 Reducing the amount of natural aggregates in the concrete mix

The concrete industry generates a high demand for natural aggregates, due to the 
massive use of concrete, and the fact that approximately 70% of the volume of this 
material is composed by aggregates [68]. Uribe mentions that aggregate extraction 
processes generate loss of vegetation cover and soil [10]. Consequently, the land-
scape and the habitat of the existing fauna in the area are altered. Moreover, soil fer-
tility and air quality are reduced due to emissions of particulate matter. Therefore, 
the life quality of the people living near the extraction sites is affected as well.

Another direct impact relates to construction costs. Indeed, as aggregates are a 
finite resource, they can become scarce, which can increase the cost of acquiring 
and transporting materials from more distant locations.

Globally, up to 17.5 Gt of aggregates have been consumed annually for concrete 
manufacturing [69]. In the United States, two billion tonnes of aggregates are 
produced annually [70]. Similarly, it is estimated that in Chile, aggregate extraction 
amounts to 7 million 500 thousand cubic metres produced annually, of which five 
million correspond to gravel and sand [71].

Therefore, in order to preserve natural resources and, at the same time, contribut-
ing to solve waste disposal problems, it has been evaluated to replace natural aggre-
gates by different types of waste such as recycled crushed concrete, crushed bricks, 
recycled glass, rubber, ceramics, marble waste, textile effluent sludge [19], waste 
foundry sand [20], steel slag [72], copper slag [73], blast furnace slag, ferrochrome 
slag, class F fly ash, palm oil clinker [68] and various types of plastic waste [74].

4. Examples of sustainable concrete alternatives

4.1 Case studies

Based on life cycle approaches, the concrete laboratory of the Universidad 
de Concepcion in Chile has made efforts to contribute to the development of 
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technologies that decrease the harmful impact generated by the concrete industry. 
This section describes these technologies and presents the relevant results of 
each study.

4.2  Reduction of the amount of cement by means of optimised structural 
pavement design

Since all the desired objectives and requirements of an engineering structure are 
specified in the design phase [75], in the case of concrete pavements, the structural 
design plays an important role in improving the sustainability of the road infra-
structure [76]. In this regard, the design method of short slab Jointed Plain Concrete 
Pavements (JPCP) is a patented alternative that proposes to shorten the slabs size in 
such a way that there is only one set of wheel loads per slab [77, 78]. Therefore, the tra-
ditional configuration where the slab can support the full vehicle load does not occur. 
The benefits of this design include, as well, a reduced slab curvature. In this way, the 
pavement thickness can be reduced up to 10 cm [78], which means than less concrete 
is required, and then the demand of cement, aggregates and water decreases.

Additionally, it is postulated that the primary method of transferring loads 
between slabs is the aggregate interlock mechanism, and then, dowel bars are not 
part of the standard design.

These features result in savings of approximately 20% of the construction cost, 
which makes concrete pavements with optimised geometry a competitive solution 
compared to asphalt pavements when only construction costs are considered in the 
analysis, i.e. without life-cycle costs [78]. This is especially relevant in developing 
countries, where construction costs can be the main limit to the application of more 
durable pavements with less maintenance intervention requirements than asphalt 
pavements [79, 80]. In fact, promising experiences with concrete pavements with 
optimised geometry have been carried out in developing countries such as Chile, 
Guatemala, Nicaragua and Peru [78, 81–83]. Moreover, evaluations of short slab 
test sections in the United States indicate that these pavements have the ability to 
maintain in-service performance similar to traditional concrete pavements up to 
51.3 million equivalent axle loads (ESAL) [84].

In order to estimate the benefit of this engineering innovation, the emissions 
generated in 18 short slab projects and their traditional JPCP equivalents were 
compared [85]. The assessment was based on environmental management prin-
ciples and measures the impact on the environment and human health [86, 87]. 
Furthermore, it is assumed that the design hypotheses are fulfilled and then the in-
service performances of both pavement alternatives are equivalent. For this reason, 
the evaluation is focused from the material procurement stage to the construction 
phase, which presents differences between the two design philosophies.

The results indicate that, for all cases evaluated, the concrete pavements with 
optimised geometry generate lower harmful impacts (Figure 2). Regarding envi-
ronmental impacts, all indicators presented reductions above 10%, with global 
warming, acidification and ozone depletion showing the highest reductions with 
33%, 27% and 24%, respectively. In terms of human health impacts, short slab 
pavements reduce, as well, exposure to carcinogenic, non-carcinogenic and respira-
tory pollutants by 26%, 23% and 27% respectively.

The reduction in these indicators reflects that concrete pavement with optimised 
geometry contribute to a more sustainable construction. The visible advantages of 
short slab pavements are related to their ability to maintain a performance similar 
to a traditional JPCP while using thinner slabs. This reduction means less cement 
consumption, which is the main generator of emissions.
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4.3 Increasing durability to reduce the concrete demand

4.3.1 Natural fibres to control concrete microcracking

In order to prevent internal corrosion of reinforced concrete, it is essential to 
reduce the formation and propagation of microcracking generated at early age 
by the concrete shrinkage phenomena [60, 63, 64]. Traditionally, little attention 
has been focused on microcracks due to their low immediate structural impact. 
However, from a sustainable development perspective, the control of microcracks 
is fundamental to limit the entrance of atmospheric agents that can corrode the 
rebars. Hence, the reduction of microcracks results in more durable concretes, 
which is a direct contribution to sustainability.

Microcracking concrete control is especially attractive in regions with aggressive 
environments for reinforcement corrosion, such as coastal areas. In this sense, due 
to its geography and the length of its coastline (6,435 km), Chile is a country that is 
particularly suitable for the application of these concretes. In fact, of the ten largest 
cities of the country, 6 are located in coastal areas.

The traditional process to limit the number and size of microcracks in concrete 
is the incorporation of industrial fibres [88–90]. However, abundant virgin raw 
materials are required to manufacture steel, glass, or plastic fibres. In this context, 
natural fibres have lower embedded energy, are cheaper, renewable, biodegradable 
and locally abundant [65–67]. In fact, they may be available as waste, which makes 
their use in concrete even more attractive.

Research developed by Soto et al. [91] and Okeola et al. [92] show that sisal 
fibres limit the propagation of microcracks in concrete. However, the incorpora-
tion of natural fibres can reduce the compressive strength. Indeed, the reduction 
is greater if the amount of fibres increases [93]. This has been observed in coconut 
fibre with reductions in compressive strength between 11% and 13% [94], jute 
fibre with reductions between 6% and 35% [95] and sisal fibre with reductions in 
compressive strength between 4.22% and 25.30% [92].

Considering that the mechanical properties, and in particular the compres-
sive strength, is fundamental for the massive use of concrete, it is fundamental 
the evaluation of those properties if a particular type of natural fibre wants to be 
considered to control concrete microcracking. In particular, at the University of 
Concepción, a study has been developed in order to evaluate mechanical properties 
of concrete with Eucalyptus Globulus bark fibre, which is a waste product of the 
forestry industry widely available in Chile [29, 96].

Figure 2. 
Percentage of emission reduction with short slabs [85].
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Figure 4. 
Compressive strength results of concrete samples [29].

A total of four fibre inclusion percentages were evaluated with respect to the 
weight of cement: 0.5%, 1.0%, 2.0%, and 5.0%. In order to study the potential influ-
ence of fibre absorption on the performance of the samples, the fibres were included 
in dry and saturated state.

The study considered, as well, the evaluation of the potential effects on the 
durability of the fibre when impregnated with a paraffin emulsion. This is because 
modification of the fibre surface with chemical or physical agents is a strategy 
to mitigate the potential degradation caused by the alkaline environment of the 
cementitious matrix (Figure 3).

The results indicated that there is no significant difference between incorporat-
ing the fibre in a dry or saturated state. Therefore, it is not essential to dry the fibre 
before incorporating it into the mixture. With respect to the fibres treated with 
paraffin emulsion there are no strength advantages related with their application.

In regard to mechanical behaviour, samples with 05% Eucalyptus Globulus bark 
fibre have a remarkably performance, although it is lower compared to samples 
without fibre. For instance, by incorporating 0.5% dry fibre (CD-0.5), the compres-
sive strength after 28 days only differs by 0.98 MPa from the control sample without 
fibre (CC), which is very close to the standard error of 0.82 MPa. This trend does 
not agree with that reported by other researchers, which indicate significant reduc-
tions in the strength of concrete with natural fibres [91, 94, 95]. A similar behaviour 
was observed in the flexural strength, where the saturated samples (CS-0.5) 
showed a reduction of 0.20 MPa, being 0.22 MPa the standard error, i.e. the differ-
ence cannot be considered significant. Furthermore, the samples with dry fibres 
(CD-0.5) show a reduction of 0.7 MPa (Figure 4).

Figure 3. 
Samples with E. globulus bark fibres: (a) top view; (b) side view [29].
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Although the limitation of microcracking in concretes was not specifically inves-
tigated, the addition of fibres is an accepted technique to control micro-cracking 
[88–90]. Moreover, Soto et al. [91] and Okeola et al. [92] demonstrated this using 
natural fibres. In particular, Araya-Letelier et al. [97] demonstrated the possibility 
of limiting the number and size of concrete microcracks using Chilean cements and 
natural fibre with 54% lower tensile strength than Eucalyptus Globulus bark fibres.

4.3.2 Incorporation of end-of-life tyre rubber into concrete

End-of-life tyres (ELT) represents a social and environmental problem due to 
the large accumulation in landfills. In fact, more than 1000 million tonnes of ELT 
are generated annually and more than 50% of that amount is destined to landfill 
or left as untreated garbage [98]. Moreover, this material produces concentra-
tions of rats, larvae, mice and insects, increases the risk of fires difficult to 
extinguish [99]. This condition is aggravated by its lack of reutilisation. For 
instance, in Chile more than 140,000 tonnes of ELT were produced in 2019 and 
only 17% was recycled [100].

An attractive use of this waste is its incorporation in concrete mixes. Indeed, 
concrete with rubber improves properties such as energy absorption, due to its 
increased plasticity and ductility [101], which improves its impact behaviour and 
durability. However, the addition of rubber reduces the mechanical strength of the 
concrete [102, 103]. Therefore, to mitigate this effect, it is necessary to treat the rub-
ber prior to its incorporation [104–106]. For instance, García et al. [107] evaluated 
the effects of three different treatments applied to ELT rubber before its incorpora-
tion in cement mortar samples. The treatments were hydration, oxidation-sulpho-
nation and contact with hydrogen peroxide. The results indicate that it is possible 
to replace up to 5% of the fine aggregate weight with ELT rubber. Furthermore, the 
incorporation of hydrated ELT rubber proved to be the best treatment option from a 
technical, practical and economical point of view.

As the purpose is to produce a useful improvement in concrete properties and uti-
lise waste efficiently, it is important to consider the geo-dependence of the concrete 
material [29]. This is particularly evident in samples made with cement containing 
local fly ash (Great Concepción, Chile). Indeed, this cement has a similar market 
cost to others national cements. However, the samples with ELT and fly ash cement 
are able to provide mortars that can satisfy the design requirements. Therefore, it is 
possible to reduce the amount of clinker while reusing a local industrial waste.

Furthermore, the adequate strength obtained in the experimental evaluation 
makes ELT rubber concrete an attractive alternative to improve the in-service perfor-
mance of structures such as concrete crash barriers. Since rubber concrete is able to 
increase impact resistance and energy absorption [101], the durability of these safety 
elements is increased. Actually, studies indicate that concrete barriers with recycled 
rubber ELT have a service life 2.6 to 3.2 times longer than traditional barriers [108].

Due to the extensive road networks of the countries the benefits of this type 
of barrier represent not only a massive use of an industrial waste, but also bring 
economic, safety, and environmental benefits to the country or region where they 
can be applied. For instance, only in Chile the national road network roads exceed 
85,000 kilometres [109].

Although the importance of geo-dependency, the results obtained in this 
research may be useful for other regions as well. For example, where it is possible 
to replace part of the cement with fly ash (produced or imported), or another 
cement substitute, producing similar results. If the substitute is a waste product 
such as fly ash, the contribution is not only technical and economic, but also it is a 
contribution to a sustainable development.
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Figure 5. 
Concrete sample with self-healing process activated [115].

4.3.3 Biological self-healing concrete

A promising approach to mitigate durability problems and control micro-
cracking of concrete is to incorporate biological elements that self-heal the 
material. This technique was originally developed by Dr. H. Jonkers at Delft 
University of Technology, who incorporate into the concrete a bacterium that 
has the ability to segregate calcium carbonate, sealing concrete microcracks 
[110]. This can represent an increment of 20% in the lifetime of a concrete 
structure [111]. If the same structure but with traditional concrete will need 
rehabilitation, and then more concrete, during its life to endure the same period 
of time than the self-healing concrete. Therefore, the amount of CO2 emitted 
into the environment decreases compared to structures built with conven-
tional concrete. Indeed, Van Belleghem et al. [112] report that the lifetime of 
structures with self-repairing concrete can reduce the environmental impact 
by 56–75%.

Due to the biological nature of this technology and its interaction with the 
components of the concrete mix and the local environmental conditions, geodepen-
dence is relevant to the performance of the self-repair process. Indeed, if the ideal 
conditions of moisture, salinity and temperatures are not present, then the bacteria 
will not have sufficient stimulus to secrete calcium carbonate and the crack sealing 
will not be produced [113]. Similarly, cements with a higher amount of pozzolan 
decrease calcium carbonate precipitation which reduce the self-healing capacity of 
concrete [114].

In collaboration with Dr. Jonkers, bacterial growth, spore formation and pro-
duction of concrete samples were developed with two types of Porland pozzolanic 
cements commonly used in Chile [115]. The Bacillus pseudofirmus bacteria solution 
was impregnated into expanded clays and incorporated into the concrete as a partial 
replacement of fine aggregate. These specimens were subjected to three different 
environments simulated in the laboratory: fresh water, salt water and 90% relative 
humidity, all at 20°C. The results at 28 days show some areas where the self-healing 
was 100%. Although in other cases the recovery was lower, about 90% of the 
specimens showed traces of calcium carbonate as a sign of the activation of the 
self-healing process (Figure 5).

The results confirm that biological self-healing of concrete can be produced 
with Chilean materials and regional environments simulated in the laboratory. In 
particular, the aggregates and cements used in the research were different from 
those used in the investigations of Jonkers [23, 116, 117].
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4.4  Incorporating waste into the concrete as a mean of reducing the demand for 
natural aggregates

4.4.1 Cooper slag as a partial replacement of concrete fine aggregates

Copper slag (CS) is a vitreous substance generated in the copper smelting 
process. Globally, the copper industry produces approximately 24.6 million tonnes 
of slag [118]. In this regard, Chile is the world’s largest copper producer [119, 120], 
generating 2.2 tonnes of CS for one tonne of copper produced. This creates signifi-
cant accumulations of slag, negatively impacting the environment.

Considering the mechanical and chemical characteristics of CS, their use in con-
crete mixes as a partial replacement of aggregates has been evaluated. In fact, stud-
ies indicate that replacing up to 40% of fine aggregate in concrete samples results 
in higher or equivalent strengths compared to samples without slag [121–123]. 
Similar results were reported by Al-Jabri et al. [124] and Borkowsky [125] on mortar 
samples with 40% and 50% fine aggregate replacement, respectively. This percent-
age of replacement were experimentally verified by Pérez [126] for Chilean cement 
and aggregates. In addition, and in order to quantify the environmental benefits of 
this technique, a sustainability assessment based on the five-step method of Ashby 
et al. [30] was performed by Pérez [126] as well. The assessment estimates the 
percentage of CS that could be recycled, and then, the reduction of sand demand of 
cement mortars and concrete. Different scenarios were considered in the analysis 
that the copper smelters and the aggregate extraction plants are at similar distances 
from the concrete plants.

The results of the sustainability analysis indicate that in the most optimistic 
scenario, it is possible to reuse between 58% and 64% of the CS volume produced 
annually. This represents an annual saving of approximately 0.7 million tonnes of 
sand and an annual energy saving of 210409 GJ,1737905 kg CO2 eq, 11.89 kg Sb eq, 
23549348 MJ ADP, 0.08 kg CDC-11 eq, 704.14 kg C2H4 eq, 12016 kg SO2 eq and 
1563 kg PO4–3 eq. For instance, shows the benefits achieved for one of the cases 
evaluated (Figure 6).

These results are relevant since, in Chile, approximately 60% of building 
surfaces are made of concrete and 12% of masonry [127]. Therefore, there is a great 
opportunity to reuse this industrial waste.

Figure 6. 
Percentage of recycled CS [126].
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Currently, the investigation continues at the concrete laboratory of Universidad 
de Concepción, with promising results in replacing more than 50% of the of the 
fine aggregate with CS.

4.4.2 Recycled plastics as a partial replacement of concrete fine aggregates

Various types of plastic waste have been incorporated into concrete to avoid 
direct contact with the environment [128–130]. In particular, in the Biobio region 
of Chile, the acrylonitrile butadiene styrene (ABS) is not being recycled and then 
its incorporation into concrete as a partial replacement of fine aggregate has been 
studied at the concrete laboratory of the Universidad de Concepcion (Biobio 
Region).

The ABS is a plastic used in the production of computer keys, appliance 
and power tool housings, plastic plug protectors and automotive parts such as 
dashboards and bumpers [131]. However, in Chile, the ABS accounts for only 
2% of national plastic recycling [132], which can lead to serious waste disposal 
problems.

Preliminary results show that it is possible to replace up to 50% of the fine aggre-
gate for applications as lean concrete, simple foundations, false floors and subfloors. 
However, optimal results were obtained when replacing 25% of the fine aggregate 
with ABS plastic.

Considering that concrete is a material with a high demand for natural aggre-
gates, the strategy of using products with post-consumer recycled content, such as 
ABS plastic to replace sand in concrete, reduces the environmental impacts result-
ing from the initial stage of the concrete life cycle, extraction and processing of 
virgin materials.

5. Conclusions

As important as it is, sustainability related with the concrete material is more 
than reducing the amount of cement in the mixes. Actually, in this book chapter 
other approaches have been presented and analysed, starting with the phases of the 
concrete material life-cycle where the proposed alternatives present lower environ-
mental impacts than the traditional ones.

Although the article mentions different examples of the approaches to develop 
more sustainable concrete alternatives, it goes more in details in the ones studied 
(or under study) at the concrete laboratory of the Universidad de Concepción. In 
this way, the article analyses how it is possible to reduce the demand of concrete, 
and therefore cement, by optimising the designs of concrete pavements. Another 
approach is the replacement of concrete aggregates by industrial waste such as 
copper slag or ABS plastic, which not only reduces the demand for the natural 
resource, but it contributes to solving a waste disposal problem. Finally, it is pro-
pose the incorporation, during the production stage, of natural fibres, ELT rubber 
or biological elements that can increase the concrete durability, which is a direct 
contribution to sustainability.

Hence, it is possible to develop more sustainable alternatives than the 
traditional ones applied in the concrete industry, which is especially relevant 
considering the massive use of the concrete material. However, for the devel-
opment of viable alternatives, it is necessary to consider the geo-dependence 
of concrete. Indeed, the physical and chemical properties of the concrete 
components, together with the site conditions, can influence the concrete 
performance.
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