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Abstract

State-of-the-art tools are revolutionizing protected area (PA) manager 
approaches to biodiversity monitoring. Effective strategies are available for test 
site establishment, data collection, archiving, analysis, and presentation. In PAs, 
use of new technologies will support a shift from primarily expert-based to auto-
mated monitoring procedures, allowing increasingly efficient data collection and 
facilitating adherence to conservation requirements. Selection and application of 
appropriate tools increasingly improve options for adaptive management. In this 
chapter, modern biodiversity monitoring techniques are introduced and discussed 
in relation to previous standard approaches for their applicability in diverse habitats 
and for different groups of organisms. A review of some of today’s most excit-
ing technologies is presented, including environmental DNA analysis for species 
identification; automated optical, olfactory, and auditory devices; remote sensing 
applications relaying site conditions in real-time; and uses of unmanned aerial sys-
tems technology for observation and mapping. An overview is given in the context 
of applicability of monitoring tools in different ecosystems, providing a theoretical 
basis from conceptualization to implementation of novel tools in a monitoring 
program. Practical examples from real-world PAs are provided.

Keywords: protected area management, biodiversity monitoring system, 
environmental DNA, camera trapping, electronic nose, passive acoustic monitoring, 
remote sensing

1. Introduction

1.1 Recent history of biodiversity loss

Biodiversity is declining globally at an unprecedented rate, a trend that has 
proceeded unabated since the early 20th century [1–3]. Recognition of the impor-
tance and conservation needs of global biodiversity resulted in the proposal of 
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the Convention on Biological Diversity (CBD) in Rio de Janeiro in 1992 [4]. More 
than 190 nations have since ratified the treaty. At the turn of the millennium, 
several international initiatives were started with the aim to change the trajec-
tory of biodiversity conservation. Through the United Nations (UN) Millennium 
Ecosystem Assessment initiative (2001–2005), research was conducted with the 
goal to identify conservation priorities and set benchmarks for future actions [5]. At 
the time, the initiative provided a comprehensive summary of ecosystem changes 
and their effects on human well-being and linked to economic activities. The UN 
Millennium Development Goals (2000–2015) aimed to mitigate the extent of bio-
diversity loss. These goals are now addressed by the UN Sustainable Development 
Goals (SDGs) containing benchmarks for marine and terrestrial biodiversity [6]. 
In 2012, at the Tenth Meeting of the Conference of the Parties to the Convention on 
Biological Diversity, a strategic plan for the protection of biodiversity was formu-
lated. The plan included 20 so-called Aichi targets to be addressed during the period 
2011–2020. Ultimately, none of the Aichi targets were met on time (Figure 1) [7].

Looking forward to 2030, the SDGs provide a global framework toward sustainable 
development on economic, social, and environmental levels [8]. SDGs 14 and 15 are 
particularly relevant for biodiversity conservation. Goal 14 aims to protect life below 
water with a focus on marine pollution, protection, and restoration of ecosystems, 
reduction of ocean acidification, and sustainable fishing. Goal 15 targets terrestrial 
biodiversity, with a focus on protection, restoration, and promotion of sustainable for-
est management while reversing land degradation. To track evidence-based achieve-
ment of SDGs, far-reaching state-of-the-art monitoring capacities must be advanced.

1.2 Drivers of biodiversity loss

Despite the formation of the CBD, biodiversity has continued on a downward 
trajectory for vertebrate and insect species, while trends for many other taxa are 
unquantified [9, 10]. At least 900 species have gone extinct since 1500, and to date 
1,145 species are listed as critically endangered or possibly extinct [11]. Given the 
considerable knowledge gap, these numbers are likely higher. The Living Planet 
Report noted a global decline in vertebrate abundance by 60% from the period 
1970–2014 [12]. Main causes of biodiversity loss in the past century were associ-
ated with human population growth and economic development [13]. In its recent 
Global Assessment Report, the Intergovernmental Science-Policy Platform on 

Figure 1. 
Global conservation trends over the past 500 years (blue bars) and implementation of conservation 
treaties (orange bars). MA = millennium ecosystem assessment; MDGs = millennium development goals; 
SDGs = sustainable development goals; YNP = Yellowstone National Park established in 1872 (yellow bar). 
Timeline not drawn to scale.
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Biodiversity and Ecosystem Services (IPBES) highlighted that terrestrial biodiver-
sity losses were primarily linked to land-use changes caused by agricultural prac-
tices, whereas in maritime ecosystems overexploitation of fisheries caused major 
declines of biodiversity [14]. Other threats for biodiversity include climate change 
and proliferation of invasive alien species (IAS).

Biodiversity is under pressure due to human activities, and species extinc-
tions will have severe negative feedbacks on human society in the future [15]. The 
impacts of biodiversity loss on global environmental change are comparable to 
climate change and need urgent attention. In its recent assessment, IPBES identified 
major drivers for current biodiversity losses: human-induced land-use changes, 
climate change, and IAS [16]. A separate study found that climate change, biodiver-
sity loss and biogeochemical flows have already exceeded safe operating space [17]. 
Rising mean annual temperatures are linked to anthropogenic emissions of green-
house gases. Temperatures have increased globally by about 0.2°C per decade since 
the 1970’s [18], and climate change-driven impacts on biodiversity are documented 
across the globe [14]. Projections forecast further changes in the future [19–22].

1.3 Protected areas and biodiversity

The concept of protected areas (PA) may be as old as civilization itself [23]. 
Throughout the 20th century until today, the number of PAs has grown consider-
ably to over 265,000 sites [24]. The CBD emphasized the importance of PAs for 
conservation of biodiversity and encouraged further PA establishment to mitigate 
ongoing biodiversity losses [4].

Some 76 years following the establishment of the world’s first national park, 
Yellowstone, USA, the establishment of the International Union for Conservation of 
Nature (IUCN) occurred in 1948 and marked a landmark change in global biodi-
versity conservation [25]. Today, six commissions within the IUCN, including the 
World Commission on Protected Areas (WCPA) and Species Survival Commission 
(SSC), actively address environmental and socioeconomic issues related to con-
servation [23]. The importance of PAs is well-documented, but sufficient data 
on effectiveness of governance and management status for a majority of PAs are 
still lacking [26]. Recent studies additionally emphasize that biodiversity is on the 
decline in many PAs due to persistently high human pressures [27–29]. However, the 
advent of new technologies, with the possibility to provide fast and highly auto-
mated species identification and analysis across large spatial areas, points toward 
new perspectives in nature conservation [30].

True measurement of conservation outcomes requires effective and meaning-
ful biodiversity monitoring systems (BMS). To foster best practice standards in 
governance and management of PAs, the WCPA released the Green List in 2016 
[31]. In it, four components to evaluate the performance of PAs are described: good 
governance; sound design and planning; effective management; and successful 
conservation outcomes [32]. The SSC provides updated information on species and 
the status of ecosystem conservation in the IUCN Red List [11]. In 2009, the Joint 
Task Force on Biodiversity and Protected Areas was established by the WCPA and 
SSC. Their work focuses on two major objectives, determining best predictors of 
success for biodiversity conservation in PAs, and evaluating of key standards to 
identify sites that contribute significantly to biodiversity conservation.

1.4 Approaches to biodiversity monitoring

Monitoring of biodiversity is a challenge for many reasons, including deficits in 
the conception, methodologies, and technologies of BMS. Monitoring is expensive 
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and demands significant human effort. Multiple species may require monitoring, 
but within the framework of data collection only a limited set of indicators can be 
selected. A sufficient number of specialists must be available to document taxa of 
expertise. Human resources can be limited by scheduling conflicts, poor weather, 
and inaccessible or hazardous field sites. BMS must additionally be reliable, repro-
ducible, flexible, and comparable across sites, as well as applicable to different 
management questions. Perhaps most importantly, BMS should reflect the current 
state of the habitat or an organism group, providing key metrics to the manager in 
a timely and comprehensive manner. Solutions should take these limitations into 
consideration through application of effective technologies.

Novel approaches are now available to complement, or in some cases replace, 
classical monitoring methodologies. These exciting approaches are in different 
stages of maturity. In the following sections, we review digital monitoring tech-
niques that are still under development or have become increasingly standardized in 
PA management in recent years.

Advances in computational technology over the past half century have revolu-
tionized scientific capacity for monitoring of biodiversity. Digital methodologies 
that seemed unfathomable just a few years ago are now practical to enable rapid 
and automated collection of species data [33]. Primary among these state-of-the-art 
approaches are metagenomics through environmental DNA (eDNA) collection, 
camera trapping (CT) using digital trail cameras, environmental sampling of 
volatile organic compounds (VOCs) using digital sensors, passive acoustic monitor-
ing (PAM), and earth-based remote sensing (RS) approaches [34]. In the field of 
biodiversity conservation, digital collection of big data is accomplished through use 
of data storage platforms such as GBIF; a lagging element is adequate analysis of 
these often-unstructured data [33, 35].

2. Advanced tools facilitating biodiversity monitoring

2.1 Applications of environmental DNA

Practical considerations constrain a BMS. One challenge is that due to time and 
cost considerations, often only limited selections of taxa can be monitored. To 
improve ecological assessments, metagenomics could be used to address sampling 
deficiencies. Molecular analysis could support a rapid survey of a wide range of 
taxa, quantify species richness, and measure diversity across different trophic levels 
of the ecosystem. Analysis of eDNA is increasingly becoming part of PA monitor-
ing and management programs and can contribute to ensuring that conservation 
measures are implemented in a targeted manner.

Barcoding is a DNA-based taxonomic identification technique that allows a 
living organism to be identified on a genetic level through molecular analysis of 
skin, mucus, feces, or other biological samples [36]. Hair sample collection from 
the elusive European wild cat Felis silvestris silvestris, for example, can contribute to 
conservation activities by documenting species genetic composition across migra-
tion routes [37]. DNA metabarcoding combines barcoding and high-throughput 
DNA sequencing [38] and is applied for eDNA samples from diverse media such as 
soil, sediment, fresh water and seawater, and even air [39]. The sampling approach 
of eDNA collection is non-invasive, operator-independent, and flexible in its 
application for different taxonomic groups. Moreover, Herder and colleagues [40] 
highlight improved detection probability for rare and secretive species, including 
higher reliability of negative results, cost efficiency especially for species difficult 
to monitor with traditional methods, and species specificity without mismatch in 
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identification. These features make metabarcoding attractive to fulfill PA monitor-
ing goals [41]. Whereas morphological identification of immature aquatic insects is 
particularly challenging, eDNA analysis provides an objective way to differentiate 
species independent of life stage [42, 43].

Taxon-specific primers targeting highly conserved regions of the genome are 
used to amplify sample DNA in a thermocycler [44]. The sample is then sent to a 
Next Generation Sequencer. Species identification is based on output of nucleic acid 
sequences. Very short DNA primers, so-called mini-barcodes [45], allow amplifica-
tion of degraded DNA, for example from soil samples [46].

DNA metabarcoding offers diverse applications to conservation, paleobiology, 
biomonitoring, and invasion biology. Metagenomics technologies under develop-
ment could in the future provide more comprehensive biodiversity assessment in 
PAs using bulk samples from the environment. Moreover, interactions between 
taxonomic groups could be investigated, and detection of changes in these interac-
tions could optimize adaptive management decisions [47]. For instance, aquatic 
eDNA sample collections are suited to detect pathogens in the environment includ-
ing the fungus Batrachochytrium dendrobatidis in its host frog species [39, 40]. 
Discovery of incipient pathogens could help guide adaptive measures to limit spread 
of disease in the environment.

A coarse application of molecular diagnostics is the application of (molecular) 
operational taxonomic units, or (M)OTUs [48]. These are distinct clusters of 
reads whose nucleic acid sequences differ by less than a fixed threshold and can be 
applied as an initial survey of diversity. These OTUs are of particular value for soil 
biodiversity assessment in PAs, as no taxa of microorganisms need to be known to 
benchmark the diversity of different soil samples relative to one another.

Although DNA metabarcoding may have a highly supportive function in PA 
management, several challenges remain [40]. Reproducibility of results is a primary 
issue. For example, species composition of replicate samples taken from a fresh-
water stream may provide conflicting results. DNA detection in fresh water may 
be possible at a distance of 9 to 12 km away from the genetic source [49]. Species 
determination is influenced by the primers used and is highly dependent on the 
quality of available reference databases. Additionally, most designs are customized 
for the particular research question because there is no uniform approach for all 
applications. Another disadvantage includes limitations on accurate species den-
sity estimates. Furthermore, no information can be provided on the life stages or 
demographic structures of identified organisms, as eDNA analysis typically gener-
ates presence/absence data. Concerns exist that rare and endangered species could 
be reduced to numbers on a species list. But for their respect and protection, they 
would need support from society.

However, successful applications of eDNA analysis promote further usage of 
this novel approach in PAs. Much expectation is placed on future application of 
metabar-coding in a BMS. Favorable comparability of DNA-based and classical 
approaches has been demonstrated in the context of the European Union Water 
Framework Directive [50]. For the PA manager, several prerequisites for the 
workflow must be assessed. When using eDNA, the analytical procedure, which in 
most cases is carried out in an external laboratory, is not as important as the evalu-
ation of conservation questions of interest. For this purpose, the manager must be 
familiar with the range of conclusions that could result from metagenomic analyses. 
Consideration must be given to whether eDNA collection would be the appropriate 
technique to answer the monitoring question. The next critical step for the manager 
is to acquire expert interpretation of the data. Yet, with appropriate research ques-
tions, analytical approaches using eDNA sampling have great potential to detect 
target species and contribute valuable insights to a BMS.
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2.2 Camera trapping

Nature photography provides an archivable, permanent record on the in-situ 
occurrence of plants and animals. As a biodiversity research technique, photogra-
phy dates back to the late 19th century [51]. In the early period of CT development, 
photographic approaches utilized cumbersome hardware and explosive compounds 
to create a flash [52–54]. Technological developments including remote triggering of 
the shutter, improved flash mechanisms, improvements to battery life, and digitiza-
tion of images have enhanced cameras since the mid-20th century [51, 55]. With 
trail cameras, social media platforms, and dozens of smartphone apps, scientists 
and enthusiasts can now contribute to real-time photo documentation of species 
(Figure 2) [33, 56]. As a biodiversity research tool, CT compares favorably to many 
previously standard methodologies [57].

Formal CT studies for biodiversity monitoring came into existence a century ago 
[58]. Approaches have since undergone a dramatic evolution, with a wide selec-
tion of wildlife cameras now commercially available [55]. Use of remote photog-
raphy has become standard for documenting species distributions over broad 
 spatio-temporal scales [59]. Photographic approaches are suitable for examination 
of species occupancy or abundance in aquatic and terrestrial biomes [34] and are 
suitable for targeting a range of animal species [60–65]. Robust statistical method-
ologies are available for data analysis, including spatially explicit capture-recapture 
techniques (SECR), multi-layered robust principal component analysis, occupancy 
modeling, and predator–prey co-occurrence analysis [66–69]. Photographic and 
video processing programs are undergoing continual refinement, providing an 
ever-improving framework for data analysis and allowing inferences into animal 
behaviors and spatial distribution [70].

The field of big data analytics is advancing rapidly, utilizing machine 
 learning (ML) algorithms to provide automated analysis of digital imagery [35]. 
Applications include identification of animals in pictures and systematic behavioral 
descriptions [71]. Today, deep convolutional neural networks (CNN) are applied to 

Figure 2. 
Trail cameras are widely available, allowing citizen scientists to capture the movement of animals, such as this 
family of American black bears (Ursus americanus) in Colorado, USA. Photo courtesy of K. Dalton.
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image libraries, allowing rapid processing of large datasets using standard com-
puter operating systems and open-source software [70]. Yet, ML works only if the 
computer is trained using accurately tagged photographs, which demands signifi-
cant human effort. CNN in the context of CT research can be applied to identify any 
properly annotated object, from animals in PAs to agricultural pest insects [72–74]. 
Interconnectivity of hardware with cloud-based software is poised to empower real-
time remote data collection in agriculture [75]. A parallel approach could be applied 
to state-of-the-art CT systems in PAs to provide real-time monitoring of animals or 
vegetation [76].

Passive infrared sensors (PIR) are the dominant feature used to trigger the 
camera shutter, while time-lapse (TL) approaches and PIR + TL in combination are 
also utilized [77]. Sensitivity of PIR is modulated by the camera field of vision and 
speed of the passing animal. A major shortcoming to PIR-activated cameras is that 
they often fail to trigger upon encounter by insects or small animals. Modifications 
of PIR sensor sensitivity or camera focal point distance can be made to improve 
detection of small-bodied animals [55, 77]. One advancement to PIR sensors, the 
so-called HALT trigger, utilizes a near-infrared beam to increase camera trapping 
performance on arthropods and small vertebrates [63]. As an alternative to sensor-
based CT activation, automated TL photography has application to document 
arthropods, squamates, and avian roosting sites [62, 65, 77–79]. In addition to PIR 
and HALT, infrared technology has been used to create a less invasive flash mecha-
nism for night photography compared to use of xenon or LED flash [55].

The advantages of remote CT are myriad. Today’s automated approaches largely 
eliminate the requirement of human presence at a study site, restricting visitation 
to plot establishment and removal, and thereby reducing activities that could 
bias animal behavior. Furthermore, cameras can be deployed in locations that are 
difficult to access [79, 80]. Traps can be programmed to function at optimal times 
to detect target species behaviors. Exclusion of empty pictures or videos is enabled 
through automated image pre-processing [81, 82]. While studies generally focus on 
one or a small set of animals, the bycatch of unanalyzed photographs additionally 
serves as a rich source for wider ML training applications or retrospective  
occupancy analyses [83].

Despite the advancements of CT methodologies, critical logistical challenges 
remain. Animals may be able to detect CT through sight or sound, even in the 
absence of field workers [84]. A network of CT, deployed for weeks at a time, is 
necessary to acquire a robust dataset. The cumulative sampling effort of all cameras 
in an array, termed CT days, needs to be approximately determined prior to deploy-
ment [55]. Data analysis is an obstacle to understanding the value of CT schematics 
[59]. Another critical hindrance is the lack of standardization of CT technologies 
due to the wide selection of cameras on the market today [55, 80], although open 
standards to promote uniform collection of CT images have been proposed [85]. 
Up-front material costs of CT surveys can be high but are attenuated the longer the 
camera traps are in place [57]. The photo archive of a single project typically num-
bers in the thousands of images but requires a rapid turn-around time to inform 
management decisions. This problem is addressed through ML, but photographs 
must first be annotated, requiring months or years of technical effort depending 
on size of the photographic archive [71]. While automated identification of com-
mon species is reliable, identification of rare or undescribed species is challenging 
because photographic archives may not contain enough pictures to effectively train 
the computer [58].

With the use of appropriate digital camera sampling methodologies, the 
researcher no longer needs to interact directly with animals in order to gain 
insights into their behaviors or population structures. Images are either analyzed 
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manually, or with a computer through ML approaches. Large networks of cameras 
may capture a representative number of individuals or species, allowing scientific 
inferences. In general, deployment periods need not exceed more than a few weeks 
to result in acceptable data. Foresight should be made when investigating particular 
behavioral attributes such as migration phenology or hibernation, because season-
ality can affect captures of certain animals.

2.3 Electronic noses

Automated sensing of airborne chemicals is an emerging area of environmental 
diagnostics with high potential transferability to PA management. The use of 
electronic noses, or e-noses, is an established technique with diverse industrial 
and agricultural functions, including determination of the presence of VOCs, 
volatile inorganic compounds, and heavy metal pollutants in the environment [86]. 
Applications of e-nose technologies in conservation include monitoring of IAS and 
pathogenic infection of plants and animals [86–89]. E-nose devices are even capable 
of identifying species-level differences in plants based on their VOC emission 
profiles [90]. As such, e-noses are intelligent instruments that have great potential 
toward plant health monitoring [91], including in PAs.

Communication in mammals is moderated through sensory modalities, 
 including scent. VOC emissions can be acquired from body surfaces, glands, or 
breath of animals [89, 92]. Insect communication is impacted by antennal detec-
tion of semiochemical VOCs [93]. In integrated pest management, this serves as 
the basis of mating disruption [94]. E-noses are designed to mimic mammalian or 
insect olfactory systems [86, 93]. First developed in the 1980’s [95], e-noses can be 
equipped today with a variety of sensors. Among the most common sensor types 
are conductive polymer biosensors [86]. Environmental analysis using these sensors 
is an established method for ecological, forestry, and taxonomic research [90]. 
E-noses can be paired with fluorescence technologies and ML algorithms to allow 
reliable identification or diagnosis of VOC profiles [96]. Miniaturization of next-
generation e-nose devices will allow greater utility in the field [86, 97].

Plants and animals emit altered suites of VOCs under biotic or abiotic stresses 
[86, 89, 97]. Comparison of VOC emissions can be made between field-grown 
plants and reference electronic aroma signature patterns to determine plant 
 infection or infestation status [90]. In a study of North American ash trees, healthy 
trees had higher diversity of VOCs compared to trees infested with emerald ash 
borer Agrilus planipennis, a devastating IAS. Analysis of VOC patterns could help 
 managers identify infested trees more rapidly than by using baits or traps for 
confirmation of infestation [88]. In the case of IAS introductions, such knowledge 
could advance containment measures and guide further surveillance actions [87]. 
Early detection of IAS or pathogenic infections of keystone species in PAs could 
similarly help managers determine adaptive management interventions.

Utilization of e-nose devices suffers from considerable practical limitations. 
Their bulky size and high price, coupled with difficulties of aroma profile detec-
tion, limit their application in the field [97]. E-noses only display raw response 
unless they are paired with computer-based training datasets [91]. When working 
with previously uncharacterized species, new computer algorithms and VOC 
reference libraries must be generated [86]. Moreover, due to geographic vari-
ability of abiotic factors, source materials for reference libraries should come from 
the sampled region [90]. Periodic calibration of e-nose monitors is necessary to 
maintain accuracy [86]. Sensors must be replaced periodically due to degradation 
over time [87]. Yet, the objective identification of VOC profiles in the environment 
represents a clear opportunity for management of plant health in PAs.



9

Novel Technologies and Their Application for Protected Area Management: A Supporting…
DOI: http://dx.doi.org/10.5772/intechopen.99889

2.4 Passive acoustic monitoring

Animals communicate with one another for a number of biologically important 
reasons including defense, mating, group interactions, and orientation [98, 99]. 
Sound is recognized as a common means of communication in insects, fish, birds, 
squamates, and mammals [98, 100]. Call count censusing has long been a standard 
practice to identify community assemblages [101, 102]. Initially conducted with 
expensive, cumbersome equipment, census techniques using recorders now allow 
ecologists to document a wide diversity of species at a far lower cost than continual 
deployment of field crews [98]. Today, PAM uses autonomous recording units 
(ARUs), representing a non-invasive means to collect species-level occupancy data, 
thereby minimizing behavioral impacts or animal stress [103, 104].

Modern ARUs have many advantages over previously standard field techniques, 
enabling research crews to conduct more site surveys with fewer site visits and 
allowing improved biodiversity estimation in remote areas [105, 106]. Digital 
recordings further serve as permanent data records that can be played back for 
verification of species identity [101, 107–109]. Rapid acoustic surveys using micro-
phone arrays have application in conservation, identifying changes in community 
species assemblages or migration patterns, phenology, communication, or even 
presence of IAS [105, 110, 111]. This approach may help to identify environmental 
impacts of anthropogenic disturbance, for example the impacts of artisanal mining 
on the local avian community [112].

Methodologies for detection of vocal species are well established, including 
classic field approaches of physical trapping, playback of audio recordings, point 
counts, and timed area searches [105, 108, 113, 114]. Bats and birds have been 
recorded in proximity to wind turbines using radar tracking, infrared imagery, and 
radio telemetry, [61, 115]. First formalized nearly 20 years ago, SECR techniques 
provide the statistical framework to document species density across microphone 
arrays [69, 103, 114, 116]. For some taxa, effectiveness of manual calling surveys 
has been directly compared to results from ARU methodologies, with both  me  thods 
providing synergetic benefits to a monitoring program [101]. Manual calling 
surveys and ARU approaches can support similar conclusions; however, ARUs may 
provide biodiversity data with dramatically reduced human effort [117]. Similar 
to CT studies, well-established statistical techniques are available for studies using 
PAM to provide estimates on animal abundance, density, and occupancy [105, 113, 
118, 119].

Species-specific auditory signals can be identified by experienced personnel, or 
automatically using ML algorithms. Several automated ML techniques are described 
[99, 100, 107, 120]. Two crucial components of automated bioacoustics analysis are 
recognized. First, auditory signals are characterized visually through spectrograms; 
subsequently, signals are extracted from continuous recordings through pairing 
with a “recognizer” template segment [105]. Spectrograms assist in species identi-
fication [106, 115]. Automation coupled with cloud-based technologies now enable 
remote real-time identification, potentially providing up-to-the-minute conserva-
tion information to a PA manager [107, 121].

Expert-based field identification may compare favorably to findings generated 
from remote microphone arrays linked to species recognition algorithms [108]. 
Yet, surveys relying on human skill for identification of species are prone to error 
due to imperfect species detection, confirmation bias, or listener fatigue [102, 103, 
119, 122]. Lack of objective classification is especially challenging when a reviewer 
is charged with identifying rare or unknown species, with animals that are known 
to employ mimicry, or in complex soundscapes [104, 111]. Multiple factors influ-
ence the soundscape, including relative abundance of species, caller density, and 



Protected Area Management - Recent Advances

10

community acoustic diversity [123]. Analysis of soundscape profiles can be facili-
tated through reduction of background noise [104, 109]. Incorporating species time 
of arrival or activity into a survey using fixed-point microphone arrays can be an 
approach to reduce bias [102, 114]. Through application of sound filters, automated 
programs can eliminate sections of uninformative data, facilitating verification of 
acoustic signals by a reviewer [117].

Important limitations persist for auditory species identification. Use of auto-
mated computer recognition of animal calls is currently underutilized [102]. For 
effective ML, hundreds of labeled sound records are required [115, 120]. Recordings 
may miss very faint or distant calls and allow overrepresentation of calls by noisy 
species [115, 117, 122]. Depending on equipment, costs can be high for acquisition 
and maintenance of a microphone array [105]. Furthermore, effective sampling 
area is often imprecisely known due to landscape features, thus limiting inference 
on species occupancy [103]. An effective study design can help alleviate some limi-
tations, for example through strategic placement of microphone arrays providing 
overlap within species habitat. Certain types of hardware are becoming less expen-
sive, while many software programs and call libraries are deposited in open-source 
libraries [99].

The generation of large amounts of data is a common feature to many PAM pro-
grams [117]. While automated identification of acoustic calls is possible for certain 
species or analytical processes, big data processing challenges remain [35, 99, 121]. 
Solutions to data management should be transferrable to personnel of all skill levels, 
and in a way that acoustic data can be statistically compared across sites [117]. 
Nonetheless, the recent advancements of automated PAM hold great promise for 
the future of PA management.

2.5 Applications of remote sensing in protected area monitoring

Management of PAs can be supported by RS applications. A range of different 
datasets can be produced using RS, including information on climate, character-
istics of vegetation, plant phenology, water budget, energy exchange, and terrain 
models [124]. In order to ensure efficient use of such data, a clear implementation 
strategy is essential. Analysis of satellite data is a cost-efficient extension to con-
ventional in-situ monitoring in the field, particularly in remote and inaccessible 
areas. Moreover, analyses can be carried out retrospectively with historic satellite 
imagery [125]. To detect different ecosystems and habitats, structural and func-
tional attributes can be determined based on various RS technologies [124]. For 
example, LiDAR- and radar-derived elevation models are often used for forest 
mapping to assess aboveground structure and biomass [126]. Some RS techniques 
also provide the possibility to compare different PAs worldwide based on the same 
dataset, enabling global estimates of habitat availability. Local and regional datasets 
are often more accurate than global datasets, in particular for the use of unmanned 
aerial systems, or drones [124]. Drones are flexible vehicles that can be equipped 
with imaging sensors including thermal vision cameras, visible red-green-blue, 
near infrared, multispectral, or hyperspectral sensors, as well as ranging sensors 
including laser scanners and synthetic aperture radars. Drones come in multi-rotor 
or fixed wing configurations and are used in many conservation-based fields: 
wildlife monitoring and management, ecosystem monitoring, law enforcement, 
ecotourism, environmental management, and disaster response [127].

To improve management and monitoring effectiveness in PAs, software pro-
grams like Spatial Monitoring and Reporting Tool (SMART) combine geographic 
information systems (GIS) with database tools and digital field assessment 
[128]. Through such tools, standardized results of conservation efforts or PA law 
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enforcement activities can be generated in real-time. SMART output shows the 
spatial distribution of illegal activities while simultaneously tracking patrol efforts 
and providing a record of the violation [129].

The SMART approach streamlines the time required for quality assessment. A 
multilingual interface facilitates its implementation in PAs anywhere in the world. 
The use of pictograms can further simplify the generation of datasets. Preparation 
of data templates also provides an efficient way to produce standardized reports 
that can be expressed as a dashboard visualizing monitoring results with only a 
few clicks [130]. Using cloud-based technology, it is now possible to produce near 
real-time (NRT) alerts directly from the field [131]. This allows immediate action 
on incidents of conservation interest, thus improving management of the PA.

A study on the impact of NRT alert systems for conservation concluded that 
such systems are suitable for identifying fire impact and illegal forest activities 
[132]. The accuracy and availability of NRT alerts are affected through different 
factors including spatial resolution or time lag due to cloud cover. Despite these 
limitations, RS datasets provide an important indication of potential threats [133].

Diverse methodologies and thresholds are used to assess key variables in for-
est inventories, making data comparison a challenge [134]. In particular, use of 

Figure 3. 
In-situ single tree assessment with QField. The points represent single tree detections from a remote sensing 
approach and allow a linkage of tree parameters to the tree itself. Coloration indicates the tree height and 
crown structure.
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subjective techniques can lead to faulty measurements. One solution is to compare 
parameters using RS such as above-ground woody biomass across national borders 
[135]. In this instance, generation of cross-comparable information could play an 
important role in understanding carbon sequestration dynamics of different forests 
[136]. By identifying, such datasets enable a comparison of individual tree charac-
teristics at the landscape level [137]. The applicability of different methodologies 
and datasets for single tree detection has been studied for more than three decades 
[138] and is becoming more accurate. For laser scanner datasets, the point density 
to detect tree parameters can vary from 2 points m−2 up to more than 25,000 points 
m−2 [139, 140]. Furthermore, analysis of datasets with repeat survey dates allows 
detection of single missing trees. These so-called change detection approaches are 
already possible using consumer-level drones without post-processing effort, based 
on multi-temporal ultra-high-resolution ortho mosaics (5 cm pixel resolution with 
a flight altitude of 100 m) and three-dimensional point clouds. The use of such 
technologies can thus increase the comparability and repeatability of monitoring 
datasets. With a combination of pre-processed single tree detection it is possible to 
ground-truth tree parameters or quantify microhabitats directly in the field based 
on the position of the trees [141].

Applications like QField further allow PA managers to establish digital assess-
ments in the field based on GIS (Figure 3). Such applications promote effective 
workflows encompassing whole data assessment, data input, and digitization, 
thereby enabling data quality control. The availability of actual RS data in the field 
can further increase the quality of digitization [142].

3. Conclusion

In this chapter, a review of some of the most exciting technological advances to 
improve BMS is provided. To meet the urgent demands of international biodiversity 
conventions, state-of-the-art monitoring approaches must be quickly adopted on a 
broad scale. In some cases, completely new work flows will be required. Yet, in order 
to retain the value of historical data, utility of new technologies must be evaluated, 
compared with previously standard approaches, and visualized for interpretation. 
In other words, while application of individual novel technologies may be benefi-
cial, no method alone provides a singular solution to improve conservation metrics. 
Instead, PA managers must select suitable tools as part of a toolkit to allow large-
scale assessment and flexibility in an adaptive management program. Using such an 
integrated approach will assist PA managers to reach conservation goals. Currently, 
the BioMONITec research team of the UNESCO Chair on Sustainable Management 
of Conservation Areas Carinthia University of Applied Sciences, Austria, is con-
structing an online decision-making assistant, or configurator, to guide develop-
ment of site-specific monitoring toolkits. In coordination with the IUCN WCPA, a 
comprehensive global biodiversity monitoring guideline that shall be applicable in 
PAs across the world is being developed (M. Jungmeier, pers. comm.).

Implementation of digital monitoring tools is poised to augment biodiversity 
monitoring programs, economizing both human capital and natural resources. 
Where monitoring data already exist, usage of new tools must allow valid compari-
son of data to permit identification of trends. High-throughput DNA metabarcod-
ing techniques using eDNA sampling have proven to be invaluable for rapid and 
comprehensive biodiversity assessments in PAs. Advances in cloud-based computer 
frameworks and ML will allow sensor-based technologies to convey data in real-
time to a manager. Drones and satellites can already provide NRT data from above 
the earth’s surface, and these capabilities are continually improving. In this context, 
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PA managers of the future should not only be competently qualified scientists, 
excellent communicators and mediators, but must also be up-to-date technology 
enthusiasts.
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